2019人教版九年级数学上期末检测试卷含答案
- 格式:doc
- 大小:284.50 KB
- 文档页数:7
最新2019学年人教版九年级上册数学期末测试卷及答案一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是 ( )2.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A .y =2(x -1)2-3B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+33.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于 ( )A.55°B.70°C.125°D.145° 4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. 36 D. 6 5.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B .63 cm 2C .123 cm 2D .83 cm 26.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( ) A .35° B .45° C .55° D .75°7.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若221-<<x x ,则( )A.21y y < B.21y y > C.21y y = D.1y 、2y 的大小不确定 8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .B .C .D .9.一次函数y ax b =+与二次函数2y ax bx c =++在同一坐标系中的图像可能是( )第3题图第6题图第4题图A .B .C .D . 10.如图,有一圆锥形粮堆,其正视图是边长为6m 的正三角形ABC,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是 m .(结果不取近似值) A .3 B .3根号3 C . D .4二、填空题:11.抛物线322+-=x x y 的顶点坐标是12.如图,将△ABC 的绕点A 顺时针旋转得到△AED, 点D 正好落在BC 边上.已知∠C=80°,则∠EAB= °. 13.若函数221y mx x =++的图象与x 轴只有一个公共点,则常数m 的值是_______ 14.抛物线y=-x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是 . 15.如图,在一个正方形围栏中均匀地散步者许多米粒,正方形内有一个圆(正方形的内切园),一只小鸡仔围栏内啄食,则“小鸡正在院内”啄食的概率为_______. 16.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A 运动到点A″的位置时,点A 经过的路线与直线l 所围成的面积是 _________ . 三、解答下列各题 1.解方程:(1)122=+x x (2)0)3(2)3(2=-+-x x题图第14题图 第16题图2.已知关于x 的一元二次方程2(31)30kx k x +++=(0)k ≠. (1)求证:无论k 取何值,方程总有两个实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为整数,求k 的值.3.如图,平面直角坐标系中,每个小正方形边长都是1. (1)按要求作图: ①△ABC 关于原点O 逆时针旋转90°得到△A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2.(2)△A 2B 2C 2中顶点B 2坐标为 .5.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?6、如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数;(2)求证:AE 是⊙O 的切线;(3)当BC =4时,求劣弧»AC 的长.7、已知:如图,抛物线y = − x 2+bx +c 与x 轴、y 轴分别相交于点A (− 1,0)、B (0,3)两点,其顶点为D .(1)求这条抛物线的解析式;(2)若抛物线与x 轴的另一个交点为E . 求△ODE 的面积;8、如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m,如果水位上升3m 时,水面CD 的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?-1 B D-O EA 3 yx。
2019年秋九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个图形中是中心对称图形的为()A.B.C.D.2.一元二次方程x2﹣mx﹣2=0的一个根为2,则m的值是()A.1 B.2 C.3 D.43.如图,是半圆,连接AB,点O为AB的中点,点C、D在上,连接AD、CO、BC、BD、OD.若∠COD=62°,且AD∥OC,则∠ABD的大小是()A.26°B.28°C.30°D.32°4.将抛物线y=(x+2)2先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=﹣2(x+2)2+3 B.y=x2﹣3 C.y=x2+3 D.(x+4)2﹣35.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°(第三题) (第五题)(第七题)(第九题)(第十题)6.关于x的二次函数y=﹣(x﹣1)2+2,下列说法正确的是()A.图象的开口向上B.图象与y轴的交点坐标为(0,2)C.当x>1时,y随x的增大而减小D.图象的顶点坐标是(﹣1,2)7.如图,点D是等边△ABC内一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,则∠DAE的度数是()A.45°B.60°C.90°D.120°8.关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1 B.k>1 C.k≤1 D.k≥19.如图,已知正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止.设点P 的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)与x(cm)的函数关系的图象是()ABC D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c>0;③a﹣b+c<0;其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(本大题共72分)11.已知x=﹣1是方程x2﹣ax+6=0的一个根,则a=,另一个根为.12.在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2﹣b2,根据这个规则,方程(x+1)﹡3=0的解为.13.(4分)在一个不透明的袋子里,装有5个红球,3个白球,它们除颜色外大小,材质都相同,从中任意摸出一个球,摸到红球的概率是.14.(4分)圆锥的侧面积为6πcm2,底面圆的半径为2cm,则这个圆锥的母线长为cm.15.(4分)如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为cm.16.(4分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)解方程:(1) x(x+1)=3x+3.(2)4y2=12y+318.(6分)已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.19.(6分)在如图所示的平面直角坐标系中,解答下列问题:(1)将△ABC绕点A逆时针方向旋转90°,画出旋转后的△A1B1C1;(2)求线段AB在旋转过程中所扫过的面积.20.(8分)肇庆市某楼盘准备以每平方米9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米7290元的均价开盘销售.求平均每次下调的百分率.21.(8分)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.判断四边形FBGD的形状,并说明理由.22.(8分)某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表.根据以上信息,解答下列问题:(1)统计表中的a=,b,c=;(2)校园小记者决定从A、B、C三位“自强自立美德少年”中,随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.23.(9分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点B,求证:EF平分∠AEH;(3)求证:CD=HF.(24题) (25题)25.(12分)如图,正方形ABCD的边长为8,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,如有请指出该定点位置并说明理由.(3)求四边形EFGH面积的最小值.参考答案一、选择题 AABBB CBACC 二.填空11. -7 -2 12.x1=2,x 2=﹣413. 14.3 15.16 17.三、解答题17.(1)x1=3,x 2=﹣1.(2)x 1=,x 2=18.解:设此二次函数的解析式为y=a (x ﹣1)2+4(a ≠0). ∵其图象经过点(﹣2,﹣5), ∴a (﹣2﹣1)2+4=﹣5, ∴a=﹣1,∴y=﹣(x ﹣1)2+4=﹣x 2+2x +3.19.解:(1)如图所示,△A 1B 1C 1即为所求;(2)∵AB==5,∠BAB 1=90°,∴线段AB 在旋转过程中所扫过的面积为=.20.解:设平均每次降价的百分率是x ,根据题意列方程得, 9000(1﹣x )2=7290,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去); 答:平均每次降价的百分率为20%.21.证明:(1)如图1,根据折叠,∠DBC=∠DBE , 又AD ∥BC , ∴∠DBC=∠ADB , ∴∠DBE=∠ADB , ∴DF=BF ,∴△BDF 是等腰三角形; (2)∵四边形ABCD 是矩形,∴AD ∥BC , ∴FD ∥BG , 又∵DG ∥BE ,∴四边形BFDG是平行四边形, ∵DF=BF ,∴四边形BFDG 是菱形;22. 解:(1)7÷0.35=20,a=20×0.20=4,b=3÷20=0.15,c=6÷20=0.3;故答案为4,0.15,0.3; (2)画树状图为:共有6种等可能的结果数,其中A,B都被采访到的结果数为2,所以A,B都被采访到的概率==.23.解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.24.(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,25.解:(1)∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG,在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EFGH面积为S,设BE=xcm,则BF=(8﹣x)cm,根据勾股定理得:E∴S有最小值,当x=4时,S的最小值=32,∴四边形EFGH面积的最小值为32cm2.F2=BE2+BF2=x2+(8﹣x)2,∴S=x2+(8﹣x)2=2(x﹣4)2+32,∵2>0,。
2018-2019学年上学期九年级数学期末质量检测姓名:_______________班级:_______________考号:_______________一、选择题二、1、方程的左边配成完全平方后,得到的方程为().A. B. C.D.以上都不对2、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为,则满足的方程是()A. B.C. D.3、如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC绕点 A顺时针旋转900得到,点D 与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是( ) (A)45°(B)30°(C)25°(D)15°4、下列图形中,是中心对称图形的是()5、如图,A,B,C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6、在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为()A.与x轴相离、与y轴相切 B.与x轴、y轴都相离C.与x轴相切、与y轴相离 D.与x轴、y轴都相切7、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( )A.3 B.4 C.5 D.68、.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个9、如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个 B.2个 C.3个 D.4个10、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④其中正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题11、方程有两个不等的实数根,则a的取值范围是________。
2018-2019学年九年级(上)期末数学试卷一.选择题(共10小题)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()A.B.C.D.2.一元二次方程3x2﹣6x+1=0的二次项系数、一次项系数分别是()A.3,﹣6 B.3,1 C.﹣6,1 D.3,63.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.4.抛物线y=3(x+2)2﹣(m2+1)(m为常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限5.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>36.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个7.三角形的一条中位线将这个三角形分成的一个小三角形与原三角形的面积之比等于()A.1:B.1:2 C.1:4 D.1:1.68.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.9.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为()m.A.2 B.4 C.6 D.810.抛物线y=ax2+bx+c(a≠0)如图所示,下列结论:①b2﹣4ac>0;②a+b+c=2;③abc <0;④a﹣b+c<0,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共9小题)11.若=,则=.12.如图,AD:DB=AE:EC,若∠ADE=58°,则∠B=.13.关于x的一元二次方程x2+4x﹣2k=0有实数根,则k的取值范围是.14.如图所示的抛物线形拱桥中,当拱顶离水面2m时,水面宽4m.如果以拱顶为原点建立直角坐标系,且横轴平行于水面,那么拱桥线的解析式为.15.二次函数y=2x2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为.16.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A 的坐标为(1,0),则四边形ODEF的面积为.17.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是.18.已知抛物线y=(1﹣3m)x2﹣2x﹣1的开口向上,设关于x的一元二次方程(1﹣3m)x2﹣2x﹣1=0的两根分别为x1、x2,若﹣1<x1<0,x2>2,则m的取值范围为.19.如图所示,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C 分别在x轴、y轴上,双曲线y=kx﹣1(k≠0,x>0)与边AB、BC分别交于点N、F,连接ON、OF、NF.若∠NOF=45°,NF=2,则点C的坐标为.三.解答题(共9小题)20.(1)计算:|1﹣|+﹣2cos45°+2sin30°(2)解方程:x2﹣6x﹣16=021.如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.22.如图,小明在地面A处利用测角仪观测气球C的仰角为37°,然后他沿正对气球方向前进了40m到达地面B处,此时观测气球的仰角为45°.求气球的高度是多少?参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.7523.春节放假期间,小欢和小乐准备到三道堰镇的彩虹桥(记为A)、香草湖(记为B)、飞越丛林(记为C)、惠里(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小欢选择去飞越丛林的概率为;(2)用树状图或列表法求小欢和小乐都选择去香草湖游玩的概率.24.如图,直线y=x﹣2(k≠0)与y轴交于点A,与双曲线y=在第一象限内交于点B (3,b),在第三象限内交于点C.(1)求双曲线的解析式;(2)直接写出不等式x﹣2>的解集;(3)若OD∥AB,在第一象限交双曲线于点D,连接AD,求S△AOD.25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AD交AB于E,EF ∥BC交AC于F.(1)求证:△ACD∽△ADE;(2)求证:AD2=AB•AF;(3)作DG⊥BC交AB于G,连接FG,若FG=5,BE=8,直接写出AD的长.26.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.27.如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.28.如图,在边长为4的正方形ABCD中,∠EDF=90°,点E在边AB上且不与点A重合,点F在边BC的延长线上,DE交AC于Q,连接EF交AC于P.(1)求证:△ADE≌△CDF;(2)求证:PE=PF;(3)当AE=1时,求PQ的长.参考答案与试题解析一.选择题(共10小题)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形判断即可.【解答】解:如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的圆锥.故选:D.2.一元二次方程3x2﹣6x+1=0的二次项系数、一次项系数分别是()A.3,﹣6 B.3,1 C.﹣6,1 D.3,6【分析】找出所求的二次项系数、一次项系数即可.【解答】解:一元二次方程3x2﹣6x+1=0的二次项系数,一次项系数分别是3,﹣6.故选:A.3.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.【分析】根据网格结构找出∠ABC所在的直角三角形,然后根据锐角的正切等于对边比邻边列式即可.【解答】解:如图,∠ABC所在的直角三角形的对边是3,邻边是4,所以,tan∠ABC=.故选:D.4.抛物线y=3(x+2)2﹣(m2+1)(m为常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次函数的性质求出抛物线的顶点坐标,根据偶次方的非负性判断.【解答】解:抛物线y=3(x+2)2﹣(m2+1)的的顶点坐标为(﹣2,﹣(m2+1)),∵m2+1>0,∴﹣(m2+1)<0,∴抛物线的顶点在第三象限,故选:C.5.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>3【分析】根据反比例函数的性质可解.【解答】解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.7.三角形的一条中位线将这个三角形分成的一个小三角形与原三角形的面积之比等于()A.1:B.1:2 C.1:4 D.1:1.6【分析】中位线将这个三角形分成的一个小三角形与原三角形相似,根据中位线定理,可得两三角形的相似比,进而求得面积比.【解答】解:易得相似比为1:2,则其面积比为:1:4,故选C.8.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.9.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为()m.A.2 B.4 C.6 D.8【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得=;即DC2=ED•FD,代入数据可得答案.【解答】解:根据题意,作△EFC;树高为CD,且∠ECF=90°,ED=2,FD=8;∵∠E+∠ECD=∠E+∠CFD=90°∴∠ECD=∠CFD∴Rt△EDC∽Rt△FDC,有=;即DC2=ED•FD,代入数据可得DC2=16,DC=4;故选:B.10.抛物线y=ax2+bx+c(a≠0)如图所示,下列结论:①b2﹣4ac>0;②a+b+c=2;③abc <0;④a﹣b+c<0,其中正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线与x轴有两不同的交点,∴△=b2﹣4ac>0.故①正确;②∵抛物线y=ax2+bx+c的图象经过点(1,2),∴代入得a+b+c=2.故②正确;③∵根据图示知,抛物线开口方向向上,∴a>0.又∵对称轴x=﹣<0,∴b>0.∵抛物线与y轴交与负半轴,∴c<0,∴abc<0.故③正确;④∵当x=﹣1时,函数对应的点在x轴下方,则a﹣b+c<0,故④正确;综上所述,正确的结论是:①②③④,共有4个.故选:D.二.填空题(共9小题)11.若=,则=.【分析】根据等式的性质1,等式两边都加上1,等式仍然成立可得出答案.【解答】解:根据等式的性质:两边都加1,,则=,故答案为:.12.如图,AD:DB=AE:EC,若∠ADE=58°,则∠B=58°.【分析】根据已知条件可证明△ADE∽△ABC,利用相似三角形的性质即可得∠B的度数.【解答】解:∵AD:DB=AE:EC∴△ADE∽△ABC,∵∠ADE=58°,∴∠B=58°,故答案为58°.13.关于x的一元二次方程x2+4x﹣2k=0有实数根,则k的取值范围是k≥﹣2 .【分析】根据判别式的意义得到△=42+8k≥0,然后解不等式即可.【解答】解:根据题意得△=42+8k≥0,解得k≥﹣2.故答案为:k≥﹣2.14.如图所示的抛物线形拱桥中,当拱顶离水面2m时,水面宽4m.如果以拱顶为原点建立直角坐标系,且横轴平行于水面,那么拱桥线的解析式为y=﹣x2+2..【分析】根据题意以拱顶为原点建立直角坐标系,且横轴为水面所在的直线,即可求出解析式.【解答】解:如图:以拱顶为原点水面所在的直线为横轴建立直角坐标系,由题意得A(2,0),C(0,2),设抛物线的解析式为:y=ax2+2把A(2,0)代入,得4a+2=0,解得a=﹣,所以抛物线解析式为y=﹣x2+2.故答案为:y=﹣x2+2.15.二次函数y=2x2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为y=2(x+2)2﹣5 .【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移2个单位长度所得抛物线的解析式为:y=2(x+2)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y=2(x+2)2﹣5,即y=2(x+2)2﹣5.故答案为:y=2(x+2)2﹣5.16.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A 的坐标为(1,0),则四边形ODEF的面积为 2 .【分析】利用位似图形的性质得出D点坐标,进而求出正方形的面积.【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),∴D点坐标为:(,0),则四边形ODEF的面积为:×=2.故答案为:2.17.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:将﹣1、﹣2、﹣3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为:.故答案为.18.已知抛物线y=(1﹣3m)x2﹣2x﹣1的开口向上,设关于x的一元二次方程(1﹣3m)x2﹣2x﹣1=0的两根分别为x1、x2,若﹣1<x1<0,x2>2,则m的取值范围为﹣<m<.【分析】首先由抛物线开口向上可得:1﹣3m>0,再由1<x1<0可得:2>3m,最后由x2>2可得:1﹣3m<,由以上三点即可求出m的取值范围.【解答】解:∵抛物线y=(1﹣3m)x2﹣2x﹣1的开口向上,∴1﹣3m>0,①∵﹣1<x1<0,∴当x=﹣1时,y>0,即2>3m,②∵x2>2,∴当x=2时,y<0,即1﹣3m<,③由①②③可得:﹣<m<,故答案为:﹣<m<.19.如图所示,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C 分别在x轴、y轴上,双曲线y=kx﹣1(k≠0,x>0)与边AB、BC分别交于点N、F,连接ON、OF、NF.若∠NOF=45°,NF=2,则点C的坐标为(0,+1).【分析】将△OAN绕点O逆时针旋转90°,点N对应N′,点A对应A′,由旋转和正方形的性质即可得出点A′与点C重合,以及F、C、N′共线,通过角的计算即可得出∠N'OF =∠NOF=45°,结合ON′=ON、OF=OF即可证出△N'OF≌△NOF(SAS),由此即可得出N′M=NF=2,再由(1)△OCF≌△OAN即可得出CF=N,通过边与边之间的关系即可得出BN=BF,利用勾股定理即可得出BN=BF=,设OC=a,则N′F=2CF=2(a﹣),由此即可得出关于a的一元一次方程,解方程即可得出点C的坐标.【解答】解:将△OAN绕点O逆时针旋转90°,点N对应N′,点A对应A′,如图所示.∵OA=OC,∴OA′与OC重合,点A′与点C重合.∵∠OCN′+∠OCF=180°,∴F、C、N′共线.∵∠COA=90°,∠FON=45°,∴∠COF+∠NOA=45°.∵△OAN旋转得到△OCN′,∴∠NOA=∠N′OC,∴∠COF+∠CON'=45°,∴∠N'OF=∠NOF=45°.在△N'OF与△NOF中,,∴△N′OF≌△NOF(SAS),∴NF=N'F=2.∵△OCF≌△OAN,∴CF=AN.又∵BC=BA,∴BF=BN.又∠B=90°,∴BF2+BN2=NF2,∴BF=BN=.设OC=a,则CF=AN=a﹣.∵△OAN旋转得到△OCN′,∴AN=CN'=a﹣,∴N'F=2(a﹣),又∵N'F=2,∴2(a﹣)=2,解得:a=+1,∴C(0,+1).故答案是:(0,+1).三.解答题(共9小题)20.(1)计算:|1﹣|+﹣2cos45°+2sin30°(2)解方程:x2﹣6x﹣16=0【分析】(1)根据二次根式的乘法、加减法和特殊角的三角函数值可以解答本题;(2)根据因式分解法可以解答此方程.【解答】解:(1)|1﹣|+﹣2cos45°+2sin30°=﹣1+2﹣2×+2×=﹣1+2﹣+1=2;(2)∵x2﹣6x﹣16=0,∴(x﹣8)(x+2)=0,∴x﹣8=0或x+2=0,解得,x1=8,x2=﹣2.21.如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.【分析】根据主视图,左视图的定义画出图形即可.【解答】解:如图,主视图,左视图如图所示.22.如图,小明在地面A处利用测角仪观测气球C的仰角为37°,然后他沿正对气球方向前进了40m到达地面B处,此时观测气球的仰角为45°.求气球的高度是多少?参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75【分析】在Rt△ACD和Rt△BCD中,设CD=x,分别用x表示AD和BD的长度,然后根据已知AB=40m,列出方程求出x的值,继而可求得气球离地面的高度.【解答】解:设CD=x,在Rt△BCD中,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠A=37°,∴tan37°=,∴AD=,∵AB=40m,∴AD﹣BD=﹣x=40,解得:x=120,∴气球离地面的高度约为120(m).答:气球离地面的高度约为120m.23.春节放假期间,小欢和小乐准备到三道堰镇的彩虹桥(记为A)、香草湖(记为B)、飞越丛林(记为C)、惠里(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小欢选择去飞越丛林的概率为;(2)用树状图或列表法求小欢和小乐都选择去香草湖游玩的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果数,找出小欢和小乐都选择去香草湖游玩的结果数,然后根据概率公式求解.【解答】解:(1)小欢选择去飞越丛林的概率=;(2)画树状图为:共有16种等可能的结果数,其中小欢和小乐都选择去香草湖游玩的结果数为1,所以小欢和小乐都选择去香草湖游玩的概率=.24.如图,直线y=x﹣2(k≠0)与y轴交于点A,与双曲线y=在第一象限内交于点B (3,b),在第三象限内交于点C.(1)求双曲线的解析式;(2)直接写出不等式x﹣2>的解集;(3)若OD∥AB,在第一象限交双曲线于点D,连接AD,求S△AOD.【分析】(1)把点B(3,b)代入y=x﹣2,得到B的坐标,然后根据待定系数法即可求得双曲线的解析式;(2)解析式联立求得C的坐标,然后根据图象即可求得;(3)求得直线OD的解析式,然后解析式联立求得D的坐标,根据三角形面积公式求得即可.【解答】解:(1)∵点B(3,b)在直线y=x﹣2(k≠0)上,∴b=3﹣2=1,∴B(3,1),∵双曲线y=经过点B,∴k=3×1=3,∴双曲线的解析式为y=;(2)解得或,∴C(﹣1,﹣3),由图象可知,不等式x﹣2>的解集是﹣1<x<0或x>3;(3)∵OD∥AB,∴直线OD的解析式为y=x,解,解得或,∴D(,),由直线y=x﹣2可知A(0,﹣2),∴OA=2,∴S△AOD==.25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AD交AB于E,EF ∥BC交AC于F.(1)求证:△ACD∽△ADE;(2)求证:AD2=AB•AF;(3)作DG⊥BC交AB于G,连接FG,若FG=5,BE=8,直接写出AD的长.【分析】(1)根据两角对应相等两三角形相似即可证明.(2)证明△BAD∽△DAF可得结论.(3)想办法求出AB,AF即可解决问题.【解答】(1)证明:∵DA平分∠BAC,∴∠CAD=∠DAE,∵DE⊥AD,∴∠ADE=∠C=90°,∴△ACD∽△ADE.(2)证明:连接DF.∵EF∥BC,∴∠AFE=∠C=90°,∠AEF=∠B,∵∠ADE=∠AFE=90°,∴A,E,D,F四点共圆,∴∠ADF=∠AEF,∴∠B=∠ADF,∴∠DAB=∠DAF,∴△BAD∽△DAF,∴=,∴AD2=AB•AF.(3)解:设DG交EF于O.∵DG⊥BC,AC⊥BC,∴DG∥AC,∴∠ADG=∠DAC=∠DAG,∴AG=GD,∵∠AED+∠EAD=90°,∠EDG+∠ADG=90°,∴∠GED=∠GDE,∴DG=EG=AG,∵∠AFE=90°,∴FG=EG=AG=DG=5,∵OE∥BD,∴=,∴=,∴OG=,∴OG∥AF.EG=AG,∴OE=OF,∴AF=2OG=,∴AD2=AB•AF=18×,∵AD>0,∴AD=.26.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.【分析】(1)设每件衬衫降价x元,则商场平均每天可销售(20+x)件,根据总利润=每件的利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(2)设每件衬衫降价y元,则商场平均每天可销售(20+y)件,每件的利润×销售数量,即可得出关于y的一元二次方程,由根的判别式△=﹣700<0,即可得出商场平均每天盈利不可能为1600元.【解答】解:(1)设每件衬衫降价x元,则商场平均每天可销售(20+x)件,依题意,得:(40﹣x)(20+x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20,∵尽量减少库存,∴x=20.答:每件衬衫应降价20元.(2)设每件衬衫降价y元,则商场平均每天可销售(20+y)件,依题意,得:(40﹣y)(20+y)=1600,整理,得:y2﹣30y+400=0.∵△=(﹣30)2﹣4×1×400=﹣700<0,∴该方程无解,∴商场平均每天盈利不可能为1600元.27.如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.【分析】(1)由抛物线的解析式先求出点A,B的坐标,再证△AOC∽△COB,利用相似三角形的性质可求出CO的长;(2)先求出抛物线的解析式,再设出点D的坐标(m,m2﹣m﹣2),用含m的代数式表示出△BCD的面积,可用函数的性质求出其最大值;(3)分类讨论,分三种情况由平移规律可轻松求出点P的三个坐标.【解答】解:(1)在抛物线y=a(x+2)(x﹣4)中,当y=0时,x1=﹣2,x2=4,∴A(﹣2,0),B(4,0),∴AO=2,BO=4,∵∠ACO=∠CBO,∠AOC=∠COB=90°,∴△AOC∽△COB,∴=,即=,∴CO=2;(2)由(1)知,CO=2,∴C(0,﹣2)将C(0,﹣2)代入y=a(x+2)(x﹣4),得,a=,∴抛物线解析式为:y=x2﹣x﹣2,如图1,连接OD,设D(m,m2﹣m﹣2),则S△BCD=S△OCD+S△OBD﹣S△BOC=×2m+×4(﹣m2+m+2)﹣×4×2=﹣m2+2m=﹣(m﹣2)2+2,根据二次函数的图象及性质可知,当m=2时,△BCD的面积有最大值2;(3)如图2﹣1,当四边形ACBP为平行四边形时,由平移规律可知,点C向右平移4个单位长度,再向上平移2个单位长度得到点B,所以点A向右平移4个单位长度,再向上平移2个单位长度得到点P,因为A(﹣2,0),所以P1(2,2);同理,在图2﹣2,图2﹣3中,可由平移规律可得P2(6,﹣2),P3(﹣6,﹣2);综上所述,当以点A、C、B、P为顶点的四边形是平行四边形时,点P的坐标为(2,2),(6,﹣2),P3(﹣6,﹣2).28.如图,在边长为4的正方形ABCD中,∠EDF=90°,点E在边AB上且不与点A重合,点F在边BC的延长线上,DE交AC于Q,连接EF交AC于P.(1)求证:△ADE≌△CDF;(2)求证:PE=PF;(3)当AE=1时,求PQ的长.【分析】(1)根据ASA证明即可.(2)作FH∥AB交AC的延长线于H,由“AAS”可证△APE≌△HPF,可得PE=PF;(3)如图2,先根据平行线分线段成比例定理表示,可得AQ的长,再计算AH的长,根据(2)中的全等可得AP=PH,由线段的差可得结论.【解答】证明:(1)∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠BCD=∠DCF=∠ADC=90°,∴∠ADE+∠EDC=90°∵∠EDF=90°∴∠EDC+∠CDF=90°∴∠ADE=∠CDF在△ADE和△CDF中,∵∴△ADE≌△CDF(ASA).(2)由(1)知:△ADE≌△CDF,∴AE=CF,作FH∥AB交AC的延长线于H.∵四边形ABCD是正方形,∴∠ACB=∠FCH=45°,∵AB∥FH,∴∠HFC=∠ABC=90°,∴∠FCH=∠H=45°,∴CF=FH=AE,在△AEP和△HFP中,∵,∴△APE≌△HPF(AAS),∴PE=PF;(3)如图中,∵AE∥CD,∴,∵AE=1,CD=4,∴,∵四边形ABCD是正方形,∴AB=BC=4,∠B=90°,∴AC=4,∴AQ=AC=,∵AE=FH=CF=1,∴CH=,∴AH=AC+CH=4+=5,由(2)可知:△APE≌△HPF,∴AP=PH,∴AP=AH=,∴PQ=AP﹣AQ=﹣=.。
九年级上册数学期末试卷 (总分120分,时间120分钟) 一、选择题(共10小题,每小题3分,共30分) 1.方程x2-9=0的解是( ) A.x1=x2=3 B.x1=x2=9 C.x1=3,x2=-3 D.x1=9,x2=-9 2.若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是( ) A.-10 B.10 C.-16 D.16 3.若点A(-2,n)在x轴上,则点B(n-1,n+1)关于原点对称的点的坐标为( ) A.(1,1) B.(-1,-1) C.(1,-1) D.(-1,1) 4.如图,弦AB⊥OC,垂足为点C,连接OA,若OC=2,AB=4,则OA等于( ) A.22 B.23 C.32 D.25
第4题图 5.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么多少s后⊙P与直线CD相切( )
A.4s B.8s C.4s或6s D.4s或8s 6.“遵义地区明天降水概率是15%”,下列说法中,正确的是( ) A.遵义地区明天降水的可能性较小 B.遵义地区明天将有15%的时间降水 C.遵义地区明天将有15%的地区降水 D.遵义地区明天肯定不降水 7.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.当游戏对甲、乙双方公平时,x的值为( ) A.3 B.4 C.5 D.6 8.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为( )
A.175πcm2 B.350πcm2 C.8003πcm2 D.150πcm2 第8题图 9.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是( )
检测内容:期末检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是( )A .14B .12C .34D .1 2.已知一个直角三角形的两条直角边的长恰好是方程x 2-3x =4(x -3)的两个实数根,则该直角三角形斜边上的中线长是( )A .3B .4C .6D .2.53.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x ,由题意,所列方程正确的是( )A .28(1-2x)=16B .16(1-2x)=28C .28(1-x)2=16D .16(1-x)2=284.将二次函数y =x 2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( )A .y =(x -1)2+3B .y =(x +1)2+3C .y =(x -1)2-3D .y =(x +1)2-35.若抛物线y =x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A .抛物线开口向上 B .抛物线的对称轴是x =1C .当x =1时,y 的最大值为-4D .抛物线与x 轴的交点为(-1,0),(3,0) 6.如图,PA ,PB 切⊙O 于点A ,B ,点C 是⊙O 上一点,且∠P =36°,则∠ACB =( ) A .54° B .72° C .108° D .144°,第6题图) ,第9题图),第10题图)7.在体检中,12名同学的血型结果为:A 型3人,B 型3人,AB 型4人,O 型2人,若从这12名同学中随机抽出2人,这两人的血型均为O 型的概率为( )A .166B .133C .1522D .7228.已知x 1,x 2是关于x 的一元二次方程x 2-(2m +3)x +m 2=0的两个不相等的实数根,且满足x 1+x 2=m 2,则m 的值是( )A .-1B .3C .3或-1D .-3或19.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB ︵的中点,则下列结论不成立的是( )A .OC ∥AEB .EC =BC C .∠DAE =∠ABED .AC ⊥OD 10.(2016·齐齐哈尔)如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.点P(-2,5)关于原点对称的点的坐标是________.12.已知一个圆锥的底面直径为20 cm ,母线长为30 cm ,则这个圆锥的表面积是________.13.(2016·河南)已知A(0,3),B(2,3)是抛物线y =-x 2+bx +c 上两点,该抛物线的顶点坐标是________.14.已知二次函数y =-x 2-2x +3的图象上有两点A(-7,y 1),B(-8,y 2),则y 1________y 2.(填“>”“<”或“=”)15.如图,△ABC 和△A′B′C 是两个不完全重合的直角三角板,∠B =30°,斜边长为10 cm ,三角板A′B′C 绕直角顶点C 顺时针旋转,当点A′落在AB 边上时,CA ′旋转所构成的扇形的弧长为________cm .,第15题图) ,第16题图),第18题图)16.如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO ,以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于点F ,G ,连接EF.若∠BAC =22°,则∠EFG =________.17.已知AB ,AC 分别是同一圆的内接正方形和内接正六边形的边,那么∠ABC 的度数为________.18.如图,△ABC 中,∠ACB =90°,∠A =30°,将△ABC 绕C 点按逆时针方向旋转α角(0°<α<90°)得到△DEC ,设CD 交AB 于点F ,连接AD ,当旋转角α度数为________,△ADF 是等腰三角形.三、解答题(共66分) 19.(8分)解方程:(1)53x +错误!=x 2; (2)2(x -3)2=x 2-9.20.(8分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C,过点C 作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(-1,0).(1)求该抛物线的解析式;(2)求梯形COBD的面积.21.(8分)如图,AB是⊙O的弦,D为半径OA上的一点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.求证:BC是⊙O的切线.22.(10分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF,EO,若DE=23,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.23.(10分)在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其他均相同.甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号,将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数.若该两位数能被4整除,则甲胜,否则乙胜.问这个游戏公平吗?说明理由.24.(10分)(2016·铜仁)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用函数解析式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?25.(12分)如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点;①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.单元清七1.A 2.D 3.C 4.A 5.C 6.B 7.A 8.B 9.D 10.B 11.(2,-5) 12.300π cm 2 13.(1,4) 14.>15.5π3 16.33° 17.15°或105° 18.40°或20° 19.(1)x 1=2,x 2=-13 (2)x 1=3,x 2=9 20.解:(1)y =-x 2+2x +3 (2)B ,C ,D 三点的坐标分别为:B(3,0),C(0,3),D(1,3),∴CD =1,BO =3,CO =3,S 梯形COBD =12(CD +BO)·CO =12×4×3=6 21.证明:连接OB ,∵CE =CB ,∴∠CEB =∠CBE ,又∵CD ⊥AO ,∴∠A +∠AED =90°,又∵∠AED =∠CEB ,∴∠A +∠CBE =90°,又∵OA =OB ,∴∠A =∠OBA ,∴∠OBA +∠CBE =90°,即∠OBC =90°,∴OB ⊥BC ,∴BC 为⊙O 的切线 22.解:(1)连接FO ,∵AP ⊥DE ,∠DPA =45°,∴∠D =45°,∴∠EOF =90°,又AC =CO ,∴OE =2OC ,∴∠COE =60°,又CE =CD =3,∴CO 2+(3)2=(2OC)2,∴OC =1,OE =R =2 (2)S 阴影=S 扇形EOF -S △OEF =14πR 2-12OE ·OF =14π×4-12×2×2=π-2 23.解:画树状图如下:由图可知,所有等可能的结果共有9种,其中,两位数能被4整除的情况有3种,所以P(甲获胜)=39=13,P(乙获胜)=23,因为13≠23,所以这个游戏不公平 24.解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y =180-10(x -12)=-10x +300(12≤x ≤30) (2)设王大伯获得的利润为W ,则W =(x -10)y =-10x 2+400x -3 000,令W =840,则-10x 2+400x -3 000=840,解得:x 1=16,x 2=24,∴王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元 (3)∵W =-10x 2+400x -3 000=-10(x -20)2+1 000,∵a =-10<0,∴当x =20时,W 取最大值,最大值为1 000.故当售价定为20元时,王大伯获得利润最大,最大利润是1 000元25.(1)∵点A(-3,0)与点B 关于直线x =-1对称,∴点B 的坐标为(1,0) (2)∵a =1,∴y =x 2+bx +c ,∵抛物线过点(-3,0),且对称轴为直线x =-1,∴b =2,c =-3,∴y =x 2+2x -3,且点C 的坐标为(0,-3),①设P 的坐标为(x ,y),由题意S △BOC =12×1×3=32,∴S △POC =6.当x >0时,有12×3×x =6,∴x =4,∴y =42+2×4-3=21.当x <0时,有12×3×(-x)=6,∴x =-4,∴y =(-4)2+2×(-4)-3=5,∴点P 的坐标为(4,21)或(-4,5)②∵直线y =mx +n 过A ,C 两点,∴⎩⎪⎨⎪⎧-3m +n =0,n =-3.解得⎩⎪⎨⎪⎧m =-1n =-3.∴y =-x -3.设点Q 的坐标为(x ,y),-3≤x ≤0.则有QD =-x -3-(x 2+2x -3)=-x 2-3x =-(x +32)2+94,∵-3≤-32≤0,∴当x =-32时,QD 有最大值94,∴线段QD 长度的最大值为94。