2018年高三最新 河南省五市2018年高中毕业班第一次联
- 格式:doc
- 大小:923.97 KB
- 文档页数:9
关于抽调2018—2019学年高中毕业班第一次质量预测评卷教师的通知
各县(市、区)教研室,市区各高、完中:
2018—2019学年高中毕业班第一次质量预测将于2019年1月8日—9日进行,评卷工作于1月11日(周五)进行,现将抽调评卷教师的工作通知如下,望各单位按本通知要求的人数(见附件2)选派教师准时参加评卷。
一、评卷时间安排
2019年1月11日
参加评卷的教师应于1月11日上午7:50前到达评卷现场。
二、评卷地点安排
三、名单报送要求
因高三一测评卷工作时间紧、任务重,请各单位接到通知后,积极配合,按照所分配的名额,安排“教学能力强、身体健康、能熟练操作计算机”的教师参加,并于2019年1月3日16:30前,通过“郑州市教学评价与管理信息服务平台”上报阅卷教师名单。
信息服务平台的登录端口在“郑州基础教育教研网”首页。
登录系统之后的欢迎界面上有本系统的操作手册。
上报名单的格式如附件1所示。
附件1:评卷教师信息内容
附件2:郑州市高三一测评卷教师抽调人员分配表
郑州市教育局教学研究室
二○一八年十二月二十八日联系人:高燕电话:67882065
评卷教师信息内容
评卷教师信息需要填的变量内容包括:任教学科、姓名。
上报信息填写的具体要求如下:
任教学科:填写“语文、数学、英语、物理、化学、生物、政治、历史、地理”;
郑州市高三一测评卷教师抽调人员分配表。
2017年河南省六市高中毕业班第一次联考数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
注意事项:1.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卷面清洁,不折叠,不破损。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,共60分.在每小题给出的代号为A 、B 、C 、D 的四个选项中,只有一项是符合题目要求的。
1.全集U =R ,集合A ={x |2x -x -2>0},B ={x |1<2x<8),则(C UA )∩B 等于A .[-1,3)B .(0,2]C .(1,2]D .(2,3)2.复数z =2(1)1i i+-(i 是虚数单位)则复数z 的虚部等于A .1B .iC .2D .2i 3.已知向量a =(tan θ,-1),b =(1,-2),若(a +b )⊥(a -b ),则tan θ=A .2B .-2C .2或-2D .04.已知正项数列{n a }中,a 1=1,a 2=2,22n a =21n a ++21n a -(n ≥2),则a 6等于 A .16 B .8C .D .45.函数f (x )=lnx +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是 A .(-∞,2] B .(-∞,2) C .(2,+∞) D .(0,+∞)6.“m <1”是”函数f (x )=2x +x +m 有零点“的A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件7.如果执行下面的框图,输入N =2017,则输出的数等于A .2017×22017+2B .2017×22017-2C .2017×22017+2D .2017×22017-28.若A 为不等式组0,0,2x y x ⎧⎪⎨⎪⎩≤y ≥-≤表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为 A .74 B .32 C .34D .1 9.一个几何体的三视图如图所示,则该 几何体的体积为 A .πB .2πC .πD .2π+310.已知双曲线2221x a b2y -=(a >0,b >0)的渐近线与圆2(2)1x -2+y =相交,则双曲线的离心率的取值范围是A .(1,3)B .C .(1) D .(3,+∞) 11.球O 的球面上有四点S 、A 、B 、C ,其中O 、A 、B 、C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S -ABC 的体积的最大值为 A .1 B .13 CD12.已知函数f (x )对任意x ∈R 都有f (x +6)+f (x )=2f (3),y =f (x -1)的图像关于点(1,0)对称,且f (4)=4,则f (2017)=A .0B .-4C .-8D .-16第Ⅱ卷本卷分为必做题和选做题两部分,13-21题为必做题,22、23、24为选做题。
河南省六市2018届高三第一次联考(一模)数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则()A. B. C. D.【答案】C【解析】,,所以,选C.2. 已知为虚数单位,若,则()A. 0B. 1C.D. 2【答案】B3. 现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.【答案】C【解析】试题分析:将张奖票不放回地依次取出共有种不同的取法,若获恰好在第四次抽奖结束,则前三次共抽到张中奖票,第四次抽的最后一张奖票,共有种取法,所以概率为,故选C.考点:古典概型及其概率的计算.4. 汽车以作变速运动时,在第1s至2s之间的1s内经过的路程是()A. B. C. D.【答案】D【解析】,选D.5. 为考察两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A. 药物的预防效果优于药物的预防效果B. 药物的预防效果优于药物的预防效果C. 药物、对该疾病均有显著的预防效果D. 药物、对该疾病均没有预防效果【答案】B【解析】由A、B两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A的预防效果优于药物B的预防效果.故选B.6. 一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A. B. C. 2 D. 4【答案】B【解析】几何体如图,,所以最大面SAB的面积为,选B.7. 已知数列满足:,则其前100项和为()A. 250B. 200C. 150D. 100【答案】D【解析】因为 ,所以选D.8. 已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.【答案】C【解析】因为为锐角三角形,所以,选D.9. 设是数列的一个排列,观察如图所示的程序框图,则输出的的值为()A. 2015B. 2016C. 2017D. 2018【答案】D【解析】试题分析:此题的程序框图的功能就是先求这个数的最大值,然后进行计算,,因为,所以,故选D.考点:程序框图.【方法点睛】本题考查的是程序框图.对于算法与流程图的考查,一般会侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10. 在三棱锥中,,,,,,且三棱锥的体积为,则该三棱锥的外接球半径是()A. 1B. 2C. 3D. 4【答案】C【解析】取SC中点O,则OA=OB=OC=OS,即O为三棱锥的外接球球心,设半径为r,则选C.点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11. 椭圆与函数的图象交于点,若函数的图象在处的切线过椭圆的左焦点,则椭圆的离心率是()A. B. C. D.【答案】B【解析】设因此,所以,,,选B.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12. 若关于的方程有3个不相等的实数解,且,其中,,则的值为()A. 1B.C.D.【答案】A【解析】令,则方程化为有两个不等的实根,所以,选A.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.二、填空题(每题4分,满分20分,将答案填在答题纸上)13. 已知,,则______.【答案】5【解析】14. 已知二项式的展开式的二项式系数之和为32,则展开式中含项的系数是_______(用数字作答).【答案】10【解析】试题分析:由题意可得:,所以,令,所以展开式中含项的系数是10.考点:二项式定理.15. 已知是双曲线:右支上一点,直线是双曲线的一条渐近线,在上的射影为,是双曲线的左焦点,则的最小值是_______.【答案】【解析】16. 已知动点满足,则的最小值是_______.【答案】【解析】因此可行域为一个三角形ABC及其内部,其中,所以点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列中,,其前项的和为,且满足.(1)求证:数列是等差数列;(2)证明:当时,.【答案】(1)见解析(2)见解析【解析】试题分析:(1)根据数列的递推关系进行化简结合等差数列的定义即可证明数列是等差数列;(2)求出的通项公式,利用放缩法进行证明不等式.试题解析:(1)当时,,,从而构成以1为首项,2为公差的等差数列. -------6分(2)由(1)可知,,当时,从而.考点:1.裂项求和;2.放缩法;3.推理能力.【方法点睛】本题主要考查的是裂项求和,放缩法,等差数列的通项公式,考查了变形能力,推理能力与计算能力,属于中档题,首先根据可求出数列的通项公式,(2)问中根据(1)中条件进行裂项求和,可发现中间部分项被消掉,因此可适当利用放缩的方法对前项和进行放大或缩小,即可证明结论,因此根据数列的递推关系结合等差数列的定义是解决问题的关键.18. 我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如下图表:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)【答案】(1)3,5(2)(3)2.22【解析】试题分析:(Ⅰ)从图表中求出不能自理的80岁及以上长者占比,由此能求出抽取16人中不能自理的80岁及以上长者人数为.(Ⅱ)求出在600人中80岁及以上长者在老人中占比,用样本估计总体,能求出80岁及以上长者占户籍人口的百分比.(Ⅲ)用样本估计总体,设任一户籍老人每月享受的生活补助为X元,则Xr可能取值为0,120,200,220,300,分别求出相应的概率,由此能求出随机变量X的分布列、EX,从而能估计政府执行此计划的年度预算.试题解析:(1)数据整理如下表:从图表中知不能自理的岁及以上长者比为:故抽取人中不能自理的岁及以上长者人数为岁以下长者人数为人(2)在人中岁及以上长者在老人中占比为:用样本估计总体,岁及以上长者共有万,岁及以上长者占户籍人口的百分比为%=%,(3)用样本估计总体,设任一户籍老人每月享受的生活补助为元,则随机变量的分布列为:全市老人的总预算为元,政府执行此计划的年度预算约为亿元.求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式(常见的有古典概型公式、几何概率公式、互斥事件的概率和公式、独立事件的概率积,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布,则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19. 如图,在四棱锥中,平面,底面是菱形,,为与的交点,为上任意一点.(1)证明:平面平面;(2)若平面,并且二面角的大小为,求的值.【答案】(1)见解析(2)【解析】试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键;(3)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(1)因为,,又是菱形,,故平面平面平面4分(2)连结,因为平面,所以,所以平面又是的中点,故此时为的中点,以为坐标原点,射线分别为轴,轴,轴建立空间直角坐标系..6分设则,向量为平面的一个法向量.8分设平面的一个法向量,则且,即,取,则,则12分解得故14分考点:1、平面与平面垂直的判定;2、平面与平面所成角余弦值的应用.20. 已知抛物线:的焦点为,过的直线交抛物线于点,当直线的倾斜角是时,的中垂线交轴于点.(1)求的值;(2)以为直径的圆交轴于点,记劣弧的长度为,当直线绕点旋转时,求的最大值. 【答案】(1)(2)【解析】试题分析:(1)设出直线的方程为,设,联立直线与抛物线方程,利用韦达定理求出中点坐标,推出中垂线方程,结合的中垂线交轴于点,求出即可;(2)设方程为,代入,求出的距离以及中点为,令,求出的表达式,推出关系式,利用到轴的距离,求出,分离常数即可求得的最大值.试题解析:(1)当的倾斜角为时,的方程为设得得中点为中垂线为代入得(2)设的方程为,代入得中点为令到轴的距离当时取最小值的最大值为故的最大值为.21. 已知函数.(1)讨论的单调性;(2)若有两个极值点,且,证明:.【答案】(1)见解析(2)见解析.....................试题解析:(1),所以(1)当时,,所以在上单调递增(2)当时,令,当即时,恒成立,即恒成立所以在上单调递增当,即时,,两根所以,,,故当时,在上单调递增当时,在和上单调递增在上单调递减.(2)由(1)知时,上单调递增,此时无极值当时,由得,设两根,则,其中在上递增,在上递减,在上递增令,所以在上单调递减,且故.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为(为参数),圆的极坐标方程为.(1)求直线的普通方程与圆的执直角坐标方程;(2)设曲线与直线交于两点,若点的直角坐标为,求的值.【答案】(1),(2)【解析】试题分析:(1)根据加减消元法将直线的参数方程化为普通方程,根据将圆的极坐标方程化为直角坐标方程,(2)先化直线参数方程标准形式,代入圆的直角坐标方程,根据参数几何意义得,再根据韦达定理求值.试题解析:解:(1)直线的普通方程为,,所以所以曲线的直角坐标方程为.(2)点在直线上,且在圆内,由已知直线的参数方程是(为参数)代入,得,设两个实根为,则,即异号所以.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.23. 选修4-5:不等式选讲已知关于的不等式有解.(1)求实数的取值范围;(2)已知,证明:.【答案】(1)(2)见解析【解析】试题分析:(Ⅰ)原问题等价于,结合绝对值三角不等式的性质可得;(Ⅱ)结合(Ⅰ)的结论可得,由柯西不等式可得,即.试题解析:(Ⅰ),故;(Ⅱ)由题知,故,.。
2018年河南省六市高三第一次联考试题数学(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{|30},{1,}A x x x B a =-<=,且A B 有4个子集,则实数a 的取值范围是 A .(0,3) B .(0,1)(1,3) C .(0,1) D .(,1)(3,)-∞+∞2、已知i 为虚数单位,a R ∈,若2ia i-+为纯虚数,则复数2z a =+的模等于A C 3、若110a b<<,则下列结论不正确的是 A .22a b < B .2ab b < C .0a b +< D .a b a b +>+4、向量,a b 均为非零向量,(2),(2)a b a b a b -⊥-⊥ ,则,a b的夹角为A .6π B .3π C .23π D .56π5、已知正弦数列{}n a 的前n 项和为n S ,若{}n a 和都是等差数列,且公差相等,则6a = A .114 B .32 C .72D .1 6、实数,x y 满足01xy x y ≥⎧⎪⎨+≤⎪⎩,使z ax y =+取得最大值的最优解有两个,则1z ax y =++的最小值为A .0B .-2C .1D .-17、一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为A .8、运行如图所示的程序,若结束时输出的结果不小于3,则t 的取值范围为A .14t ≥B .18t ≥C .14t ≤D .18t ≤ 9、已知点12,F F 分布是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,过1F 的直线l 与双曲线C 的左右两支分别交于,A B 两点,若21::3:4:5AB BF AF =, 则双曲线的离心率为A .2B .4 C10、三棱锥P ABC -中,6,AB BC AC PC ===⊥平面,2ABC PC =, 则该三棱锥的外接球的表面积为A .253πB .252πC .833πD .832π 11、一矩形的一边在x 轴上,另两个顶点在函数22(0)1xy x x =>+的图象上,如图,则此矩形绕x 旋转成的几何体的体积的最大值是A .πB .3π C .4π D .2π 12、已知函数()ln(2)x f x x=,关于x 的不等式()()20f x af x +>只有两个整数解,则实数a 的取值范围是A .1(,ln 2]3B .1(ln 2,ln 6)3--C .1(ln 2,ln 6]3--D .1(ln 6,ln 2)3-第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
河南省六市2018届高三第一次联考(一模)数学(理)试题含解析河南省六市2018届高三第一次联考(一模)数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则()A. B. C. D.【答案】C【解析】,,所以,选C.2. 已知为虚数单位,若,则()A. 0B. 1C.D. 2【答案】B3. 现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.【答案】C【解析】试题分析:将张奖票不放回地依次取出共有种不同的取法,若获恰好在第四次抽奖结束,则前三次共抽到张中奖票,第四次抽的最后一张奖票,共有种取法,所以概率为,故选C.考点:古典概型及其概率的计算.4. 汽车以作变速运动时,在第1s至2s之间的1s内经过的路程是()A. B. C. D.【答案】D【解析】,选D.5. 为考察两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A. 药物的预防效果优于药物的预防效果B. 药物的预防效果优于药物的预防效果C. 药物、对该疾病均有显著的预防效果D. 药物、对该疾病均没有预防效果【答案】B【解析】由A、B两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A的预防效果优于药物B的预防效果.故选B.6. 一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A. B. C. 2 D. 4【答案】B【解析】几何体如图,,所以最大面SAB的面积为,选B.7. 已知数列满足:,则其前100项和为()A. 250B. 200C. 150D. 100【答案】D【解析】因为 ,所以选D.8. 已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.【答案】C【解析】因为为锐角三角形,所以,选D.9. 设是数列的一个排列,观察如图所示的程序框图,则输出的的值为()A. 2015B. 2016C. 2017D. 2018【答案】D【解析】试题分析:此题的程序框图的功能就是先求这个数的最大值,然后进行计算,,因为,所以,故选D.考点:程序框图.【方法点睛】本题考查的是程序框图.对于算法与流程图的考查,一般会侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10. 在三棱锥中,,,,,,且三棱锥的体积为,则该三棱锥的外接球半径是()A. 1B. 2C. 3D. 4【答案】C【解析】取SC中点O,则OA=OB=OC=OS,即O为三棱锥的外接球球心,设半径为r,则选C.点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11. 椭圆与函数的图象交于点,若函数的图象在处的切线过椭圆的左焦点,则椭圆的离心率是()A. B. C. D.【答案】B【解析】设因此,所以,,,选B.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12. 若关于的方程有3个不相等的实数解,且,其中,,则的值为()A. 1B.C.D.【答案】A【解析】令,则方程化为有两个不等的实根,所以,选A.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.二、填空题(每题4分,满分20分,将答案填在答题纸上)13. 已知,,则______.【答案】5【解析】14. 已知二项式的展开式的二项式系数之和为32,则展开式中含项的系数是_______(用数字作答). 【答案】10【解析】试题分析:由题意可得:,所以,令,所以展开式中含项的系数是10.考点:二项式定理.15. 已知是双曲线:右支上一点,直线是双曲线的一条渐近线,在上的射影为,是双曲线的左焦点,则的最小值是_______.【答案】【解析】16. 已知动点满足,则的最小值是_______.【答案】【解析】因此可行域为一个三角形ABC及其内部,其中,所以点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列中,,其前项的和为,且满足.(1)求证:数列是等差数列;(2)证明:当时,.【答案】(1)见解析(2)见解析【解析】试题分析:(1)根据数列的递推关系进行化简结合等差数列的定义即可证明数列是等差数列;(2)求出的通项公式,利用放缩法进行证明不等式.试题解析:(1)当时,,,从而构成以1为首项,2为公差的等差数列. -------6分(2)由(1)可知,,当时,从而.考点:1.裂项求和;2.放缩法;3.推理能力.【方法点睛】本题主要考查的是裂项求和,放缩法,等差数列的通项公式,考查了变形能力,推理能力与计算能力,属于中档题,首先根据可求出数列的通项公式,(2)问中根据(1)中条件进行裂项求和,可发现中间部分项被消掉,因此可适当利用放缩的方法对前项和进行放大或缩小,即可证明结论,因此根据数列的递推关系结合等差数列的定义是解决问题的关键.18. 我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如下图表:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)【答案】(1)3,5(2)(3)2.22【解析】试题分析:(Ⅰ)从图表中求出不能自理的80岁及以上长者占比,由此能求出抽取16人中不能自理的80岁及以上长者人数为.(Ⅱ)求出在600人中80岁及以上长者在老人中占比,用样本估计总体,能求出80岁及以上长者占户籍人口的百分比.(Ⅲ)用样本估计总体,设任一户籍老人每月享受的生活补助为X元,则Xr可能取值为0,120,200,220,300,分别求出相应的概率,由此能求出随机变量X的分布列、EX,从而能估计政府执行此计划的年度预算.试题解析:(1)数据整理如下表:从图表中知不能自理的岁及以上长者比为:故抽取人中不能自理的岁及以上长者人数为岁以下长者人数为人(2)在人中岁及以上长者在老人中占比为:用样本估计总体,岁及以上长者共有万,岁及以上长者占户籍人口的百分比为%=%,(3)用样本估计总体,设任一户籍老人每月享受的生活补助为元,则随机变量的分布列为:全市老人的总预算为元,政府执行此计划的年度预算约为亿元.求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式(常见的有古典概型公式、几何概率公式、互斥事件的概率和公式、独立事件的概率积,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布,则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19. 如图,在四棱锥中,平面,底面是菱形,,为与的交点,为上任意一点.(1)证明:平面平面;(2)若平面,并且二面角的大小为,求的值.【答案】(1)见解析(2)【解析】试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键;(3)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(1)因为,,又是菱形,,故平面平面平面4分(2)连结,因为平面,所以,所以平面又是的中点,故此时为的中点,以为坐标原点,射线分别为轴,轴,轴建立空间直角坐标系..6分设则,向量为平面的一个法向量.8分设平面的一个法向量,则且,即,取,则,则12分解得故14分考点:1、平面与平面垂直的判定;2、平面与平面所成角余弦值的应用.20. 已知抛物线:的焦点为,过的直线交抛物线于点,当直线的倾斜角是时,的中垂线交轴于点.(1)求的值;(2)以为直径的圆交轴于点,记劣弧的长度为,当直线绕点旋转时,求的最大值.【答案】(1)(2)【解析】试题分析:(1)设出直线的方程为,设,联立直线与抛物线方程,利用韦达定理求出中点坐标,推出中垂线方程,结合的中垂线交轴于点,求出即可;(2)设方程为,代入,求出的距离以及中点为,令,求出的表达式,推出关系式,利用到轴的距离,求出,分离常数即可求得的最大值.试题解析:(1)当的倾斜角为时,的方程为设得得中点为中垂线为代入得(2)设的方程为,代入得中点为令到轴的距离当时取最小值的最大值为故的最大值为.21. 已知函数.(1)讨论的单调性;(2)若有两个极值点,且,证明:.【答案】(1)见解析(2)见解析.....................试题解析:(1),所以(1)当时,,所以在上单调递增(2)当时,令,当即时,恒成立,即恒成立所以在上单调递增当,即时,,两根所以,,,故当时,在上单调递增当时,在和上单调递增在上单调递减.(2)由(1)知时,上单调递增,此时无极值当时,由得,设两根,则,其中在上递增,在上递减,在上递增令,所以在上单调递减,且故.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为(为参数),圆的极坐标方程为.(1)求直线的普通方程与圆的执直角坐标方程;(2)设曲线与直线交于两点,若点的直角坐标为,求的值.【答案】(1),(2)【解析】试题分析:(1)根据加减消元法将直线的参数方程化为普通方程,根据将圆的极坐标方程化为直角坐标方程,(2)先化直线参数方程标准形式,代入圆的直角坐标方程,根据参数几何意义得,再根据韦达定理求值.试题解析:解:(1)直线的普通方程为,,所以所以曲线的直角坐标方程为.(2)点在直线上,且在圆内,由已知直线的参数方程是(为参数)代入,得,设两个实根为,则,即异号所以.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.23. 选修4-5:不等式选讲已知关于的不等式有解.(1)求实数的取值范围;(2)已知,证明:.【答案】(1)(2)见解析【解析】试题分析:(Ⅰ)原问题等价于,结合绝对值三角不等式的性质可得;(Ⅱ)结合(Ⅰ)的结论可得,由柯西不等式可得,即.试题解析:(Ⅰ),故;(Ⅱ)由题知,故,.。
河南名校联盟2017—2018学年高三适应性考试(一)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则复数21i=+( ) A .2i - B .2i C .1i - D .1i +2.已知R 是实数集,集合{1A x x =-≤或}1x ≥,集合{}01B x x =<<,则()A B =R I ð( )A .(][),01,-∞+∞UB .()0,1C .(]0,1D .[]1,1-3.为检验某校高一年级学生的身高情况,现采用先分层抽样后简单随机抽样的方法,抽取一个容量为300的样本,已知每个学生被抽取的概率为0.25,且男女生的比例是3:2,则该校高一年级男生的人数是( )A .600B .1200C .720D .900 4.在等比数列{}n a 中,1344a a a ==,则6a =( ) A .6 B .8± C .8- D .85.如图所示为一个88⨯的国际象棋棋盘,其中每个格子的大小都一样,向棋盘内随机抛撒100枚豆子,则落在黑格内的豆子总数最接近( )A .40B .50C .60D .646.空间中有不重合的平面α,β,γ和直线a ,b ,c ,则下列四个命题中正确的有( )1p :若αβ⊥且αγ⊥,则βγ∥; 2p :若a b ⊥且a c ⊥,则b c ∥;3p :若a α⊥且b α⊥,则a b ∥; 4p :若a α⊥,b β⊥且αβ⊥,则a b ⊥.A .1p ,2pB .2p ,3pC .1p ,3pD .3p ,4p7.《九章算术》中介绍了一种“更相减损术”,用于求两个正整数的最大公约数,将该方法用算法流程图表示如下,若输入20a =,8b =,则输出的结果为( )A .4a =,3i =B .4a =,4i =C .2a =,3i =D .2a =,4i =8体的体积为( )A .16B .163 C .83D .8 9.变量x ,y 满足22221x y x y y x +⎧⎪--⎨⎪-⎩≤≥≥,则3z y x =-的取值范围为( )A .[]1,2B .[]2,5C .[]2,6D .[]1,610.已知函数()()e xf x x a =+的图象在1x =和1x =-处的切线相互垂直,则a =( )A .1-B .0C .1D .211.过抛物线22y px =(0p >)的焦点作一条斜率为1的直线交抛物线于A ,B 两点向y 轴引垂线交y 轴于D ,C ,若梯形ABCD的面积为p =( )A .1B .2C .3D .4 12.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .12第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知非零向量a r ,b r满足()a a b ⊥+r r r ,()4b a b ⊥+r r r ,则b a=r r .14.已知圆O :221x y +=,点125,1313A ⎛⎫⎪⎝⎭,34,55B ⎛⎫- ⎪⎝⎭,记射线OA 与x 轴正半轴所夹的锐角为α,将点B 绕圆心O 逆时针旋转α角度得到点C ,则点C 的坐标为 . 15.等差数列{}n a 的前n 项和为n S ,已知5610a a +=-,1414S =-,则当0n S =时,n = .16.以双曲线22221x y a b-=的两焦点为直径作圆,且该圆在x 轴上方交双曲线于A ,B 两点;再以线段AB 为直径作圆,且该圆恰好经过双曲线的两个顶点,则双曲线的离心率为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的外接圆半径为R ,且满足2sin 3R a A =. (1)求角A 的大小;(2)若2a =,求ABC ∆周长的最大值.18.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,90ABC BAD ∠=∠=︒,PDC ∆和BDC ∆均为等边三角形,且平面PDC ⊥平面BDC ,点E 为PB 中点.(1)求证:AE ∥平面PDC ; (2)若PBC ∆的面积为2,求四棱锥P ABCD -的体积.19.某学校对甲、乙两个班级进行了物理测验,成绩统计如下(每班50人):(1)估计甲班的平均成绩;(2)成绩不低于80分记为“优秀”.请完成下面的22⨯列联表,并判断是否有85%的把握认为:“成绩优秀”与所在教学班级有关?(3)从两个班级,成绩在[)50,60的学生中任选2人,记事件A 为“选出的2人中恰有1人来自甲班”.求事件A 的概率()P A .附:()()()()()22n ad bc K a b c d a c b d -=++++20.椭圆22221x y a b+=(0a b >>)的上下左右四个顶点分别为A ,B ,C ,D ,x 轴正半轴上的某点P 满足2PA PD ==,4PC =. (1)求椭圆的标准方程以及点P 的坐标;(2)过点C 作倾斜角为锐角的直线1l 交椭圆于点Q ,过点P 作直线2l 交椭圆于点M ,N ,且12l l ∥,是否存在这样的直线1l ,2l 使得CDQ ∆,MNA ∆,MND ∆的面积相等?若存在,请求出直线的斜率;若不存在,请说明理由. 21.已知函数()2ln f x x ax x =+-.(1)若()f x 同时存在极大值和极小值,求a 的取值范围; (2)设11168a <≤,若函数()f x 的极大值和极小值分别为M ,N ,求M N +的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为π4ρθ⎛⎫=+ ⎪⎝⎭,直线l 的极坐标方程为0θθ=(ρ∈R ),曲线C 与直线l 相交于A ,B 两点. (1)当0π12θ=时,求AB ; (2)设AB 中点为P ,当0θ变化时,求点P 轨迹的参数方程. 23.选修4-5:不等式选讲 已知函数()21f x x a x =+++. (1)当1a =-时,求()f x 的最小值;(2)若()f x 在[]1,1-上的最大值为2a ,求a 的值.河南名校联盟2017-2018学年高三适应性考试(一)文科数学参考答案与评分标准一、选择题1-5:CBCDB 6-10:DACDA 11、12:AC二、填空题13.2 14.5633,6565⎛⎫-⎪⎝⎭15.15 16三、解答题17.解:(1)由正弦定理,得2sin aR A=, 再结合2sin 3R a A =,得2sin 2sin 3a a A A =, 解得23sin 4A =,由ABC ∆为锐角三角形,得3A π=.(2)由2a =、3A π=及余弦定理,得2242cos3b c bc π=+-,即()243b c bc +=+,结合22b c bc +⎛⎫≤ ⎪⎝⎭,得()22432b c b c +⎛⎫+≤+⨯ ⎪⎝⎭,解得4b c +≤(当且仅当b c =时取等号),所以2246a b c b c ++=++≤+=(当且仅当b c =时取等号), 故当ABC ∆为正三角形时,ABC ∆周长的最大值为6. 18.解:(1)取PC 的中点F ,连接EF ,DF ; 取BC 的中点G ,连接DG ,因为BCD ∆是正三角形,所以90DGB ∠=︒.因为90ABC BAD ∠=∠=︒,所以四边形ABGD 为矩形, 从而12AD BG BC ==,AD BC ∥. 因为EF 为BCP ∆的中位线, 所以12EF BC =,EF BC ∥,即AD EF =,AD EF ∥, 所以四边形ADFE 是平行四边形, 从而AE DF ∥,又DF ⊆面PDC , 所以AE ∥面PDC .(2)取CD 的中点M ,连接PM ,则PM DC ⊥. 过点P 作PN BC ⊥交BC 于N .因为PM DC ⊥,面PDC ⊥面BDC ,面PDC I 面BDC DC = 所以PM ⊥面BCD . 又因为BC ⊆面BCD , 所以PM BC ⊥.又因为PN BC ⊥,PN PM P =I ,PN 、PM ⊆面PMN , 所以BC ⊥面PMN , 又因为MN ⊆面PMN , 所以MN BC ⊥.由于M 为DC 中点,易知14NC BC =.设BC x =,则PBC ∆的面积为2x =解得2BC =,从而1AD =,AB PG ==因此,四棱锥P ABCD -的体积为13ABCD V S PG =⋅⋅=梯形()1213322+⋅=.19.解:(1)估计,甲班的平均成绩为:550.00410650.01610⨯⨯+⨯⨯750.02410850.0310+⨯⨯+⨯⨯950.0261080.8+⨯⨯=.(2)22⨯列联表如下:()()()()()22n ad bc K a b c d a c b d -==++++()210028302220 2.564 2.07250504852⨯⨯-⨯≈>⨯⨯⨯.有85%的把握认为“成绩优秀”与所在教学班级有关.(3)成绩在内,甲班的2人分别记为x ,y ;乙班的4人分别记为a ,b ,c ,d . 总的基本事件有:xy ,xa ,xb ,xc ,xd ,ya ,yb ,yc ,yd ,ab ,ac ,ad ,bc ,bd ,cd ,共15个.其中事件包含的基本事件有:xa ,xb ,xc ,xd ,ya ,yb ,yc ,yd ,共8个. 所以()815P A =. 20.解:(1)设点P 的坐标为()0,0x (00x >),易知224a =+,3a =,041x a =-=,b ==. 因此椭圆标准方程为22193x y +=,P 点坐标为()1,0. (2)设直线的斜率为()0k k >,()00,Q x y ,()11,M x y ,()22,N x y ,则1l :()3y kx =+,2l :()1y k x =-MNA ∆、MND ∆的面积相等,则点A,D 到直线2l 的距离相等.=k =3k =-(舍). 当k =2l 的方程可化为:1x =+,代入椭圆方程并整理得: 25120y -=,所以1212125y y y y ⎧+=⎪⎪⎨⎪=-⎪⎩所以125y y -==; 所以MND ∆的面积为121122255PD y y ⋅-=⨯⨯=. 当k =1l 的方程可化为:3x =-,代入椭圆方程并整理得: 250y -=,解之得0y =或00y =(舍) 所以CDQ ∆的面积为162⨯=. 所以CDQ MND S S ∆∆=,满足题意.21.解:(1)由()2ln f x x ax x =+-(0x >),得()221ax x f x x-+'=.依题意,得方程2210ax x -+=有两个不等的正根,设为1x ,2x ,那么121210,210,2180,x x a x x a a ⎧+=>⎪⎪⎪=>⎨⎪∆=->⎪⎪⎩,解得108a <<, 故a 的取值范围是10,8⎛⎫ ⎪⎝⎭.(2)由(1)知,12121,21.2x x ax x a ⎧+=⎪⎪⎨⎪=⎪⎩令12t a =,由11168a ≤<,得(]4,8t ∈. ()()12M N f x f x +=+=()()2121212ln 2x x a x x x x ⎡⎤++--⎣⎦()12ln 12t x x t +=--.令()ln 12t g t t =--,(]4,8t ∈,则()112022tg t t t-'=-=<, 从而()g t 在(]4,8上单调递减,而()42ln 23g =-,()83ln 25g =-, 因此,()[)3ln 25,2ln 23g t ∈--.22.解:(1)将曲线C 化为直角坐标方程得22440x y x y +--=,易知曲线C 是一个圆,且过原点.又直线l 经过原点,因此l 与圆的交点之一即为坐标原点O ,所以124AB ππρ⎛⎫==+⎪⎝⎭3π==(2)设点()0,0A ,(),B B B x y ,(),P x y ,则2B x x =,2B y y =, 由B 点在圆上,得()()()()222242420x y x y +-⋅-⋅=, 化简,得22220x y x y +--=,即()()22112x y -+-=.化成参数方程为1,1x y αα⎧=+⎪⎨=+⎪⎩(α为参数).23.解:(1)当1a =-时,()211f x x x =-++. 当1x ≤-时,()3f x x =-; 当112x -<≤时,()2f x x =-; 当12x >时,()3f x x =. 由单调性知,()f x 的最小值为1322f ⎛⎫= ⎪⎝⎭. (2)令20x a +=,得2ax =-;令10x +=,得1x =-. ①当12a-≤-,即2a ≥时,()31f x x a =++,[]1,1x ∈-, 最大值为()142f a a =+=,解得4a =.②当112a -<-≤,即22a -≤<时,()1,1,,231,,1.2a x a x f x a x a x ⎧⎡⎤--+∈--⎪⎢⎥⎪⎣⎦=⎨⎛⎤⎪++∈- ⎥⎪⎝⎦⎩其最大值在区间两个端点处取得. 若()122f a a -=-=,解得23a =,此时()()1441133f f =>-=,舍去; 若()142f a a =+=,解得4a =,舍去;11 ③当12a ->,即2a <-时,()1f x x a =--+,[]1,1x ∈-, 最大值为()122f a a -=-=,解得23a =,舍去. 综上所述,4a =.。
广雅、华东中学、河南名校2018届高三阶段性联考(一)数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|16},{|2}A x x B x x =-≤≤=≥,则()R A C B =I ( ) A .[]1,2- B .[1,2)- C .(2,6] D .[2,6]2. 双曲线22221(0)4x y a a a-=≠ 的渐近线方程为( )A .2y x =±B .12y x =± C .4y x =± D .y = 3.547i =+ ( ) A .471313i -+ B .471313i -- C .471313i + D .471313i -4.曲线3xy e =在点(0,3)处的切线方程为 ( ) A .3y = B .3y x = C .33y x =+ D .33y x =-5. 现有2个正方体,3个三棱柱,4个球和1个圆台,从中任取一个几何体,则该几何体是旋转体的概率为( ) A .110 B .25 C .12 D .7106. 将函数()sin(2)6f x x π=-的图象向左平移3π个单位长度后,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴方程可以是x = ( )A .4π-B .2πC .6π-D .3π 7. 已知公比不为1的等比数列{}n a 的前n 项和为123451,1024n S a a a a a =,且243,,a a a 成等差数列, 则5S = ( )A .3316B .3116C .23D .11168. 设,m n 是两条不同的直线,,αβ是两个不同的平面,则 ( ) A .若,,m n n ββα⊥⊥⊥,则m α⊥ B .若,,m n αββα⊂⊂⊥,则m n ⊥C .“直线m 与平面α内的无数条直线垂直”上“直线m 与平面α垂直”的充分不必要条件D .若,,m n n m βα⊥⊥⊥,则αβ⊥9. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线3:2l x =-,点M 在抛物线C 上,点A 在左准线l 上,若MA l ⊥,且直线AF 的斜率3AF k =-,则AFM ∆的面积为( ) A .33 B .63 C .93 D .12310. 如图,格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .2483π+ B .88π+ C .3283π+ D .32243π+11. 运行如图所示的程序框图,若输出的S 的值为480,则判断框中可以填 ( ) A .60i > B .70i > C .80i > D .90i >12. 已知函数()22cos 38f x x m x m m =-++-有唯一的零点,则实数m 的值为( )A .2B .4-C .4-或2D .2-或4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知在长方形ABCD 中,24AB AD ==,点E 是边AB 上的中点,则BD CE ⋅=u u u r u u u r.14. 《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“仅有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出钱(所得结果四舍五入,保留整数).15.已知等差数列{}n a 的前n 项和为n S ,若21,3()k k S S k N +==∈,则4k S = .16. 已知实数,x y 满足22222x y x y x y +≥⎧⎪-≤⎨⎪+≤⎩,若(0)z x my m =->的最大值为4,则(0)z x my m =->的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知cos 3cos (1)22C c Aa +=.(1)求C ; (2)若6c =,求ABC ∆的面积S 取到最大值时a 的值.18. 如图,在三棱柱111ABC A B C -中,011,90,BA BC BB ABC BB ==∠=⊥ 平面ABC ,点E 是1A B 与1AB 的交点,点D 在线段AC 上,1//B C 平面1A BD .(1)求证:1BD A C ⊥;(2)若1AB =,求点B 到平面1AB C 的距离.19. 为了调查观众对某电视剧的喜爱程度,某电视台在甲乙两地随机抽取了8名观众做问卷调查,得分结果如图所示:(1)计算甲地被抽取的观众问卷得分的中位数和乙地被抽取的观众问卷得分的平均数;(2)若从乙地被抽取的8名观众中邀请2人参加调研,求参加调研的观众中恰有1人的问卷调查成绩在90分以上(含90分)的概率.20. 已知椭圆2222:1(0)x y C a b a b+=>>35倍,A 是椭圆C 的左顶点,F 是椭圆C 的右焦点,点0000(,)(0,0),M x y x y N >>都在椭圆C 上. (1)若点210(D -在椭圆C 上,求的最大值; (2)若2(OM AN O =u u u u r u u u r 为坐标原点),求直线AN 的斜率.21.已知函数()1ln ,(1,]f x a x x a e x=-+∈ . (1)若函数()f x 在[1,)+∞上为减函数,求实数a 的取值范围; (2)记函数()()ln xg x f x a=+,若1(0,1)x ∀∈和221(1,),()()x g x g x m ∈+∞-≤,求实数m 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,曲线221:20C x y y +-=,倾斜角为6π的直线l 过点(2,0)M -,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程cos()4πρθ-=(1)求1C 和2C 焦点的直角坐标;(2)若直线l 与1C 交于,A B 两点,求MA MB +的值. 23.已知函数()414f x x x a =+-+ .(1)若2a =,解关于x 的不等式()0f x x +<; (2)若x R ∃∈,使()5f x ≤-,求a 的取值范围.试卷答案一、选择题1-5: BADCC 6-10: BDDCA 11、B 12:A二、填空题13. 4 14. 17 15. 10 16. 6-三、解答题17.解:(1)因为cos cos (1)sin (1)22C C a A +=⇒+=,在ABC ∆中,sin 0A >,所以1cos 122C C -=,从而sin()16C π-=, 因为0C π<<,所以5666C πππ-<-<,所以2623C C πππ-=⇒=.(2)由(1)知23C π=,所以3sin C =,所以13sin 2S ab C ab ==, 因为22222cos 62a b c C a b ab ab+-=⇒+=-, 因为222a b ab +≥,所以2ab ≤, 所以3342S ab =≤,当且仅当2a b ==时等号成立. 18. (1)如图,连接ED ,因为1AB C I 平面11,//A BD ED B C =平面1A BD ,所以1//B C ED . 因为E 为1AB 的中点,所以D 为AC 的中点. 因为AB BC =,,由1A A ⊥平面,ABC BD ⊂平面ABC ,得1A A BD ⊥, 又1,A A AC 是平面11A ACC 所以内的两条相交直线,得BD ⊥平面11A ACC ,因为1AC ⊂平面11A ACC ,所以1BD A C ⊥.(2)设点B 到平面1AB C 的距离为d ,因为11B ABC B AB C V V --=, 所以211131112)3234d ⨯⨯⨯⨯=⨯⨯,解得33d =, 所以点B 到平面1AB C 的距离为3d =19. (1)由茎叶图可知,甲地被抽取的观众问卷得分的中位数是8383832+=, 乙地被抽取的观众问卷得分的平均数是1(70280490269036907)858⨯+⨯+⨯++++++++=. (2)依题意,从8人中任选2人,包括:()76,79,(76,80),(76,86),(76,89),(76,90),(76,97)(79,80),(79,83),(79,86),(79,89),(79,97),(80,83),(80,86),(80,89),(80,90),(80,97)(83,86),(83,90),(83,89),(83,97),(86,89),(86,90),(86,97),(89,90),(89,97),(90,97),共28种选法,其中满足条件的有12种,所以所求概率为123287P ==. 20. 解:(1)依题意,5a b =,则2222159x y a a +=,将(1,3D -代入, 解得29a =,故(2,0)F ,设11(,)N x y,则1[3,3]NF x ===∈-, 故当13x =-时,NF 有最大值为5.(2)由(1)知,a b =2222159x y a a +=,即222595x y a +=, 设直线OM 的方程为11(0),(,)x my m N x y =>,由222595x my x y a =⎧⎨+=⎩,得2222222559559a m y y a y m +=⇒=+, 因为00y >,所以0y =,因为2//OM AN AN OM =⇒u u u u r u u u r,所以直线AN 的方程为x my a =-,由222595x my ax y a=-⎧⎨+=⎩,得22(59)100m y amy +-=,所以0y =或21059am y m =+,得121059amy m =+,因为2OM AN =u u u u r u u u r,所以0011(,)(22,2)x y x a y =+,于是012y y =,220(0)59amm m =>+,所以5m =, 所以直线AN的斜率为1m =21.解:(1)依题意()222111a x ax f x x x x -+-'=--=,令()0f x '≤,故210x ax -+-≤,故1a x x≤+, 因为函数1y x x =+在[1,)+∞上单调递增,所以12x x+≥,所以2a ≤,故(1,2]a ∈,经检验,符合题意,(2)依题意()()221()()11111()ln ()1x a x a g x a x x g x a a x a x x x---'=+-+⇒=+--=, 当(1,]a e ∈时,11a a <<,所以()g x 在1(0,)a 上单调递减,在1(,)a a上单调递增,在(,)a +∞上单调递减,对任意1(0,1)x ∈,有11()()g x g a≥,对任意1(1,)x ∈+∞,有()2()g x g a ≤,所以()()21min1()()g x g x g a g a≤=-⎡⎤⎣⎦,所以()11111()[()ln ][()ln ]g a g a a a a a a a a a a a-=+-+-+-+ 112[()ln ](),(1,]a a a M a a e a a=+-+=∈,所以22211111()2(1)ln 2()2(1)2(1)ln ,(1,]M a a a a a e a a a a a'=-+++--=-∈,所以()0M a '>,即()M a 在(1,]e 上单调递增, 所以max 114[()]()2()2()3M a M e e e e e ==++-=,所以()M a 存在最大值4e, 故4m e≥,即实数m 的取值范围为4[,)e +∞.22.解:(1)曲线2C的极坐标方程为cos()4πρθ-=化为直角坐标系的方程为20x y +-=,联立222020x y x y y +-=⎧⎨+-=⎩, 解得交点的坐标为(0,2),(1,1).(2)把直线的参数方程22(12x t t y t ⎧=-+⎪⎪⎨⎪=⎪⎩为参数)代入2220x y y +-=,得2212122t t ⎛⎫⎛⎫-++= ⎪ ⎪ ⎪⎝⎭⎝⎭,即2121)40,1t t t t -+=+=, 易知点M 在圆2220x y y +-=外,所以121MA MB t t +=+=. 23.解:(1)若2a =,则不等式化为()41420f x x x x =+--+<,若14x <-,则41420x x x --+-+<,解得3x <,故14x <-; 若1142x -≤≤,则41420x x x ++-+<,解得19x <,故1149x -≤≤;若12x >,则41420x x x +-++<,解得3x <-,故无解,综上所述,关于x 的不等式()0f x x +<的解集为1(,)9-∞,(2)x R ∃∈,使()5f x ≤-等价于()min []5f x ≤-, 因为()414(41)(4)1f x x x a x x a a =+--≤+--=-, 所以()11a f x a --≤≤-,所以()f x 的最小值为1a --, 所以15a --≤-,得4a ≥或6a ≤- 所以a 的取值范围是(,6][4,)-∞-+∞U .。
河南省许昌平顶山两市2018届高三年级第一次联合考试英语试卷考生注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分,答题时间120分钟。
答卷前,考生务必将自己的姓名、班级、学校、考号填写在答题纸密封线内相应位置。
选择题每小题选出答案后,请将答案填涂在答题卡中相应位置,非选择题答案写在答题纸指定位置,不能答在试题卷上。
考试结束后,将本试卷和答题卡一并上交。
第Ⅰ卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. How old is the woman now?A. 15 years old.B. 20 years old.C. 25 years old.2. When and where does the man have an appointment?A. At the office at 10.00.B. At the restaurant at 10:30.C. At the hotel at eleven o’clock.3. Who does the woman invite to talk about the plan?A. Dr. Kathleen White.B. Prof. Brookings.C. Dr. Mildens.4. What does the woman think of the man’s jacket?A. Fashionable.B. Too expensive.C. Very cheap.5. What are the two speakers talking about?A. Smoking.B. Drinking.C. Parking.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
河南省许昌平顶山两市2018届高三年级第一次联合考试英语试卷考生注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分,答题时间120分钟。
答卷前,考生务必将自己的姓名、班级、学校、考号填写在答题纸密封线内相应位置。
选择题每小题选出答案后,请将答案填涂在答题卡中相应位置,非选择题答案写在答题纸指定位置,不能答在试题卷上。
考试结束后,将本试卷和答题卡一并上交。
第Ⅰ卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. How old is the woman now?A. 15 years old.B. 20 years old.C. 25 years old.2. When and where does the man have an appointment?A. At the office at 10.00.B. At the restaurant at 10:30.C. At the hotel at eleven o’clock.3. Who does the woman invite to talk about the plan?A. Dr. Kathleen White.B. Prof. Brookings.C. Dr. Mildens.4. What does the woman think of the man’s jacket?A. Fashionable.B. Too expensive.C. Very cheap.5. What are the two speakers talking about?A. Smoking.B. Drinking.C. Parking.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
河南省五市2018年高中毕业班第一次联考
文科数学(必修+选修I )
第I 卷(选择题 共60分)
参考公式:
如果事件A 、B 互斥,那么P (A +B)=P (A)+P (B) 如果事件A 、B 相互独立,那么P (A·B)=P (A)·P (B)
如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k )=C k n P k
(1一P )
k
n -
球的表面积公式S 球=4πR 2
(其中R 表示球的半径) 球的体积公式V =
3
4πR 3
(其中R 表示球的半径)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有
一项是符合题目要求的。
1.已知集合}4
12|{},3|||{<=<=x
x N x x M ,则M ∩N=( ) A.∅
B.{x|0<x<3}
C.{x|2<x<3}
D.{x|-2<x<3}
2.已知函数12
sin )(2
+-=x
x f 的最小正周期为( ) A.
2
π B. π
C.2π
D.4π
3.设f (x )、g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),“f (x )、g (x )均为增函数”是“h (x )为增函数”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件
4.函数ax x x f +=4)(以点(1,3)为切点的切线的斜率为6,则a =( ) A.2
B.4
C.6
D.8
5.已知函数x x f m log 1)(+=(m >0且m ≠1),f -1
(x )是f (x )的反函数,若f -1
(x)的图象过点(3,4),则m =( ) A. 2
B.2
C.3 3
D. 3
6.直线y =kx 与圆4)4(2
2
=+-y x 相切,则直线的倾斜角为( ) A.
6
π
B.
6
π或65π
C.
3
π
D.
3π或3
2π 7.从8名女生4名男生中,选出6名学生组成课外小组,如果按性别比例分层抽样,则不同
的抽取方法数为( )
A.4
12C
B.3
438C C ⋅
C. 2
4
48C C ⋅ D.24
48A A ⋅ 8.如图,ABCD 是边长为l 的正方形,点O 为正方形ABCD 的中心,BCEF 为矩形,ED ⊥平面ABCD ,二面角A-BC-E 的平面角为45°,则异面直线EO 与BF 所成的角为( ) A.90° B.60° C.45° D.30°
9.设)1,0(),2
1
,1(==,则满足条件10,10≤⋅≤≤⋅≤的动点P 的变化范围(图中阴影部分,含边界)是( )
10.已知y =f (x )是偶函数,当x >0时,x
x x f 4
)(+=且当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,则m -n 的最小值是( ) A.13
B.23
C.1
D.43
11.已知数列{a n }的通项公式)(2
1
log *2N n n n a n ∈++=,设其前n 项和为S n ,则使S n <-5成立的自然数n ( )
A.有最小值 31
B.有最大值63
C.有最大值31
D.有最小值63
12.过双曲线122
2
=-b
y x 的左顶点A 作斜率为1的直线l ,若l 与该双曲线的其中一条渐近
线相交于点(1
2 ,y 0),则该双曲线的离心率是( )
A.
103
B. 5
C.10
D.
152
第II 卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
13.经统计,某大医院一个结算窗口每天排队结算的为数及相应的概率如下:
则每天不超过20人排队结算的概率是_______________。
14.在n
x
x )1(2
+的展开式中,若偶数项系数和为128,则展开式中x 4
项的系数为__________
(用数字作答)。
15.已知函数)2sin(5)(ψ+=x x f ,若对任意x ∈R ,都有f (a +x )=f (a -x ), 则)4
(π
+
a f =__________.
16.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离都是
2
π
,则球心到平面ABC 的距离为___________。
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或推演步骤。
17.(本小题满分10分)
已知△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,设2
2
2
2
2
4)()(c x b a x a x f ---=. (I )若f (1)=0且3
π
=
-C B ,求角C 。
(II )若f (2)=0,求角C 的取值范围。
18.(本小题满分12分)
栽培甲、乙两种果树,先要培育成苗,然后再进行移载,已知甲、乙两种果树成苗的概率分别为0.6,0.5,移栽后成活的概率分别为0.7,0.9. (I )求甲、乙两种果树至少有一种果树成苗的概率; (II )求恰好有一种果树能培育成苗且移栽成活的概率。
19.(本小题满分12分)
如图所示,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,PA ⊥平面ABCD ,且PA=PD=2a ,AB=a ,AC= 3 a .
(I )求异面直线PC 和BD 所成角的余弦值;
(II )设二面角A-PC-B 的大小为θ,求tan θ的值; (III )求点D 到面PBC 的距离。
20.(本小题满分12分)
已知函数32))
12|(
)(x x
m x f ++=,若对于f (x )在(0,+∞)内的任意x 值,f (x )≥27恒成立,求实数m 的取值范围。
21.(本小题满分12分)
数列{a n }和{b n }分别为等比数列和等差数列,它们的前四项和分别为120和60,而第二项与第四项的和分别是90和34. (I )求{a n },{b n }的通项公式。
(II )求数列{a n ·b n }的前n 项和。
22.(本小题满分14分)
设直线l :y =k (x +1)与椭圆)0(3222>=+a a y x 相交于A 、B 两个不同的点,与x 轴相交于点C ,记O 为坐标原点。
(I )证明:2
2
2
313k
k a +>; (II )若,求△OAB 的面积取得最大值时的椭圆方程。