人教版七年级数学下册第八章二元一次方程组学案
- 格式:doc
- 大小:325.00 KB
- 文档页数:14
人教版七年级数学下册8.1《二元一次方程组》教案一. 教材分析《二元一次方程组》是人教版七年级数学下册第八章的第一节内容,主要介绍了二元一次方程组的概念、解法和应用。
本节内容是学生继学习一元一次方程之后,进一步研究二元一次方程,培养学生解决实际问题的能力,为后续学习更复杂的方程组打下基础。
二. 学情分析学生在之前的学习中已经掌握了一元一次方程的知识,具备了一定的数学思维能力和问题解决能力。
但七年级的学生在逻辑思维和抽象思维方面仍在发展过程中,因此,在教学过程中,需要教师引导学生逐步理解二元一次方程组的概念,并通过实际例子让学生感受方程组在解决实际问题中的作用。
三. 教学目标1.理解二元一次方程组的概念,掌握二元一次方程组的解法;2.能够运用二元一次方程组解决实际问题;3.培养学生的合作交流能力和抽象思维能力。
四. 教学重难点1.重点:二元一次方程组的概念,解法及应用;2.难点:二元一次方程组的解法,以及如何将实际问题转化为方程组问题。
五. 教学方法采用问题驱动法、合作交流法、案例教学法等,引导学生主动探究,合作解决问题,提高学生的数学思维能力和实际问题解决能力。
六. 教学准备1.准备相关案例和练习题;2.准备课件和教学素材;3.准备小组讨论的安排。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题,从而引入二元一次方程组的概念。
2.呈现(10分钟)呈现二元一次方程组的定义和性质,引导学生理解并能够描述二元一次方程组。
3.操练(10分钟)通过一些简单的例子,让学生练习解二元一次方程组,引导学生掌握解题方法。
4.巩固(10分钟)让学生分组讨论,分析并解决一些实际问题,巩固所学知识。
5.拓展(10分钟)引导学生思考如何将实际问题转化为方程组问题,提高学生的问题解决能力。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习目标。
7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。
人教版数学七年级下册8.1《二元一次方程组》教学设计一. 教材分析《二元一次方程组》是人教版数学七年级下册第八章第一节的内容,主要介绍二元一次方程组的概念、解法和应用。
本节内容是在学生已掌握一元一次方程的基础上进行的,是进一步学习三元一次方程组、二元二次方程组等的基础。
通过本节的学习,使学生能够掌握二元一次方程组的概念,学会用代入法、加减法等解二元一次方程组,并能够解决一些实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了一元一次方程的解法和应用,对解方程有一定的基础。
但七年级的学生逻辑思维能力和抽象思维能力还在发展中,对于二元一次方程组的概念和解法还需要通过具体的例子和实际问题来理解和掌握。
三. 教学目标1.了解二元一次方程组的概念,理解二元一次方程组的解的意义。
2.学会用加减法、代入法解二元一次方程组。
3.能够应用所学的知识解决一些实际问题。
四. 教学重难点1.重难点:二元一次方程组的概念和解法。
2.难点:如何引导学生理解二元一次方程组的解的意义,以及如何应用所学的知识解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题引导学生思考,通过案例使学生理解概念和解法,通过小组合作学习促进学生之间的交流和合作。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)通过设置一个问题情境,如“小明和小红一共有多少本书?”引发学生对二元一次方程组的思考,进而导入本节内容。
2.呈现(10分钟)用PPT呈现二元一次方程组的定义和例子,引导学生理解二元一次方程组的概念。
然后介绍二元一次方程组的解法,如加减法、代入法等,并通过具体的例子使学生理解解法的过程。
3.操练(10分钟)让学生分组合作,用加减法、代入法解给出的二元一次方程组,并在小组内交流解题过程和方法。
4.巩固(10分钟)让学生独立完成一些二元一次方程组的题目,以巩固所学的知识和解法。
最新人教版七年级数学下册第八章《二元一次方程组》教案本章复习整体设计教材分析本章主要内容包括:利用二元一次方程组分析、解决实际问题,二元一次方程组及其相关概念,消元思想和用代入法、加减法解二元一次方程组以及三元一次方程组解法举例.其中,以方程组为工具分析问题、解决含有多个未知数的问题既是本章的重点,又是难点.本章所涉及的数学思想方法主要包括两个:一个是由实际问题抽象为方程组这个过程中蕴涵的符号化、模型化的思想;另一个是解方程组的过程中蕴涵的消元、化归思想,它在解方程组中具有指导作用.解二元一次方程组的各个步骤,都是为最终使方程组变形为x =a 的形式而实施的,即在保持各方程的左右两边相等关系的前提之下,使“未知”逐步转化为“已知”.解三元以及多元方程组的基本策略是“消元”,即逐步减少未知数的个数,以使方程组化归为一元一次方程,先解出一个未知数,然后逐步解出其他未知数.代入法和加减法都是消元解方程组的方法,只是具体消元的手法有所不同.课时分配1课时教学目标1.能熟练、准确地解二元一次方程组;会用二元一次方程组解决实际问题;通过对本章的内容进行回顾和总结,能把握各知识点间的联系,进一步感受方程(组)模型的重要性.2.通过回顾反思,进一步加深对数学中消元、化归思想的理解,熟练、灵活地运用消元法解方程组;学会如何构建知识体系,体会前后知识间的联系.教学重难点教学重点:解二元一次方程组、列二元一次方程组解应用题.教学难点:如何找等量关系,并把它们转化成方程(组).教学方法教师组织学习材料,为学生创设理想的学习环境,学生利用问题展开探索交流.在学生掌握基本内容的基础上,教师引导学生进一步提炼,构建知识体系;在此基础上,通过学生尝试解决问题,以及师生之间、生生之间的讨论交流,使学生对数学思想方法的认识更深刻,对解决问题的策略把握得更灵活.教学过程一、知识网络构建设计说明利用一组小练习,引导学生回顾本章主要内容,体会各知识点间的联系,构建知识网络,使学生对本章内容及其间的关系有清晰完整的认识.1.课前热身练习(要求学生上课之前完成,上课时交流订正).(1)写出方程2x -5y =18的3个解.(答案不唯一,二元一次方程有无数个解,只要满足要求即可)(2)用合适的方法解方程组4(x -y -1)=3(1-y )-2,x 2+y3=2.(3)小红和爷爷在400米环形跑道上跑步.他们从某处同时出发,如果同向而行,那么经过200 s 小红追上爷爷;如果背向而行,那么经过40 s 两人相遇,求他们的跑步速度.(4)已知三角形的周长是18 cm ,其中两边的和等于第三边的2倍,而这两边的差等于第三边的13,求这个三角形的各边长.设三边的长分别是x cm ,y cm ,z cm(x >y ),那么x +y +z =18,x +y =2z ,x -y =13z .你会解这个方程组吗?答案:(1)略. (2)x =2,y =3.(3)小红和爷爷跑步的速度分别是6 m/s,4 m/s.(4)x =7,y =5,z =6.问题1:上述问题你是怎样解决的?用到了哪些知识点?和你小组中其他的同学交流一下.讨论结果:略.问题2:本章的重要内容有哪些?它们之间有怎样的联系?讨论结果:略. 2.重要知识点梳理(1)二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的整式方程.二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值叫做二元一次方程的解.(2)二元一次方程组:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.(4)解方程组:求出方程组的解或确定方程组没有解的过程叫做解方程组.(5)解二元一次方程组的基本方法是代入消元法和加减消元法(简称代入法和加减法).代入法解题步骤:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程组的解?x =a ,y =b .加减法解题步骤:把方程组里的一个(或两个)方程的两边都乘以适当的数,使两个方程里的同一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去这个未知数,得到另一个未知数的一元一次方程(以下步骤与代入法相同).(6)列二元一次方程组解应用题的步骤与列方程解应用题的步骤基本相同,即“设”“列”“解”“验”“答”.3.二元或三元一次方程组解决问题的基本过程4.本章知识安排的前后顺序参照本章概览中的知识结构图,省略.二、典型题例探究例1:方程2x +y =9在正整数范围内的解有________个.解析:由2x +y =9,得y =9-2x .取x =1,2,3,4,分别得正整数y =7,5,3,1. ∴ x =1,y =7; x =2,y =5; x =3,y =3;?x =4,y =1.故有四个解.答案:4例2:解方程组 a 2+b3=13,a 3-b4=3.①②解:由①×14,得a 8+b 12=134. ③由②×13,得a 9-b12=1. ④③+④,得17a 72=174.∴a =18.把a =18代入②,得b =12,∴?a =18,b =12.例3:用正方形和长方形两种硬纸片制作甲、乙两种无盖的长方体纸盒(如图).如果长方形的宽与正方形的边长相等,150张正方形硬纸片和300张长方形硬纸片可以制作甲、乙两种纸盒各多少个?提出以下问题引导学生思考:每个甲种纸盒要正方形硬纸片几张?(1张) 每个乙种纸盒要正方形硬纸片几张?(2张) 每个甲种纸盒要长方形硬纸片几张?(4张) 每个乙种纸盒要长方形硬纸片几张?(3张) 解:设可制作甲种纸盒x 个,乙种纸盒y 个,由题意,得x +2y =150,4x +3y =300.解这个方程,得x =30,y =60.答:可制作甲种纸盒30个,乙种纸盒60个.例4:某车间每天能生产甲种零件120个,或者乙种零件100个,或者丙种零件200个.甲,乙,丙3种零件分别取3个,2个,1个,才能配一套,要在30天内生产最多的成套产品,问甲,乙,丙3种零件各应生产多少天?解:设甲种零件生产x 天,乙种零件生产y 天,丙种零件生产z 天.根据题意,得?x +y +z =30,(120x )∶(100y )∶(200z )=3∶2∶1.化简,得x +y +z =30,x =5z ,y =4z .解得x =15,y =12,z =3.答:甲,乙,丙3种零件各应生产15天,12天,3天.三、课堂巩固训练1.已知|x +y |+(x -y +3)2=0,求x ,y 的值.2.某铁路桥长1 000 m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1 min ,整列火车完全在桥上的时间共40 s .求火车的速度和长度.3.为了加强公民的节水意识,合理利用水资源.某市采用价格调控手段达到节约用水的目的.规定:每户居民每月用水不超过6 m 3时,按基本价格收费,该市某户居民今年4、52.解:设火车的速度为x m/s ,火车的长度为y m ,由题意,得 60x =1 000+y ,40x =1 000-y .解这个方程组,得?x =20,y =200.答:火车的速度为20 m/s ,火车的长度为200 m. 3.分析:由表格看到什么信息?4月份用水超过6 m 3,所以水费由两部分组成21元.5月份用水超过6 m 3,所以水费由两部分组成27元.解:设基本价格为x 元/m 3,超过6 m 3的部分为y 元/m 3.由题意,知?6x +(8-6)y =21,6x +(9-6)y =27.解这个方程组,得?x =1.5,y =6.答:基本价格为1.5元/m 3,超过6 m 3的部分为6元/m 3.四、课堂小结1.本节主要学习如何将一单元的知识进行整理归纳,形成知识体系.2.用到的主要思想方法是符号化、模型化思想,消元化归思想. 3.注意的问题:(1)复习时将平时易错的知识点、感到疑难的问题做重点处理,不留尾巴.(2)分析问题时选择合适的方法,是列表、用式子还是画图,要根据题目特点确定.(3)在复习的基础上提高,尤其是对知识方法的理解及对知识的综合创新应用.五、布置作业1.在方程(a 2-4)x 2+(2-3a )x +(a +2)y +3a =0中,若此方程为二元一次方程,则a 的值为________.2.某种植大户计划安排10个劳动力来耕作30亩土地,这些土地可以种蔬菜也可以种水稻,种这些作物所需劳动力及预计产值如下表,为了使所有土地种上作物,全部劳动力都有工作,应安排种蔬菜的劳动力为______人,这时预计产值为________元.3.七年级(2)班的一个综合实践活动小组去A 、B 两个超市调查去年和今年“五一”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情境,根据他们的对话,请你分别求出A 、B 两个超市今年“五一”期间的销售额.解析:要使此方程为二元一次方程,则x 2项的系数为零,即a 2-4=0.∴a =±2.当a =±2时,2-3a 和a +1都不为零,∴a =±2. 答案:1.±2 2.5 44 000解析:设种蔬菜x 亩,种水稻y 亩,则12x +14y =10,x +y =30.解得?x =10,y =20.2×10=5(人),10×3 000+20×700=44 000(元).3.解:设A 超市去年销售额为x 万元,B 超市去年销售额为y 万元,则 x +y =150,(1+15%)x +(1+10%)y =170.解得x =100,y =50. 所以(1+15%)x =115,(1+10%)y =55.答:A 、B 两个超市今年“五一”期间的销售额分别是115万元、55万元.六、拓展练习1.已知甲、乙两人的年收入之比为3∶2,年支出之比为7∶4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,则可列方程组为( ).A.x -y =40023x +74y =400 B.x =y +40032x -47y =400 C.x -y =40023x -47y =400D.x -y =40032x -74y =4002.若下列三个二元一次方程:3x -y =7,2x +3y =1,y =kx -9有公共解,那么k 的取值应是( ).B .4C .-3D .33.解方程组:(1)3(x +y )-4(x -y )=4,x +y 2+x -y6=1; (2)x +y -z =0,2x +y +z =7,x -3y +z =8.4.如图,周长为68 cm 的长方形ABCD 被分成7个相同的矩形,求长方形ABCD 的面积.5.实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1 180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定信息一:工作时间:每天上午8:20~12:00,下午14:00~16:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.钟?答案:1.C 2.B3.(1)x =1715,y =1115;(2)x =3,y =-1,z =2.4.280 cm 2.5.解:设捐10元的同学有x 人,捐20元的同学有y 人,根据题意,得 ?x +y +6+7=55,10x +20y +30+350=1 180. 化简,得?x +y =42,x +2y =80.解这个方程组,得x =4,y =38.答:捐款10元和20元的同学分别为4人和38人.6.解:设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟,由题意,得 ?10x +10y =350,30x +20y =850,化简,得?x +y =35,3x +2y =85.解这个方程组,得x =15,y =20.答:生产一件甲种产品需要15分钟,生产一件乙种产品需要20分钟.评价与反思1.复习课教学模式的探讨:利用基础题组回顾梳理主要知识点,构建知识体系——通过典型问题探究加深对主要思想方法的理解,掌握常用解题方法——采取限时训练与开放研究相结合的方式进行巩固与拓展练习,以保证技能技巧的形成和不同学生发展的需求.2.复习课目标的确定:首要的一点是从总体上把握本章主要内容及其间的联系,重在回顾整理,查漏补缺;其次是综合创新,基础知识掌握了,灵活地解决综合问题才有可能,同时问题的难易程度要适合学生的实际情况,注重思维发散性与深刻性的训练,使不同层次的学生通过复习都得到较大的提高.。
人教版数学七年级下册8.1《二元一次方程组》教案3一. 教材分析《二元一次方程组》是初中数学七年级下册的教学内容,这部分知识是代数学习的重要部分,也是解决实际问题的重要工具。
通过学习二元一次方程组,学生可以掌握用数学方法解决实际问题的能力,为后续学习更高级的代数知识打下基础。
二. 学情分析学生在学习《二元一次方程组》之前,已经学习了单项式、多项式、一元一次方程等知识,具备了一定的代数基础。
但学生对二元一次方程组的理解和应用能力还有待提高,因此,在教学过程中,需要引导学生通过实际问题,发现和总结二元一次方程组的解法,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:学生能理解二元一次方程组的概念,掌握二元一次方程组的解法,能应用二元一次方程组解决实际问题。
2.过程与方法:通过实际问题的解决,学生能体验数学与生活的联系,培养学生的应用意识,提高学生解决问题的能力。
3.情感态度价值观:学生能认识数学在生活中的重要性,培养学习数学的兴趣,增强学生克服困难的信心。
四. 教学重难点1.重点:二元一次方程组的概念,二元一次方程组的解法。
2.难点:二元一次方程组的解法,应用二元一次方程组解决实际问题。
五. 教学方法采用问题驱动法,情境教学法,引导发现法,合作交流法等,充分调动学生的积极性,引导学生主动探索,发现和总结二元一次方程组的解法,提高学生的解决问题的能力。
六. 教学准备1.教师准备:备好教学用的课件,准备好相关的实际问题,准备好课堂练习题。
2.学生准备:预习相关知识,准备好笔记本,做好上课的准备。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师通过多媒体课件,展示二元一次方程组的相关知识,引导学生理解二元一次方程组的概念,明确二元一次方程组的解法。
3.操练(10分钟)教师给出一些二元一次方程组,引导学生通过合作交流,发现和总结二元一次方程组的解法。
教 学 设 计课 题8.1 二元一次方程组二元一次方程组.. 课型 新授新授教学目标知识技能 1.认识二元一次方程和二元一次方程组认识二元一次方程和二元一次方程组..2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解的正整数解. .数学思考 经历设两个未知数列方程的过程,体会二元方程与一元方程的区别,通过列举法探索方程组解的过程,体会二元方程有无数解以及每组解是一对值,感悟知识间的相互联系。
及每组解是一对值,感悟知识间的相互联系。
解决问题能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式的形式 ,会检验一对数值是不是某个二元一次方程组的解。
,会检验一对数值是不是某个二元一次方程组的解。
情感态度积极参与教学活动过程,形成自觉、认真的学习态度,积极参与教学活动过程,形成自觉、认真的学习态度,••培养敢于面对学习困难的精神。
面对学习困难的精神。
教学重点 二元一次方程(组)解的含义及检验一对数是否是某个二元一次方程(组)的解,用一个未知数表示另一个未知数。
解,用一个未知数表示另一个未知数。
教学难点 求二元一次方程的正整数解求二元一次方程的正整数解.. 教学方法 引导探究法引导探究法教学媒体 电脑多媒体电脑多媒体教 学 过 程教学环节 教学内容及教师指导 学生活动及设计意图创设情境 情境 提出问题 篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?数分别是多少? 通过篮球比赛问题引起学生兴趣,为引出问题作好铺垫。
让学生感受数学与实际生活的联系联系 引导探究活动1 解决问题 思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x ,负的场数是y ,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件: 胜的场数+负的场数=总场数,胜场积分+负场积分=总积分积分=总积分. .这两个条件可以用方程x +y =222x +y =40 表示表示..思考探究思考探究 讨论交流讨论交流 交流评价 活动2 定义认识 上面两个方程中,每个方程都含有两个未知数(x 和y ),并且未知数的指数都是1,像这样的方程叫做二元一次方程. 把两个方程合在一起,写成把两个方程合在一起,写成x +y =22 2x +y =40 像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.理解体会理解体会探究:满足方程①,且符合问题的实际意义的x 、y 的值有哪些?把它们填入表中有哪些?把它们填入表中. . X Y上表中哪对x 、y 的值还满足方程②的值还满足方程②一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.观察思考观察思考 完成填表完成填表 理解体会理解体会理解体会 尝试应用 活动3 知识运用例1 (1)方程(a +2)x +(b -1)y =3是二元一次方程,试求a 、b 的取值范围的取值范围..(2)方程x ∣a∣–1+(a -2)y =2是二元一次方程,试求a 的值的值. .例2 若方程x 2m –1+5y 3n–2=7是二元一次方程是二元一次方程..求m 、n 的值的值先独立想考,同伴交流然后小组讨论,汇报回答,师生共同评价答,师生共同评价变式迁移活动4 提升拓展 例3 已知下列三对值:已知下列三对值:x =-6 x =10x =10 y =-9 y =-6 y =-1 (1)哪几对数值使方程21x -y =6的左、右两边的值相等?相等?(2)哪几对数值是方程组)哪几对数值是方程组 的解?的解?例4 求二元一次方程3x +2y =19的正整数解整数解. . 教科书第94页练习页练习观察思考观察思考 举手回答举手回答 在教师的引导下边想考边回答考边回答小结升华 活动5 课堂小结 引导学生总结本节课主要内容.引导学生总结本节课主要内容.归纳总结归纳总结归纳总结 精选作业教科书第95页3、4、5题板书设计8.1 二元一次方程组二元一次方程组..二元一次方程:二元一次方程: 例1 例2 例3 例4 二元一次方程组:二元一次方程组: 解 解 解 解 二元一次方程的解:二元一次方程的解:二元一次方程组的解 教学反思21x -y =6 2x +31y =-11教 学 设 计课 题 8.2消元——二元一次方程的解法(1) 课型 新授新授教学目标 知识技能 掌握用代入消元法解二元一次方程组的基本步骤。
课题:8.1二元一次方程组【学习目标】 1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
【学习重点】1、二元一次方程(组)的含义;2、用一个未知数表示另一个未知数。
【学习难点】检验一对数是否是某个二元一次方程(组)的解; 【自主学习】1.我们来看一个问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。
某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?以上问题包含了哪些必须同时满足的条件?设胜的场数是x ,负的场数是y ,你能用方程把这些条件表示出来吗?______场数+______场数=总场数; ______积分+______积分=总积分, 你能用方程表示这两个条件?【合作探究】1、观察:什么叫做一元一次方程?这两个方程是不是一元一次方程?它们有什么特点?与一元一次方程有什么不同?归纳:①定义:___________________________________________________叫做二元一次方程②二元一次方程的一般形式:ax + by + c = 0 (其中a ≠0、b ≠0 且a 、b 、c 为常数) 注意:1. 二元一次方程的左边和右边都应是整式。
2.要判断一个方程是不是二元一次方程,一般先要把它化成二元一次方程的一般形式,再根据定义判断。
③定义:__________________________________________________叫做二元一次方程组 【及时反馈】 1. 已知x 、y 都是未知数,判别下列方程组是否为二元一次方程组?并说明理由。
①⎩⎨⎧=+=+75243y x y x ②⎩⎨⎧=+=32y x xy ③⎩⎨⎧+==+z y y x 75 ④⎩⎨⎧=+=823155y x y 2、把3(x+5)=5(y-1)+3化成ax+by=c 的形式为_____________。
教案术”是《九章算术》最高的数学成就. 其中记载: “今有牛五、羊二,直金十两;牛二、羊五,直金 八两. 问牛、羊各直金几何?”设未知数、列方程组是本章中用数学模型表示和解决实际问题的关键步骤。
如何建立方程解决问题,提高分析问题和解决问题的能力需要同学们在学习中体会、反思和总结。
例:从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?画出图形辅助理解题意、画出表格梳理关系,这些都可以帮助我们顺利的找出等量关系、设未知数、列方程组. 探究:已知123,,.....n x x x x 中每一个数值只能取-2、 0、1中的一个,且满足123.....-19n x x x x +++=2222123......47,n x x x x ++++=。
求3333123......n x x x x ++++除了要求的未知量还存在隐含的未知量,寻找等量关系,找到隐含未知量是关键,也是一个考验。
探究:如图1是四个完全一样的直角三角形拼成的图形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中图形的面积为______.发现面积与对角线一半的两条线段长有关,这两个未知量在两个图中满足两个等量关系,设两个未知数列两个方学应用的价值, 提高分析问题、解决问题的能力.在不断学习中去体会和总结其中建模的思想..模型思想是重要的数学思想.设未知数、列方程组是这一章中用数学模型解决实际问题的关键, 需要在不断运用中去加深理解。
分析其中的等量关系是设未知数、列方程组的基础。
建立方程的关键是把已知量和未知量联系起来,找出题目中的等量关系. 借助图形表格式子帮助分析、找出等量关系.含有多个未知量的图3图2图115它们解决问题的过程一样,都是建模的过程.一般地,问题有几个等量关系就可以列出几个方程.随着实际问题中未知量的增多和数量关系的复杂,列方程组将会更加直接. 灵活的运用合理选择.例题例:求下列方程组的解.3(1)3814x yx y-=⎧⎨-=⎩3+416(2)5633x yx y=⎧⎨-=⎩例:某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台6000元,B型每台4000元,C型每台2500元,某中学现有资金100500元,计划全部用于从这家电脑公司购进36台两种型号的电脑.请你设计几种不同的购买方案,供这个学校选择,并说明理由.探究:已知123,,nx x x x…中每一个数值只能取-2、0、1中的一个,且满足123-19nx x x x+++=…222212347,nx x x x++++=…求3333123nx x x x++++…除了要求的未知量还存在隐含的未知量,寻找等量关系,找到隐含未知量是关键,也是一个考验。
人教版七年级数学下册第八章《二元一次方程组》学案8.1二元一次方程组]理解二元一次方程、二元一次方程组及它们解的概念,会检验一对 [教学目标数是不是二元一次方程组的解。
[重点难点] 二元一次方程、二元一次方程组及其解的含义是重点;理解二元一次方程组的解是难点。
[教学过程]一、导学自测课本P92-94(一)这个问题中包含了哪些必须同时满足的条件,若设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗,胜的场数,负的场数,总场数,_______________________胜场积分,负场积分,总积分,_______________________这两个方程与一元一次方程有什么不同,它们有什么特点,所含未知数的个数不同;特点是:(1)含有___个未知数,(2)含有未知数的项的次数是___。
像这样_________________,并且_______________________ 的方程叫做二元一次方程。
上面的问题包含了两个必须同时满足的条件,也就是未知数x、y必须同时满足方程x,y,22和2x,y,40 把两个方程合在一起,写成 x,y,22 ?2x,y,40 ?像这样,把具有两个未知数且含未知数的项的次数是1的两个方程合在一起,就组成了二元一次方程组.(二)、二元一次方程、二元一次方程组的解探究:满足方程?,且符合问题的实际意义(用含x的式子表示y,即y,22,x,x 可取一些自然数)的x、y的值有哪些,显然,只要能满足x,y,22的每一对x、y的值都是方程?的解。
一般地,使二元一次方程_____________________________,叫做二元一次方程的解.如果不考虑方程的实际意义,那么x、y还可以取哪些值,这些值是有限的吗, 还可以取x,,1,y,23;x,0.5,y,21.5,_________________________等等。
所以,二元一次方程的解有无数对。
你所列举的哪对x、y的值还满足方程?,,18,y,2还满足方程?.也就是说,它们是方程?与方程?的公共解,记作二元一次方程组的_________________________,叫做二元一次方程组的解.二、例题例1 若方程x2 m –1 + 5y 2–3n = 7是二元一次方程.求m2,n的值。
9题图211第八章 二元一次方程组8.1 二元一次方程组基础知识1、下列方程组中,不是二元一次方程组的是( )A. 123x y =⎧⎨+=⎩B. 12x y x y +=⎧⎨-=⎩C. 10x y xy -=⎧⎨=⎩D. 21y x x y =⎧⎨-=⎩2、若关于x 的二元一次方程kx+3y=5有一组解是21x y =⎧⎨=⎩,则k 的值是( )A. 1B. -1C. 0D. 23、已知x,y 的值:①22x y =⎧⎨=⎩ ②32x y =⎧⎨=⎩ ③32x y =-⎧⎨=-⎩ ④66x y =⎧⎨=⎩其中是二元一次方程2x-y=4的解的是( )A 、①B 、②C 、③D 、④4、二元一次方程x+2y=12在正整数范围内的解有( )组.A. 3B. 4C. 5D. 无数5、在二元一次方程3x - 2y =4中,当x =6时,y =_______6、写出二元一次方程3x-4=y 的两个解______________________。
7、已知方程8x-7y=10,用含x 的式子表示y ,则y=_______.8、已知12x y =⎧⎨=-⎩是方程2x-my=3的一个解,则m=___________.9、如图,设∠1=x °,∠2=y °,且∠1的度数比∠2的度数的2倍多10°,则可列方程组为_________________。
能力提升10、小敏在商店买了12支铅笔和5本练习本,其中铅笔每支x 元,练习本每本y 元,共花了4.9元.(1)列出关于x,y 的二元一次方程;(2)已知再买同样的6支铅笔和同样的2本练习本,还需要2.2元,列出关于x,y 的二元一次方程.11、已知12x y =⎧⎨=-⎩是关于x,y 的二元一次方程组2635ax y x by -=⎧⎨-=-⎩的解,求a,b 的值.12、已知方程2122317m n xy +-+=是二元一次方程,求m,n 的值.13、已知二元一次方程5x+3y=22.(1)(2)14、已知甲种物品每个重4kg,乙种物品每个重7kg,现有甲种物品x个,乙种物品y个,共重76kg.(1)列出关于x,y的二元一次方程;(2)若x=12,则y=________;(3)若乙种物品有8个,则甲种物品有______个;(4)请你用含x的代数式表示y,然后再写出满足条件的x,y的全部整数解.探索研究15、有这样一道题目:判断31xy=⎧⎨=⎩是否是二元一次方程组25235x yx y+=⎧⎨+=⎩的解.小强的解答过程是:将31xy=⎧⎨=⎩代入方程x+2y=5中,等式成立,所以31xy=⎧⎨=⎩是方程组的解.小华的解答过程是:将31xy=⎧⎨=⎩代入方程x+2y=5和2x+3y=5中,得x+2y=5而2x+3y≠5,∴31xy=⎧⎨=⎩不是方程组的解.你认为谁的解答正确?8.2 消元----二元一次方程组的解法第1课时基础知识1、方程组25,1x yx y-=⎧⎨+=⎩的解是( )A.31xy=⎧⎨=⎩B.1xy=⎧⎨=⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩2、下列二元一次方程组以0,7xy=⎧⎨=⎩为解的是A.27,214.x yx y-=⎧⎨+=⎩B.7,7.x yx y+=-⎧⎨-=⎩C.3214,321.x yx y+=⎧⎨-=-⎩D.57,3214.x yx y+=⎧⎨-=⎩3、将方程5x-2y+12=0写成用含x的代数式表示y的形式_________.4、用代入消元法解方程组278, (1)2 4. (2)x yy x-=⎧⎨-=⎩可以由____得_______(3),把(3)代入__________中,得一元一次方程___________________,解得_________,再把求得的值代入(3)中,求得_________,从而得到原方程组的解为______________.5、用代入法解下列方程组:(1)2,3;x yx y=⎧⎨+=⎩(2)1,325;y xx y=-⎧⎨+=⎩(3)261,35;x yx y-=⎧⎨=-+⎩(4)355,3423;x yx y+=⎧⎨-=⎩(5)41,216;x yx y-=-⎧⎨+=⎩(6)35,231;m nm n=⎧⎨-=⎩(7)1,342;23x yx y⎧-=⎪⎪⎨⎪+=⎪⎩(8)11,23320.x yx y+⎧-=⎪⎨⎪+=⎩能力提升6、已知327m m n xy -和223n x y --是同类项,求m,n 的值.7、如果()223520x y x y -+++-=,求1051x y -+的值.探索研究8、已知方程组2,78ax by cx y +=⎧⎨-=⎩的解为3,2.x y =⎧⎨=-⎩而小明粗心地把c 看错了,解得2,2.x y =-⎧⎨=⎩请你求出正确的a,b,c 的值.第2课时基础知识1、方程组345,376x y x y +=⎧⎨-=⎩中,x 的系数的特点是 ________,方程组251,354x y x y +=⎧⎨-=⎩中y 的系数特点是 __________,这两个方程组用______法解较简便。
2、方程组3,(1)23 4.(2)x y x y -=⎧⎨+=-⎩若用加减消元法解,可将方程(1)变形为______________(3),这时方程(2)与(3)相_____,消去未知数____, 得到一元一次方程.3、用加减消元法解下列方程组:(1) 22,5;x y x y +=⎧⎨-+=⎩ (2) 23,26;x y x y -=⎧⎨+=⎩(3)36,250;x yx y+=⎧⎨+=⎩(4)561,2610;x yx y-=⎧⎨-=⎩(5)28,325;a ba b-=⎧⎨+=⎩(6)235,3418;x yx y+=-⎧⎨-=⎩(7)9713,1291;s ts t+=⎧⎨-=-⎩(8)310,2230.2xyxy⎧-+=⎪⎪⎨⎪-+=⎪⎩能力提升4、方程组3211,439a ba b-=⎧⎨+=⎩的解为3,1.ab=⎧⎨=-⎩则由3()2()11,4()3()9x y x yx y x y+--=⎧⎨++-=⎩可以得出x+y=_____,x-y =_____,从而求得____,____. xy=⎧⎨=⎩5、用简便方法解方程组3()2()36, 2()3()24.x y x yx y x y++-=⎧⎨+--=⎩探索研究6、已知方程组324,7x ymx ny-=⎧⎨+=⎩与2319,53mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值。
第3课时基础知识1、若4x-3y=0且x≠0,y≠0,则的值为4545x yx y-+( )A. 131B. 31C. -14D. 322、用加减消元法解方程组328,237.x yx y+=⎧⎨+=⎩①②的解法如下:解:(1)①×2,②×3得6, 6321.x yx y+=⎧⎨+=⎩416③④(2)③-④,得y=-5;(3)把y=-5代入②,得x=11;(4)所以原方程组的解是115 xy=⎧⎨=-⎩解题的过程中,开始错的一步是( ).A. (1)B. (2)C. (3)D. (4)3、用代入法解方程组2521,38.x yx y+=⎧⎨+=⎩①②下列解法中最简便的是( ).A、由①得x =21522y-代入② B、由①得y =21255x-代入②B、由②得x =8-3y代入① D、由②得y =833x-代入①4、若一个二元一次方程组的解为2,1.xy=⎧⎨=-⎩则这个方程组可以是_______________.5、若2x+3y-1=y-x-8=x+6,则2x-y =________.6、已知25,2 6.x yx y+=⎧⎨+=⎩①②则x-y 的值是 _____.7. 若232338y x y x+-==,则y=____,x=____,2y-x=______.8、用适当的方法解下列方程组:(1)356,415;x zx z-=⎧⎨+=-⎩(2)2,2314;m nm n-=⎧⎨+=⎩(3)7,432114;32x yx y⎧+=⎪⎪⎨⎪+=⎪⎩(4)11,233210;x yx y+⎧-=⎪⎨⎪+=⎩(5)12,32(1)11;xyx y+⎧=⎪⎨⎪+-=⎩(6)21322,5431320.54x yx y--⎧+=⎪⎪⎨++⎪-=⎪⎩能力提升9、解方程组312,2:2:3.xx y x y-⎧-=⎪⎨⎪=⎩10、已知1,1xy=⎧⎨=⎩和1,2xy=-⎧⎨=-⎩是关于x,y的二元一次方程2ax-by=2的两个解,求a+b的值. 探索研究11、如果,x my n=-⎧⎨=-⎩满足二元一次方程组25,27.x yx y+=⎧⎨+=⎩求325m nm n+-的值.12、如果方程组23,352x y mx y m+=⎧⎨+=+⎩的解满足x+y=12,求m的值.8.3 实际问题与二元一次方程组第1课时基础知识1.班上有男女同学共32人,女生人数的一半比男生人数少10人,若设男生人数为x,女生人数为y,则可列方程组为_____________.2.一根木棒长8m,分成两段,其中一段比另一段长1m,求这两段的长时,设其中一段为xm,另一段长为ym,那么可列二元一次方程组为_______________.3.一个矩形的周长为20cm,且长比宽长2cm,则矩形的长为____cm,宽为______cm.*能力提升4.小华有中国邮票和外国邮票共325枚,中国邮票的枚数比外国邮票的枚数的2倍少2枚,小华有中国邮票和外国邮票名多少枚?5.学校有篮球和足球,其中篮球数比足球数的2倍少3个,且篮球数与足球数的比为3∶2,求学校有篮球和足球各多少个?6.某工厂第一车间比第二车间人数的45少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的34,问这两个车间原有多少人?7.有大小两种货车,3辆大车与2辆小车一次可以运货17吨,5辆大车与6辆小车一次可以运货35吨.2辆大车与5辆小车一次可以运货多少吨?8.某商场搞优惠促销活动,由顾客抽奖决定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付368元,甲、乙两种商品原价之和为500元,问甲、乙两种商品原价各是多少钱?探索研究9.七(3)班在召开期末总结表彰会前,班主任安排班长李波去商店购买奖品,下面是李波与售货员的对话:李波:阿姨,您好!售货员:同学,你好,想买点什么?李波:我只有100元,请帮助我安排买10支铅笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请你清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?第2课时基础知识1、七年级学生在会议室开会,每排座位从12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()A、14B、13C、12D、152.已知方程y=kx+b的两组解是1,2,xy=⎧⎨=⎩1,xy=-⎧⎨=⎩则k=___,b=____.3.某工厂现在年产值是150万元,如果每增加1000元的投资,一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y的满足的方程为_______________________.4.学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则可列方程组__________.方程组的解为_______.*能力提升5.某通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求。