2016年普通高等学校招生全国统一考试(理)
- 格式:doc
- 大小:390.55 KB
- 文档页数:21
2016年普通高等学校招生全国统一考试(I 卷)一、选择题目:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分。
有选错的得0分。
1、一平行板电容器两极板之间充满云母介质,接在恒压直流电源上。
若将云母介质移出,则电容器()A 、极板上的电荷量变大,极板间电场强度变大B 、极板上的电荷量变小,极板间电场强度变大C 、极板上的电荷量变大,极板间电场强度不变D 、极板上的电荷量变小,极板间电场强度不变2、现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。
质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。
若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。
此离子和质子的质量比约为()A 、11B 、12C 、121D 、1443、一含有理想变压器的电路如图所示,图中电阻12R R 、和3R 的阻值分别是31 、和4 ,○A 为理想交流电流表,U 为正弦交流电压源,输出电压的有效值恒定。
当开关S 断开时,电流表的示数为I ;当S 闭合时,电流表的示数为4I 。
该变压器原、副线圈匝数比为()A 、2B 、3C 、4D 、54、利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯。
目前,地球同步卫星的轨道半径约为地球半径的6.6倍。
假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为()A 、1h B 、4h C 、8h D 、16h5、一质点做匀速直线运动。
现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A 、质点速度的方向总是与该恒力的方向相同B 、质点速度的方向不可能总是与该恒力的方向垂直C 、质点加速度的方向总是与该恒力的方向相同D 、质点单位时间内速率的变化量总是不变6、如图,一光滑的轻滑轮用细绳'OO悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b。
2016年普通高等学校招生全国统一考试理科综合能力测试第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。
可能用到的相对原子质量:一、选择题:本大题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列与细胞相关的叙述,正确的是A.核糖体、溶酶体都是具有膜结构的细胞器B.酵母菌的细胞核内含有DNA和RNA两类核酸C.蓝藻细胞的能量来源于其线粒体有氧呼吸过程D.在叶绿体中可进行CO2的固定但不能合成ATP2.离子泵是一张具有ATP水解酶活性的载体蛋白,能利用水解ATP释放的呢量跨膜运输离子。
下列叙述正确的是A.离子通过离子泵的跨膜运输属于协助扩散B.离子通过离子泵的跨膜运输是顺着浓度阶梯进行的C.动物一氧化碳中毒会降低离子泵扩膜运输离子的速率D.加入蛋白质变性剂会提高离子泵扩膜运输离子的速率3.若除酶外所有试剂均已预保温,则在测定酶活力的试验中,下列操作顺序合理的是A.加入酶→加入底物→加入缓冲液→保温并计时→一段时间后检测产物的量B.加入底物→加入酶→计时→加入缓冲液→保温→一段时间后检测产物的量C.加入缓冲液→加入底物→加入酶→保温并计时→一段时间后检测产物的量D.加入底物→计时→加入酶→加入缓冲液→保温并计时→一段时间后检测产物的量4.下列与神经细胞有关的叙述,错误..的是A.ATP能在神经元线粒体的内膜上产生B.神经递质在突触间隙中的移动消耗ATPC.突触后膜上受蛋白体的合成需要消耗ATPD.神经细胞兴奋后恢复为静息状态消耗ATP5.在漫长的历史时期内,我们的祖先通过自身的生产和生活实践,积累了对生态方面的感性认识和经验,并形成了一些生态学思想,如:自然与人和谐统一的思想。
根据这一思想和生态学知识,下列说法错误..的是A.生态系统的物质循环和能量流动有其自身的运行规律B.若人与自然和谐统一,生产者固定的能量便可反复利用C.“退耕还林、还草”是提现自然与人和谐统一思想的实例D.人类应以保持生态系统相对稳定为原则,确定自己的消耗标准6.理论上,下列关于人类单基因遗传病的叙述,正确的是A.常染色体隐性遗传病在男性中的发病率等于该病致病基因的基因频率B.常染色体隐性遗传病在女性中的发病率等于该病致病基因的基因频率C.X染色体隐性遗传病在女性中的发病率等于该病致病基因的基因频率D.X染色体隐性遗传病在男性中的发病率等于该病致病基因的基因频率7.化学与生活密切相关,下列有关说法错误的是A.用灼烧的方法可以区分蚕丝和人造纤维B.食用油反复加热会产生稠环芳香烃等有害物质C.加热能杀死流感病毒是因为蛋白质受热变性D.医用消毒酒精中乙醇的浓度为95%8.设N A为阿伏加德罗常数值。
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y +=( )A .1 BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B .12 C .23D .345.已知方程222213xym nm n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(1,3)-B.(1-C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D 8. 若0a b >>,01c <<,则( )A .cca b <B .ccab ba > C .alog log b a c b c <D .log log a b c c<9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知||AB =||DE =C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A B CD .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = . 14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC △,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)在图中画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.ABCDEF2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】{}{}2A x x 4x 30x 1x 3=-+<=<<,{}3B x 2x 30x x 2⎧⎫=->=>⎨⎬⎩⎭,故3B x 2⎧=⎨⎩【提示】解不等式求出集合【考点】交集及其运算【解析】(1i)x 1yi +=+,x xi 1yi ∴+=+,即x 1x y =⎧⎨=,解得x 1y 1=⎧⎨=,即x y i 1i 2+=+=【解析】等差数列,又10a 8=,【提示】根据已知可得【考点】等差数列的性质】双,方【解析】f (x)y =时,y 8=-x4x e 0-=【解析】a b 1>>线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质11.【答案】A【解析】如图,α∥平面CB α平面ABCD α平面ABA,11CB D △60,则m 32.【提示】画出图形,判断出m 【考点】异面直线及其所成的角【解析】πx 4=-为1πT 2=,即12ππ(n N 2=∈ω为正奇数,f (x)在5π36⎛⎫⎪⎝⎭上单调,πππ361812-=时,11π4-+π2ϕ≤,9π4-+ϕ,π2ϕ≤,ω【答案】2-222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,n123n (q++++-…6264==.【提示】设A ,B 两种产品分别是标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用三、解答题17.【答案】(Ⅰ)在ABC △已知等式利用正弦定理化简得12ab2,(a ∴的周长为5+(Ⅰ)A BEF 为正方形,AFD 90∠=,A F DF ∴⊥,DF EF F =,AF ∴⊥平面EFDCAF ⊂平面∴平面A BEF (Ⅱ)由A BE EF ⊥BE ∴⊥平面可得DFE 60∠.A B EF ∥EFDC AB ∴∥平面平面EFDC 平面ABCD ,EB (0,2a,0)∴=,a BC ,⎛= ,AB (2a,0,0)=-设平面BEC 的法向量为m (x ,=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则m (3,0,=设平面ABC 的法向量为n (x ,y ,z =n BC=0n AB 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=的大小为θ,m n |m ||n |31316==++【提示】(Ⅰ)证明AF ⊥平面EFDC 平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,4040=1EX EX <解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购222222143m 41m1m||MN |12242423m 41m3m 4+++===+++时,S 取得最小值12,又10>,可得3S 24833<=【提示】(Ⅰ)求得圆A EB ED =,再由圆的定义和椭圆的定义,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my =+0)1x ,2x 1x 121(x 2)e (x 1)-=-2[(x 2)g (x)-+'=∴当x 1<时,e 1,OA OB =120,OK ∴30,1OK OAsin30OA 2=直线AB 与O 相切;D 四点所在圆的圆心,设四点所在圆的圆心,OA OB =的中垂线,∴AB 中点,连结30,1OK OAsin30OA 2=曲线如图:(Ⅱ)由f (x)1>,可得,当3当x ≥时,4x 1->,解得x 5>或x 3<,即有x 3≤<或x 5>.(1,3)(5,)⎫+∞⎪⎭(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所。
试题类型:2016年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷(选择题共126分)一、选择题:本大题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 在细胞的生命历程中,会出现分裂、分化等现象。
下列叙述错误..的是A. 细胞的有丝分裂对生物性状的遗传有贡献B. 哺乳动物的造血干细胞是未经分化的细胞C. 细胞分化是细胞内基因选择性表达的结果D. 通过组织培养可将植物椰肉细胞培育成新的植株2. 某种物质可插入DNA分子两条链的碱基对之间,使DNA双链不能解开。
若在细胞正常生长的培养液中加入适量的该物质,下列相关叙述错误..的是A. 随后细胞中的DNA复制发生障碍B. 随后细胞中的RNA转录发生障碍C. 该物质可将细胞周期阻断在分裂中期D. 可推测该物质对癌细胞的增殖有抑制作用3. 下列关于动物激素的叙述,错误..的是A.机体内、外环境的变化可影响激素的分泌B. 切除动物垂体后,血液中生长激素的浓度下降C. 通过对转录的调节可影响蛋白质类激素的合成量D. 血液中胰岛素增加可促进胰岛B细胞分泌胰高血糖素4.关于高等植物叶绿体中色素的叙述,错误..的是A. 叶绿体中的色素能够溶解在有机溶剂乙醇中B. 构成叶绿素的镁可以由植物的根从土壤中吸收C. 通常,红外光和紫外光可被叶绿体中的色素吸收用于光合作用D. 黑暗中生长的植物幼苗叶片呈黄色是由于叶绿素合成受阻引起的5. 如果采用样方法调查某地区(甲地)蒲公英的种群密度,下列做法中正确的是A.计数甲地内蒲公英的总数,再除以甲地面积,作为甲地蒲公英的种群密度B. 计数所有样方内蒲公英总数,除以甲地面积,作为甲地蒲公英的种群密度C. 计算出每个样方中蒲公英的密度,求出所有样方蒲公英密度的平均值,作为甲地蒲公英的种群密度D. 求出所有样方蒲公英的总数,除以所有样方的面积之和,再乘以甲地面积,作为甲地蒲公英的种群密度6. 果蝇的某对相对性状由等位基因G、g控制,且对于这对性状的表现型而言,G对g 完全显性。
2016年普通高等学校招生全国统一考试(III )卷一.选择题:本大题共12小题,每小题5分,共计60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合()(){}032|≥--=x x x S ,{}0|>=x x T ,则=T S ( )(A )[]3,2 (B )(][)+∞∞-,32, (C )[)+∞,3 (D )(][)+∞,32,02.若i z 21+=,则=-14z z i( ) (A )1 (B )1- (C )i (D )i - 3.已知向量13,22BA ⎛⎫= ⎪ ⎪⎝⎭,31,22BC ⎛⎫= ⎪ ⎪⎝⎭,则=∠ABC ( )(A )030 (B )045 (C )060 (D )0120 4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为15C 0,B 点表示四月的平均最低气温约为5C 0。
下面叙述不正确的是( )(A )各月的平均最低气温都在0C 0以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同 (D )平均气温高于20C 0的月份有5个5.若43tan =α,则=+αα2sin 2cos 2( ) (A )2564 (B )2548 (C )1 (D )2516 6.已知342=a ,524=b ,3125=c ,则( )(A )c a b << (B )c b a << (C )a c b << (D )b a c <<7.执行右图的程序框图,如果输入的4=a ,6=b ,那么输出 的=n ( )(A )3 (B )4 (C )5 (D )68.在ABC ∆中,4π=B ,BC 边上的高等于BC 31,则=A cos ( ) (A )10103 (B )1010 (C )1010- (D )10103- 9.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) (A )53618+(B )51854+ (C )90 (D )8110.在封闭的直三棱柱111C B A ABC -内有一个体积为V 的球,若BC AB ⊥,6=AB ,8=BC ,31=AA ,则V 的最大值是( ) (A )π4 (B )29π (C )π6 (D )332π11.已知O 为坐标原点,F 是椭圆C :()012222>>=+b a by a x 的左焦点,B A ,分别是C 的左、右顶点,P 是C 上一点,且x PF ⊥轴。
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016年普通高等学校招生全国统一考试大纲Ⅰ.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
高等学校根据考生的成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。
因此,高考应具有较高的信度、效度和必要的区分度以及适当的难度。
Ⅱ.考试形式与试卷结构一、答卷方式闭卷、笔试。
二、考试时间考试时间150分钟,试卷满分300分。
三、科目分值物理110分,化学100分,生物90分。
各学科试题只涉及本学科内容,不跨学科综合。
四、题型试卷包括选择题和非选择题,非选择题一般包括填空、实验、作图、计算、简答等题型五、试卷结构1.试卷分为第Ⅰ卷和第Ⅱ卷。
第Ⅰ卷为生物、化学、物理三个科目的必考题,题型为选择题,共21题,每题6分,共计126分。
其中生物6道题(单项选择题),化学7道题(单项选择题),物理8道题(包括单项选择题和多项选择题)。
第Ⅱ卷由生物、化学、物理三科的必考题和选考题构成。
生物、化学、物理各科选考内容的分值控制在15分左右。
理科综合试卷结构表注:①选择题(一)共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
②选择题(二)共8小题,每小题6分。
在每小题给出的四个选项中,有的只有一项符合题目要求,有的有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
在指导语中明确给出单选和多选的题号。
③选考题要求考生从给出的3道物理题、3道化学题、2道生物题中每科任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑。
注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题。
如果多做,则每学科按照所做的第一题计分。
2.组卷:试卷按题型、内容和难度进行排列,选择题在前,分选择题在后,同一题型中同一学科的试题相对集中,同一学科中不同试题尽量按由易到难的顺序排列。
Ⅲ.各学科考核目标、内容及题型示例物理根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》、《普通高中物理课程标准(实验)》和《2016年普通高等学校招生招生全国统一考试大纲(理科)》,结合教学实际,确定高考理工类物理考试内容。
2016年普通高等学校招生全国统一考试(新课标I 卷)14. 一平行板电容器两极板之间充满云母介质,接在恒压直流电源上。
若将云母介质移出,则电容器( )A. 极板上的电荷量变大,极板间电场强度变大B. 极板上的电荷量变小,极板间电场强度变大C. 极板上的电荷量变大,极板间电场强度不变D. 极板上的电荷量变小,极板间电场强度不变【解析】由4πr SC kdε=可知,当云母介质抽出时,r ε变小,电容器的电容C 变小;因为电容器接在恒压直流电源上,故U 不变,根据Q CU =可知,当C 减小时,Q 减小。
再由UE d=,由于U 与d 都不变,故电场强度E 不变,答案为 D15. 现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。
质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。
若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。
此离子和质子的质量比约为( ) A. 11 B. 12 C. 121 D. 144【解析】设质子的质量数和电荷数分别为1m 、1q ,一价正离子的质量数和电荷数为2m 、2q ,对于任意粒子,在加速电场中,由动能定理得:2102qU mv =- 得 2qU v m = ①在磁场中应满足 2v qvB m r= ②由题意,由于两种粒子从同一入口垂直进入磁场,从同一出口垂直离开磁场,故在磁场中做匀速圆周运动的半径应相同. 由①②式联立求解得匀速圆周运动的半径12mUr B q=,由于加速电压不变,故1212212111r B m q r B m q =⋅⋅= 其中211212B B q q ==,,可得121144m m = 故一价正离子与质子的质量比约为14416. 一含有理想变压器的电路如图所示,图中电阻12R R 、和3R 的阻值分别是31ΩΩ、和4Ω,○A 为理想交流电流表,U 为正弦交流电压源,输出电压的有效值恒定。
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一部分(选择题共120分)本部分共20 小题,每小题6分,共120分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
1. 将与生物学有关的内容依次填入下图各框中,其中包含关系错误..的选项是1 2 3 4 5框号选项A 组成细胞的化合物有机物无机物水无机盐B 人体细胞的染色体常染色体性染色体X染色体Y染色体C 物质跨膜运输主动运输被动运输自由扩散协助(易化)扩散D 有丝分裂分裂期分裂间期染色单体分离同源染色体分离2. 葡萄酒酿制期间,酵母细胞内由ADP转化为ATP的过程A. 在无氧条件下不能进行B. 只能在线粒体中进行C. 不需要能量的输入D. 需要酶的催化3. 豹的某个栖息地由于人类活动被分隔为F区和T区。
20世纪90年代初,F区豹种群仅剩25只,且出现诸多疾病。
为避免该豹种群消亡,由T区引入8只成年雌豹。
经过十年,F 区豹种群增至百余只,在此期间F区的A.豹种群遗传(基因)多样性增加B. 豹后代的性别比例明显改变C. 物种丰(富)度出现大幅度下降D. 豹种群的致病基因频率不变4.足球赛场上,球员奔跑、抢断、相互配合,完成射门。
对比赛中球员机体生理功能的表述,不正确的是A.长时间奔跑需要消耗大量糖原(元)用于供能B.大量出汗导致失水过多,抑制抗利尿激素分泌C.在神经与肌肉的协调下起脚射门D.在大脑皮层调控下球员相互配合5.在正常与遮光条件下向不同发育时期的豌豆植株供应14CO2,48h后测定植株营养器官和生殖器官中14C的量。
两类器官各自所含14C量占植株14C总量的比例如图所示。
与本实验相关的错误叙述是A.14CO2进入叶肉细胞的叶绿体基质后被转化为光合产物B.生殖器官发育早期,光合产物大部分被分配到营养器官C.遮光70%条件下,分配到生殖器官和营养器官中的光合产物量始终接近D.实验研究了光强对不同发育期植株中光合产物在两类器官间分配的影响6.我国科技创新成果斐然,下列成果中获得诺贝尔奖的是A.徐光宪建立稀土串级萃取理论B.屠呦呦发现抗疟新药青蒿素C.闵恩泽研发重油裂解催化剂D.侯德榜联合制碱法7.下列中草药煎制步骤中,属于过滤操作的是A.冷水浸泡B.加热煎制C.箅渣取液D.灌装保存8.下列食品添加剂中,其试用目的与反应速率有关的是A.抗氧化剂B.调味剂C.着色剂D.增稠剂9.在一定条件下,甲苯可生成二甲苯混合物和苯。
2016年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( ) A.[2,3] B.(-∞,2]∪[3,+∞) C.[3,+∞) D.(0,2]∪[3,+∞)2.若z=1+2i,则4izz -1=( )A.1B.-1C.iD.-I3.已知向量BA ⃗⃗⃗⃗⃗ =(12,√32),BC ⃗⃗⃗⃗⃗ =(√32,12),则∠ABC=( ) A.30° B.45° C.60° D.120°4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个 5.若tan α=34,则cos 2α+2sin 2α=( ) A.6425B.4825C.1D.16256.已知a=243,b=425,c=2513,则( ) A.b<a<cB.a<b<cC.b<c<aD.c<a<b7.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3B.4C.5D.68.在△ABC中,B=π4,BC边上的高等于13BC,则cos A=( )A.3√1010B.√1010C.-√1010D.-3√10109.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36√5B.54+18√5C.90D.8110.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V 的最大值是( )A.4πB.9π2C.6π D.32π311.已知O为坐标原点,F是椭圆C:x 2a2+y2b2=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )A.13B.12C.23D.3412.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有( ) A.18个 B.16个 C.14个 D.12个第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x,y 满足约束条件{x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z=x+y 的最大值为 .14.函数y=sin x-√3cos x 的图象可由函数y=sin x+√3cos x 的图象至少向右平移 个单位长度得到.15.已知f(x)为偶函数,当x<0时, f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是 .16.已知直线l:mx+y+3m-√3=0与圆x 2+y 2=12交于A,B 两点,过A,B 分别作l 的垂线与x 轴交于C,D 两点.若|AB|=2√3,则|CD|= .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (Ⅰ)证明{a n }是等比数列,并求其通项公式; (Ⅱ)若S 5=3132,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:∑i=17y i =9.32,∑i=17t i y i =40.17,√∑i=17(y i -y )2=0.55,√7≈2.646.参考公式:相关系数r=∑i=1n(t i -t )(y -y )√∑i=1(t i -t )2∑i=1(y i -y )2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i=1n(t i -t )(y i -y )∑i=1n(t i -t )2,a ^=y -b ^t .19.(本小题满分12分)如图,四棱锥P-ABCD 中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点. (Ⅰ)证明MN∥平面PAB;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR∥FQ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数f(x)=αcos 2x+(α-1)(cos x+1),其中α>0,记|f(x)|的最大值为A. (Ⅰ)求f '(x); (Ⅱ)求A;(Ⅲ)证明|f '(x)|≤2A.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,☉O 中AB⏜的中点为P,弦PC,PD 分别交AB 于E,F 两点. (Ⅰ)若∠PFB=2∠PCD,求∠PCD 的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G,证明OG⊥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为{x =√3cosα,y =sinα(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2.(Ⅰ)写出C 1的普通方程和C 2的直角坐标方程;(Ⅱ)设点P 在C 1上,点Q 在C 2上,求|PQ|的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|2x-a|+a.(Ⅰ)当a=2时,求不等式f(x)≤6的解集;(Ⅱ)设函数g(x)=|2x-1|.当x∈R 时, f(x)+g(x)≥3,求a 的取值范围.2016年普通高等学校招生全国统一考试(课标全国卷Ⅲ)一、选择题1.D S={x|(x-2)(x-3)≥0}={x|x ≤2或x ≥3},在数轴上表示出集合S,T,如图所示:由图可知S ∩T=(0,2]∪[3,+∞), 故选D.2.C ∵z z =(1+2i)(1-2i)=5,∴zz -1=4i4=i,故选C. 3.A cos ∠ABC=BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ |BA ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |=√32,所以∠ABC=30°,故选A. 4.D 由雷达图易知A 、C 正确;七月的平均最高气温超过20 ℃,平均最低气温约为12 ℃,一月的平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月的平均温差大,故B 正确;由雷达图知平均最高气温超过20 ℃的月份有3个月.故选D.5.A 当tan α=34时,原式=cos 2α+4sin αcos α=cos 2α+4sinαcosαsin 2α+cos 2α=1+4tanαtan 2α+1=1+4×4916+1=6425,故选A.6.A 因为a=243=423,c=2513=523,函数y=x 23在(0,+∞)上单调递增,所以423<523,即a<c,又因为函数y=4x 在R 上单调递增,所以425<423,即b<a,所以b<a<c,故选A.7.B 第一次循环:a=2,b=4,a=6,s=6,n=1; 第二次循环:a=-2,b=6,a=4,s=10,n=2; 第三次循环:a=2,b=4,a=6,s=16,n=3;第四次循环:a=-2,b=6,a=4,s=20,n=4.结束循环, 输出n 的值为4,故选B.8.C 解法一:过A 作AD ⊥BC,垂足为D,由题意知AD=BD=13BC,则CD=23BC,AB=√23BC,AC=√53BC,在△ABC 中,由余弦定理的推论可知,cos ∠BAC=AB 2+AC 2-BC 22AB ·AC=29BC 2+59BC 2-BC 22×√23BC×√53BC=-√1010,故选C.解法二:过A 作AD ⊥BC,垂足为D,由题意知AD=BD=13BC,则CD=23BC,在Rt △ADC 中,AC=√53BC,sin ∠DAC=2√55,cos ∠DAC=√55,又因为∠B=π4,所以cos ∠BAC=cos (∠DAC +π4)=cos ∠DAC ·cos π4-sin ∠DAC ·sin π4=√55×√22-2√55×√22=-√1010,故选C.解法三:过A 作AD ⊥BC,垂足为D,由题意知AD=BD=13BC, 则CD=23BC,AB=√23BC,AC=√53BC,而AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ 2+AD ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =19BC 2-29BC 2=-19BC 2,所以cos ∠BAC=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=-19BC 2√23BC×√53BC=-√1010,故选C.解法四:过A 作AD ⊥BC,垂足为D,设BC=3a(a>0),结合题意知AD=BD=a,DC=2a.以D 为原点,DC,DA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则B(-a,0),C(2a,0),A(0,a),所以AB ⃗⃗⃗⃗⃗ =(-a,-a),AC ⃗⃗⃗⃗⃗ =(2a,-a),所以|AB ⃗⃗⃗⃗⃗ |=√2a,|AC ⃗⃗⃗⃗⃗ |=√5a,所以cos ∠BAC=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=22√2a×√5a=-√1010,故选C.9.B 由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为3√5,则该几何体的表面积S=2×32+2×3×3√5+2×3×6=54+18√5.故选B.10.B 易知AC=10.设底面△ABC 的内切圆的半径为r,则12×6×8=12×(6+8+10)·r,所以r=2,因为2r=4>3,所以最大球的直径2R=3,即R=32.此时球的体积V=43πR 3=9π2.故选B.11.A 由题意知过点A 的直线l 的斜率存在且不为0,故可设直线l 的方程为y=k(x+a),当x=-c 时,y=k(a-c),当x=0时,y=ka,所以M(-c,k(a-c)),E(0,ka).如图,设OE 的中点为N,则N (0,ka 2),由于B,M,N 三点共线,所以k BN =k BM ,即ka 2-a=k(a -c)-c -a,所以12=a -ca+c,即a=3c,所以e=13.故选A.12.C 当m=4时,数列{a n }共有8项,其中4项为0,4项为1,要满足对任意k ≤8,a 1,a 2,…,a k 中0的个数不少于1的个数,则必有a 1=0,a 8=1,a 2可为0,也可为1.(1)当a 2=0时,分以下3种情况:①若a 3=0,则a 4,a 5,a 6,a 7中任意一个为0均可,则有C 41=4种情况;②若a 3=1,a 4=0,则a 5,a 6,a 7中任意一个为0均可,有C 31=3种情况;③若a 3=1,a 4=1,则a 5必为0,a 6,a 7中任一个为0均可,有C 21=2种情况;(2)当a 2=1时,必有a 3=0,分以下2种情况:①若a 4=0,则a 5,a 6,a 7中任一个为0均可,有C 31=3种情况;②若a 4=1,则a 5必为0,a 6,a 7中任一个为0均可,有C 21=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.二、填空题 13.答案32解析 由题意画出可行域(如图所示),其中A(-2,-1),B (1,12),C(0,1),由z=x+y 知y=-x+z,当直线y=-x+z 过点B (1,12)时,z 取最大值32.14.答案23π解析 设f(x)=sin x-√3cos x=2sin (x +53π),g(x)=sin x+√3cos x=2sin (x +π3),将g(x)的图象向右平移φ(φ>0)个单位长度后得到函数g(x-φ)=2sin (x -φ+π3)=2sin (x +5π3)=f(x)的图象,所以x-φ+π3=2kπ+x+5π3,k ∈Z ,此时φ=-2kπ-4π3,k ∈Z ,当k=-1时,φ有最小值,为2π3.15.答案 y=-2x-1解析 令x>0,则-x<0, f(-x)=ln x-3x,又f(-x)=f(x), ∴f(x)=ln x-3x(x>0),则f '(x)=1x -3(x>0),∴f '(1)=-2,∴在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.16.答案 4解析 由题意可知直线l 过定点(-3,√3),该定点在圆x 2+y 2=12上,不妨设点A(-3,√3),由于|AB|=2√3,r=2√3,所以圆心到直线AB 的距离为d=√(2√3)2-(√3)2=3,又由点到直线的距离公式可得d=√3|√m 2+1=3,解得m=-√33,所以直线l 的斜率k=-m=√33,即直线l 的倾斜角为30°.如图,过点C 作CH ⊥BD,垂足为H,所以|CH|=2√3,在Rt △CHD 中,∠HCD=30°,所以|CD|=2√3cos30°=4.三、解答题17.解析 (Ⅰ)由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.(2分)由S n =1+λa n ,S n+1=1+λa n+1得a n+1=λa n+1-λa n ,即a n+1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0, 所以a n+1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ(λλ-1)n -1.(6分)(Ⅱ)由(Ⅰ)得S n =1-(λλ-1)n.由S 5=3132得1-(λλ-1)5=3132,即(λλ-1)5=132. 解得λ=-1.(12分)18.解析 (Ⅰ)由折线图中数据和附注中参考数据得t =4,∑i=17(t i -t )2=28,√∑i=17(y i -y)2=0.55,∑i=17(t i -t )(y i -y )=∑i=17t i y i -t ∑i=17y i =40.17-4×9.32=2.89, r ≈ 2.890.55×2×2.646≈0.99.(4分)因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(6分)(Ⅱ)由y =9.327≈1.331及(Ⅰ)得b ^=∑i=17(t i -t)(y i -y)∑i=17(t i -t)2=2.8928≈0.10, a ^=y -b ^t =1.331-0.10×4≈0.93.所以,y 关于t 的回归方程为y ^=0.93+0.10t.(10分)将2016年对应的t=9代入回归方程得y ^=0.93+0.10×9=1.83.所以预测2016年我国生活垃圾无害化处理量约为1.83亿吨.(12分)19.解析 (Ⅰ)由已知得AM=23AD=2. 取BP 的中点T,连结AT,TN,由N 为PC 中点知TN ∥BC,TN=12BC=2.(3分)又AD ∥BC,故TN AM,故四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB,MN ⊄平面PAB,所以MN ∥平面PAB.(6分)(Ⅱ)取BC 的中点E,连结AE.由AB=AC 得AE ⊥BC,从而AE ⊥AD,且AE=√AB 2-BE 2=√AB 2-(BC 2)2=√5.以A 为坐标原点,AE⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系A-xyz. 由题意知,P(0,0,4),M(0,2,0),C(√5,2,0),N (√52,1,2),PM ⃗⃗⃗⃗⃗⃗ =(0,2,-4),PN ⃗⃗⃗⃗⃗⃗ =(√52,1,-2),AN ⃗⃗⃗⃗⃗⃗ =(√52,1,2). 设n =(x,y,z)为平面PMN 的法向量,则{n ·PM ⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{2y -4z =0,√52x +y -2z =0,(10分) 可取n =(0,2,1).于是|cos<n ,AN ⃗⃗⃗⃗⃗⃗ >|=|n ·AN ⃗⃗⃗⃗⃗⃗||n||AN ⃗⃗⃗⃗⃗⃗ |=8√525. 即直线AN 与平面PMN 所成角的正弦值为8√525.(12分)20.解析 由题设知F (12,0).设l 1:y=a,l 2:y=b,则ab ≠0, 且A (a 22,a),B (b 22,b),P (-12,a),Q (-12,b),R (-12,a+b 2).记过A,B 两点的直线为l,则l 的方程为2x-(a+b)y+ab=0.(3分)(Ⅰ)由于F 在线段AB 上,故1+ab=0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b=k 2.所以AR ∥FQ.(5分)(Ⅱ)设l 与x 轴的交点为D(x 1,0),则S △ABF =12|b-a||FD|=12|b-a||x 1-12|,S △PQF =|a -b|2.由题设可得2×12|b-a||x 1-12|=|a -b|2,所以x 1=0(舍去),或x 1=1.(8分)设满足条件的AB 的中点为E(x,y).当AB 与x 轴不垂直时,由k AB =k DE 可得2a+b =y x -1(x ≠1).而a+b2=y,所以y 2=x-1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为y 2=x-1.(12分)21.解析 (Ⅰ)f '(x)=-2αsin 2x-(α-1)sin x.(2分)(Ⅱ)当α≥1时,|f(x)|=|αcos 2x+(α-1)(cos x+1)|≤α+2(α-1)=3α-2=f(0).因此A=3α-2.(4分)当0<α<1时,将f(x)变形为f(x)=2αcos 2x+(α-1)cos x-1.设t=cos x,则t ∈[-1,1],令g(t)=2αt 2+(α-1)t-1,则A 是|g(t)|在[-1,1]上的最大值,g(-1)=α,g(1)=3α-2,且当t=1-α4α时,g(t)取得最小值,最小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α. 令-1<1-α4α<1,解得α<-13(舍去),或α>15.(5分)(i)当0<α≤15时,g(t)在(-1,1)内无极值点,|g(-1)|=α,|g(1)|=2-3α,|g(-1)|<|g(1)|,所以A=2-3α. (ii)当15<α<1时,由g(-1)-g(1)=2(1-α)>0,知g(-1)>g(1)>g (1-α4α).又|g (1-α4α)|-|g(-1)|=(1-α)(1+7α)8α>0,所以A=|g (1-α4α)|=α2+6α+18α.综上,A={2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(9分)(Ⅲ)由(Ⅰ)得|f '(x)|=|-2αsin 2x-(α-1)sin x|≤2α+|α-1|.当0<α≤15时,|f '(x)|≤1+α≤2-4α<2(2-3α)=2A.当15<α<1时,A=α8+18α+34>1,所以|f '(x)|≤1+α<2A.当α≥1时,|f '(x)|≤3α-1≤6α-4=2A.所以|f '(x)|≤2A.(12分)22.解析 (Ⅰ)连结PB,BC,则∠BFD=∠PBA+∠BPD,∠PCD=∠PCB+∠BCD.因为AP⏜=BP ⏜,所以∠PBA=∠PCB,又∠BPD=∠BCD, 所以∠BFD=∠PCD.又∠PFB+∠BFD=180°,∠PFB=2∠PCD,所以3∠PCD=180°,因此∠PCD=60°.(5分)(Ⅱ)因为∠PCD=∠BFD,所以∠EFD+∠PCD=180°,由此知C,D,F,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C,D,F,E 四点的圆的圆心,所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD.(10分)23.解析 (Ⅰ)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x+y-4=0.(5分)(Ⅱ)由题意,可设点P 的直角坐标为(√3cos α,sin α).因为C 2是直线,所以|PQ|的最小值即为P 到C 2的距离d(α)的最小值,d(α)=√3cosα+sinα√2=√2|sin (α+π3)-2|.(8分) 当且仅当α=2kπ+π6(k ∈Z )时,d(α)取得最小值,最小值为√2,此时P 的直角坐标为(32,12).(10分)24.解析 (Ⅰ)当a=2时, f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x ≤3.因此f(x)≤6的解集为{x|-1≤x ≤3}.(5分)(Ⅱ)当x ∈R 时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,当x=1时等号成立,所以当x∈R时, f(x)+g(x)≥3等价于|1-a|+a≥3.①(7分) 2当a≤1时,①等价于1-a+a≥3,无解.当a>1时,①等价于a-1+a≥3,解得a≥2.所以a的取值范围是[2,+∞).(10分)。
2016年全国统一高考数学试卷(新课标I)(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分,共25分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤. 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l 交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A 交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直线坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(新课标I)(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【解答】解:∵(1+i)x=1+yi,∴,解得,即|x+yi|=|1+i|=,故选:B.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【解答】解:∵等差数列{a n}前9项的和为27,∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【解答】解:∵双曲线两焦点间的距离为4,∴c=2,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).故选:A.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c>ba c;故B 错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C9.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B二、填空题:本大题共4小题,每小题5分,共25分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【解答】解:(2x+)5的展开式中,通项公式为:T r+1==25﹣r ,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=64.故答案为:64.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【解答】解:(1)设甲、乙两种产品每件分别是x件和y件,或利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤. 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,∵sinC≠0,sin(A+B)=sinC∴cosC=,又0<C<π,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由CE⊥BE,BE⊥EF,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ=﹣=﹣=,则二面角E﹣BC﹣A的余弦值为﹣.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)==,P(X=21)==,P(X=22)=,∴X的分布列为:X 16 17 18 19 20 21 22P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l 交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A 交于P,Q两点,求四边形MPNQ面积的取值范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣1]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【解答】证明:(Ⅰ)设圆的半径为r,作OK⊥AB于K,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=r,∴直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,不妨设圆心为T,∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[选修4-4:坐标系与参数方程]23.在直线坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x <时,|3x﹣2|>1,解得x>1或x <,即有﹣1<x <或1<x <;当x ≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x <或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).第21页(共21页)。