2018届高考数学(理)专题复习:第一部分 专题五 立体几何 1-5-2 含答案
- 格式:doc
- 大小:232.00 KB
- 文档页数:7
限时规范训练十四 空间向量与立体几何限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.(2017·山东青岛模拟)已知正三棱柱ABC A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( )A.64B.104 C.22D.32解析:选A.如图所示建立空间直角坐标系,设正三棱柱的棱长为2,则O (0,0,0),B (3,0,0),A (0,-1,0),B 1(3,0,2),则AB 1→=(3,1,2),则BO →=(-3,0,0)为侧面ACC 1A 1的法向量,故sin θ=|AB 1→·BO →||AB 1→||BO →|=|-3|22×3=64.2.在直三棱柱ABC A 1B 1C 1中,AA 1=2,二面角B AA 1C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B. 6C. 5D .2解析:选A.由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1→·BC 1→=(BB 1→-BA →)·(BB 1→+BC →)=4,|AB 1→|=22,|BC 1→|=4,cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=24, 故tan 〈AB 1→,BC 1→〉=7.3.如图所示,在三棱锥P ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB=4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为( )A .-3010B .-305C.305 D.3010解析:选D.因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC . 过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,-2,0). 因为D 为PB 的中点,所以D (2,0,1). 故CP →=(-4,2,2),AD →=(2,0,1).所以cos 〈AD →,CP →〉=AD →·CP →|AD →|×|CP →|=-65×26=-3010.设异面直线PC ,AD 所成的角为θ, 则cos θ=|cos 〈AD →,CP →〉|=3010.4.(2017·山西四市联考)在空间直角坐标系O xyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,2).若S 1,S 2,S 3分别是三棱锥D ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1解析:选D.如图所示,△ABC 为三棱锥在坐标平面xOy 上的正投影,所以S 1=12×2×2=2.三棱锥在坐标平面yOz 上的正投影与△DEF (E ,F 分别为OA ,BC 的中点)全等,所以S 2=12×2×2= 2.三棱锥在坐标平面xOz 上的正投影与△DGH (G ,H 分别为AB ,OC 的中点)全等,所以S 3=12×2×2= 2.所以S 2=S 3且S 1≠S 3,故选D.5.如图,点E ,F 分别是正方体ABCD A 1B 1C 1D 1的棱AB ,AA 1的中点,点M ,N 分别是线段D 1E 与C 1F 上的点,则与平面ABCD 垂直的直线MN 的条数有( )A .0条B .1条C .2条D .无数条解析:选B.假设存在满足条件的直线MN ,如图,建立空间直角坐标系,不妨设正方体的棱长为2,则D 1(2,0,2),E (1,2,0),设M (x ,y ,z ),D 1M →=mD 1E →(0<m <1),∴(x -2,y ,z -2)=m (-1,2,-2),x =2-m ,y =2m ,z =2-2m ,∴M (2-m,2m,2-2m ),同理,若设C 1N →=nC 1F →(0<n<1),可得N (2n,2n,2-n ),MN →=(m +2n -2,2n -2m,2m -n ).又∵MN ⊥平面ABCD .∴⎩⎪⎨⎪⎧m +2n -2=0,2n -2m =0,解得⎩⎪⎨⎪⎧m =23,n =23,即存在满足条件的直线MN ,且只有一条.6.(2017·安徽合肥模拟)如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,点P 在线段AD 1上运动,给出以下四个命题:①异面直线C 1P 和CB 1所成的角为定值; ②二面角P BC 1D 的大小为定值; ③三棱锥D BPC 1的体积为定值;④直线CP 与平面ABC 1D 1所成的角为定值. 其中真命题的个数为( ) A .1 B .2 C .3D .4解析:选C.如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则C (0,1,0),B (1,1,0),C 1(0,1,1),B 1(1,1,1). 设P (t,0,1-t ),0≤t ≤1.①中,C 1P →=(t ,-1,-t ),CB 1→=(1,0,1),因为C 1P →·CB 1→=0,所以C 1P ⊥CB 1,故①对;②中,因为D 1A ∥C 1B ,所以平面PBC 1即平面ABC 1D 1,两平面都固定,所以其二面角为定值,故②对;③中,因为点P 到直线BC 1的距离AB =1,所以V 三棱锥D BPC 1=13×⎝ ⎛⎭⎪⎫12×BC 1×AB ×12CB 1=16,故③对;④中,CP →=(t ,-1,1-t ),易知平面ABC 1D 1的一个法向量为CB 1→=(1,0,1),所以cos 〈CP →,CB 1→〉不是定值,故④错误.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·江苏南京三模)如图,三棱锥A BCD 的棱长全相等,点E 为AD 的中点,则直线CE 与BD 所成角的余弦值为________.解析:设AB =1,则CE →·BD →=(AE →-AC →)·(AD →-AB →)=⎝ ⎛⎭⎪⎫12AD →-AC →·(AD →-AB →)=12AD →2-12AD →·AB →-AC →·AD →+AC →·AB →=12-12cos 60°-cos 60°+cos 60°=14. ∴cos〈CE →,BD →〉=CE →·BD→|CE →||BD →|=1432=36. 答案:368.在直三棱柱ABC A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC =4,点M 为AA 1的中点,点P 为BM的中点,Q 在线段CA 1上,且A 1Q =3QC ,则异面直线PQ 与AC 所成角的正弦值为________.解析:由题意,以C 为原点,以AC 边所在直线为x 轴,以BC 边所在直线为y 轴,以CC 1边所在直线为z 轴建立空间直角坐标系,如图所示.设棱柱的高为a ,由∠BAC =π3,AC =4,得BC =43,所以A (4,0,0),B (0,43,0),C (0,0,0),A 1(4,0,a ),M ⎝⎛⎭⎪⎫4,0,a 2,P ⎝⎛⎭⎪⎫2,23,a 4,Q ⎝ ⎛⎭⎪⎫1,0,a 4.所以QP →=(1,23,0),CA →=(4,0,0).设异面直线QP 与CA 所成的角为θ,所以|cos θ|=|QP →·CA →||QP →|·|CA →|=4413=1313.由sin 2θ+cos 2θ=1得,sin 2θ=1213,所以sin θ=±23913,因为异面直线所成角的正弦值为正,所以sin θ=23913即为所求.答案:239139.(2017·河北衡水模拟)如图,在正方体ABCD A 1B 1C 1D 1中,点M, N 分别在AB 1,BC 1上,且AM =13AB 1,BN =13BC 1,则下列结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④BD 1⊥MN .其中正确命题的序号是________.(写出所有正确命题的序号)解析:如图,建立以D 为坐标原点,DC ,DA ,DD 1所在直线分别为x 轴、y 轴、z 轴的空间直角坐标系.令正方体的棱长为3,可得D (0,0,0),A (0,3,0),A 1(0,3,3),C 1(3,0,3),D 1(0,0,3),B (3,3,0),M (1,3,1),N (3,2,1).①中,AA 1→=(0,0,3),MN →=(2,-1,0),因为AA 1→·MN →=0,所以①正确;②中,A 1C 1→=(3,-3,0),与MN →不成线性关系,所以②错;③中,易知平面A 1B 1C 1D 1的一个法向量为DD 1→=(0,0,3),而DD 1→·MN →=0,且MN ⊄平面A 1B 1C 1D 1,所以③正确;④中,BD 1→=(-3,-3,3),因为BD 1→·MN →≠0,所以④错误.答案:①③三、解答题(本题共3小题,每小题12分,共36分)10.(2017·高考全国卷Ⅱ)如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为45°,求二面角M AB D 的余弦值. 解:(1)证明:取PA 中点F ,连接EF ,BF ,CE . ∵E ,F 为PD ,PA 中点,∴EF 为△PAD 的中位线, ∴EF ═∥12AD .又∵∠BAD =∠ABC =90°,∴BC ∥AD . 又∵AB =BC =12AD ,∴BC ═∥12AD ,∴EF ═∥BC .∴四边形BCEF 为平行四边形,∴CE ∥BF . 又∵BF ⊂面PAB ,∴CE ∥面PAB .(2)以AD 中点O 为原点,如图建立空间直角坐标系.设AB =BC =1,则O (0,0,0),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,3).M 在底面ABCD 上的投影为M ′,∴MM ′⊥BM ′.又BM 与底面ABCD 所成角为45°,∴∠MBM ′=45°,∴△MBM ′为等腰直角三角形. ∵△POC 为直角三角形,且|OP ||OC |=3,∴∠PCO =60°. 设|MM ′|=a ,|CM ′|=33a ,|OM ′|=1-33a . ∴M ′⎝ ⎛⎭⎪⎫1-33a ,0,0.BM ′→=⎝ ⎛⎭⎪⎫-33a ,1,0,|BM ′|=⎝ ⎛⎭⎪⎫33a 2+12+02=13a 2+1=a ⇒a =62. ∴|OM ′|=1-33a =1-22. ∴M ′⎝ ⎛⎭⎪⎫1-22,0,0,M ⎝⎛⎭⎪⎫1-22,0,62 AM →=⎝ ⎛⎭⎪⎫1-22,1,62,AB →=(1,0,0).设平面ABM 的法向量m =(0,y 1,z 1).y 1+62z 1=0,∴m =(0,-6,2) AD →=(0,2,0),AB →=(1,0,0).设平面ABD 的法向量为n =(0,0,z 2),n =(0,0,1).∴cos〈m ,n 〉=m·n |m ||n |=210×1=21010=105.∴二面角M AB D 的余弦值为105. 11.如图所示的几何体中,ABC A 1B 1C 1为三棱柱,且AA 1⊥平面ABC ,四边形ABCD 为平行四边形,AD =2CD ,∠ADC =60°.(1)若AA 1=AC ,求证:AC 1⊥平面A 1B 1CD .(2)若CD =2,AA 1=λAC ,二面角C A 1D C 1的余弦值为24,求三棱锥C 1A 1CD 的体积. 解:(1)证明:若AA 1=AC ,则四边形ACC 1A 1为正方形, 则AC 1⊥A 1C ,因为AD =2CD ,∠ADC =60°, 所以△ACD 为直角三角形,则AC ⊥CD , 因为AA 1⊥平面ABC ,所以AA 1⊥CD , 又AA 1∩AC =A ,所以CD ⊥平面ACC 1A 1,则CD ⊥AC 1, 因为A 1C ∩CD =C ,所以AC 1⊥平面A 1B 1CD . (2)若CD =2,因为∠ADC =60°,所以AC =23,则AA 1=λAC =23λ,建立以C 为坐标原点,CD ,CA ,CC 1分别为x ,y ,z 轴的空间直角坐标系如图所示,则C (0,0,0),D (2,0,0,),A (0,23,0),C 1(0,0,23λ),A 1(0,23,23λ). 则A 1D →=(2,-23,-23λ),CD →=(2,0,0),C 1A 1→=(0,23,0). 设平面CA 1D 的一个法向量为m =(x ,y ,z ). 则m ·A 1D →=2x -23y -23λz =0,m ·CD →=2x =0, 则x =0,y =-λz ,令z =1,则y =-λ,则m =(0,-λ,1). 设平面A 1DC 1的一个法向量为n =(x 1,y 1,z 1),n ·A 1D →=2x 1-23y 1-23λz 1=0, n ·C 1A 1→=23y 1=0,则y 1=0,2x 1-23λz 1=0,令z 1=1,则x 1=3λ, 则n =(3λ,0,1), 因为二面角C A 1D C 1的余弦值为24. 所以cos 〈m ,n 〉=m·n |m |·|n |=11+λ2·1+3λ2=24. 即(1+λ2)(1+3λ2)=8,得λ=1,即AA 1=AC , 则三棱锥C 1A 1CD 的体积V =VD A 1C 1C =13CD ·12AC ·AA 1=13×2×12×23×23=4. 12.(2017·浙江宁波模拟)如图(1),在边长为4的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥DC ,如图(2).(1)求证:A 1E ⊥平面BCDE . (2)求二面角E A 1B C 的余弦值.(3)判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥平面A 1BC ?若存在,求出EPPB的值;若不存在,说明理由.解析:(1)证明:∵DE ⊥BE ,BE ∥DC ,∴DE ⊥DC . 又∵AD 1⊥DC ,A 1D ∩DE =D ,∴DC ⊥平面A 1DE , ∴DC ⊥A 1E .又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE .(2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系.易知DE =23,则A 1(0,0,2),B (2,0,0),C (4,23,0),D (0,23,0),∴BA 1→=(-2,0,2),BC →=(2,23,0),平面A 1BE 的一个法向量为n =(0,1,0). 设平面A 1BC 的法向量为m =(x ,y ,z ), 由BA 1→·m =0,BC →·m =0, 得⎩⎨⎧-2x +2z =0,2x +23y =0.令y =1,得m =(-3,1,-3),∴cos〈m ,n 〉=m·n |m |·|n |=17×1=77.由图,得二面角E A 1B C 为钝二面角,∴二面角E A 1B C 的余弦值为-77. (3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC .设P (t,0,0)(0≤t ≤2),则A 1P →=(t,0,-2),A 1D →=(0,23,-2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1),由⎩⎨⎧A 1D →·p =0,A 1P →·p =0,得⎩⎨⎧ 23y 1-2z 1=0,tx 1-2z 1=0.令x 1=2,得p =⎝ ⎛⎭⎪⎫2,t 3,t . ∵平面A 1DP ⊥平面A 1BC ,∴m·p =0,即23-t3+3t =0,解得t =-3.∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .。
2018年全国二卷立体几何(文理)详解各位铁子门,欢迎大家再次来到孙老师的鹏哥谈数学!上两节课带着大家分析了2018年全国一卷、三卷的立体几何解答题,大家有怎么样的感受?此时,你的内心有没有一点点涟漪浮起?……12分的解答题,简直是弱爆了,竟然只考……面面垂直、空间角……其实吧,所谓命题专家也就这点能耐了!……不信,你再看2018年的全国二卷之立体几何…………竟然……线面垂直、空间角……(据说葛大爷葛军退役后,江湖再无哭泣,人间宁静安详……)来看看二卷的这道题,心细的伙伴们有没有发现,我们二卷的立体几何经常考棱锥(文理科一样样),不信,你看………16年五棱锥(菱形对折)、17年四棱锥、18年三棱锥…….……额……19年要考谁?能考谁?来来来,孙老师偷偷告诉你……(哈哈,我总是低调不了,总是这么傲娇,我想总有一天会死得很惨,哈哈哈)我们先看18年二卷理科的这道题(孙老师忍不住想告诉你,18年理科这道题的题号发生了调整,干翻了解析几何老二的宝座,跑到了第20题,这是疏忽还是有意,各位童鞋们怎么看,哈哈哈!):(1)线面垂直……我不想多做解释了,实在记不起来,回头看我的前一篇帖子2018年全国一卷理科数学立体几何详解我还是忍不住想再说一遍,老师嘛,传道受业解惑也!……如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直……当然,我们需要先尝试找到边角关系,中点是突破口,等腰三角形是关键,勾股定理是核心,判定定理算锤子,于是乎……(2)空间角之线面角……还要再重复吗?no……你已成仙,再不晓得就自己挂掉吧!(童话里都是骗人的.......忽然想到了成龙大哥,金喜善.......年代久远,尔等可能不知道,历史人物......)建系……我们再看18年二卷文科的这道题:……立体几何,同样的三棱锥,长相神似理科,两个问题…………线面垂直、点面距……额,文科的特点来了,都说文科感性,理科理性,扯什么淡,有证据吗?我也会写诗,我也能抒情,原谅一个理工直男的表白吧!哈哈,我都说了些什么?嗯…….算了吧,不作践自己了!孙老师也是重情之人,脸皮薄,容易脸红,本来脸黑,一红就更黑了……(哈哈哈)点面距…..?什么东西?……垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离!那么,我们怎么解决点面距的问题?(三个方法,随便你爱那个,只要能放电就行!)(1)找点投影法求点面距(告诉你,这个基本帮不了什么你忙,所以,别多想……)(2)等体积法求点面距(学马克思的小伙伴们,注意啦!这个是需要你记住的,重要的事情孙老师历来只说一遍,这次孙老师说三遍三遍啊,什么概念?不想死就必须记下!)(3)空间向量法求点面距(哈哈哈,文科生不太能理解,专属理科生,万能的!重要性你懂得!)我们看这道题:(1)线面垂直……(2)点面距……等体积法(文科嘛!也只能这样了,局限性……)。
2018年高考试题分类汇编(立体几何)考点1 三视图1.(2018·全国卷Ⅰ文理)某圆柱的高为2,底面周长为16,其三视图如图,圆柱表面上的点M 在主视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从点M 到点N 的路途中,最短路径的长度为A.B. C. 3 D. 22.(2018·全国卷Ⅲ文理)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进去的部分叫卯眼,图中木构件右边的小正方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是3. (2018·北京卷文理)某四棱锥的三视图如图所示,在此四棱锥的侧面中, 直角三角形的个数为 A. 1 B. 2 C. 3 D. 4ABABCD正(主)视图侧(左)视图俯视图4.(2018·浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的 体积(单位:3cm )是 A .2 B .4 C .6 D .8考点2 有关度量关系(选择题或填空题) 考法1 角度1.(2018·全国卷Ⅱ文科)在正方体1111ABCD A B C D -中,E 为棱1CC 的中点, 则异面直线AE 与CD 所成角的正切值为 A.2 B2. (2018·全国卷Ⅱ理科)在长方体1111ABCD A B C D -中,AB =1BC =,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15B.6 C.5 D.23.(2018·浙江卷)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤ C. 132θθθ≤≤ D .231θθθ≤≤ 考法2 面积1.(2018·全国卷Ⅰ理科)已知正方体的棱长为1,每条棱与平面α所成的角都相 等,则α截此正方体所得的截面面积最大值为B.C.正视图侧视图2.(2018·全国卷Ⅰ文科)已知圆柱的上、下底面中心分别为1O ,2O ,过12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. 12π C.D. 10π3.(2018·全国卷Ⅱ理科)已知圆锥的顶点为S ,母线,SA SB 的所成角的余弦值为78,SA 与底面所成的角为45,若SAB ∆的面积为,则该圆锥的侧面积为 . 考法3 体积1.(2018·全国卷Ⅰ文科)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平 面11BB C C 所成的角为30,则长方体的体积为A.8B.C.D. 2.(2018·全国卷Ⅱ文科)已知圆锥的顶点为S ,母线,SA SB 互相垂直,SA 与底面所成的角为30,若SAB ∆的面积为8,则该圆锥的体积为 .3.(2018·全国卷Ⅲ文理)设,,,A B C D 是同一个半径为4的球面上的四点,ABC ∆是等边三角形且其面积为,则三棱锥体积D ABC -的最大值为 A.B.C.D.4.(2018·天津卷文科)如图,已知正方体1111ABCD A B C D -的棱长为1,则四棱柱111A BB D D -5.(2018·天津卷理科)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点,,,,E F G H M 如图),则四棱锥M EFGH -的体CC 1积为 .6.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .考点3 解答题1. (2018·全国卷Ⅰ理科) 如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达P 的位置,且PF BF ⊥.(Ⅰ)证明:平面PEF ⊥平面ABFD ; (Ⅱ)若DP 与平面ABFD 所成的角的正弦值.2.(2018·全国卷Ⅰ文科)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=,以AC 为折痕将ACM ∆折起,使点M 到达点D 的位置,且AB DA ⊥.(Ⅰ)证明:平面ACD ⊥平面ABC ;(Ⅱ)Q 为线段AD 上的一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥QABP -的体积.PABC DEF ABCDA 1B 1C 1D 1MEF GH3.(2018·全国卷Ⅱ理科)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点. (Ⅰ)证明:PO ⊥平面ABC ;(Ⅱ)若点M 在棱BC 上,且二面角M PA C --为30,求PC 与平面PAM 所成角的正弦值.4.(2018·全国卷Ⅱ文科)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点. (Ⅰ)证明:PO ⊥平面ABC ;(Ⅱ)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.5. (2018·全国卷Ⅲ文理)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在的平面垂直,M 是CD 上异于,C D 的两点.(Ⅰ)证明:平面AMD ⊥平面BMC ;(Ⅱ)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成得二面角的正弦ABCPMOABCPMOP ABCDQ M值.6.(2018·北京卷理科)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D , E ,F ,G 分别为1AA ,AC ,11A C ,1BB的中点,AB BC ==12AC AA ==. (Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角1B CD C --的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.7. (2018·北京卷文科)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,,E F 分别为AD ,PB 的中点. (Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .8.(2018·天津卷理科)如图,//AD BC 且2AD BC =,AD DC ⊥,//EG AD 且EG AD =,//CD FG 且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===. (Ⅰ)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (Ⅱ)求二面角E BC F --的正弦值;(Ⅲ)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60,求线段DP 的长.ABCMDABCEDGA 1B 1C 1FABCDEFP9.(2018·天津卷文科)如图,在四面体ABCD 中,ABC ∆是等边三角形,平面 ABC ⊥平面ABD ,点M 为棱AB 的中点,2AB =,AD =90BAD ∠=. (Ⅰ)求证:AD BC ⊥;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.10.(2018·江苏卷)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(Ⅰ)AB ∥平面11A B C ; (Ⅱ)平面11ABB A ⊥平面1A BC .11.(2018·浙江卷)如图,已知多面体111ABC A B C -,1AA ,1BB ,1CC 均垂直于平面ABC ,ABC ∠120=,14AA =,11CC =,12AB BC BB ===.(Ⅰ)证明:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成的角的正弦值.A BCDEFGMNABCDMABCDA 1B 1C 1D 1ABCC 1A 1B 1。
立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC⊂平面ABC,∴PO⊥OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D→=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D 的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC.(2)解由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H-xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ, 则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
专题05 立体几何(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.• 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.• 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. • 公理4:平行于同一条直线的两条直线互相平行.• 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.• 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.• 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.•如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.• 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.• 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.• 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.• 垂直于同一个平面的两条直线平行.• 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(十六)空间向量与立体几何1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.与2017年考纲相比没什么变化,而且这部分内容作为高考的必考内容,在2018年的高考中预计仍会以“一小一大或两小一大”的格局呈现,在选择题或填空题中,考查空间几何体三视图的识别,空间几何体的体积或表面积的计算,空间线面位置关系的判定等,难度中等;在解答题中主要考查空间线面位置关系中的平行或垂直的证明,空间几何体表面积或体积的计算,空间角或空间距离的计算等,难度中等.考向一空间几何体的三视图和直观图样题1 (2017年高考新课标Ⅰ卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12C.14 D.16【答案】B样题2 (2017年高考北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A.B.C.D.2【答案】B样题3 (2017新课标全国Ⅱ理科)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π【答案】B考向二球的组合体样题4 (2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B【解析】绘制圆柱的轴截面如图所示:由题意可得:11,2AC AB ==,结合勾股定理,底面半径r ==由圆柱的体积公式,可得圆柱的体积是223ππ1π4V r h ==⨯⨯=⎝⎭,故选B. 【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.样题5 (2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是.【答案】32考向三 空间线面的位置关系样题6 已知α,β是平面,m 、n 是直线,给出下列命题: ①若m ⊥α,m ⊂β,则α⊥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③如果m ⊂α,n ⊄α,m ,n 是异面直线,那么n 与α相交; ④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α且n ∥β. 其中命题正确的是__________. 【答案】①④【解析】①是平面与平面垂直的判定定理,所以①正确;②中,m ,n 不一定是相交直线,不符合两个平面平行的判定定理,所以②不正确; ③中,还可能n ∥α,所以③不正确;④中,由于n ∥m ,n ⊄α,m ⊂α,则n ∥α,同理n ∥β,所以④正确. 故填①④.样题7 (2017新课标全国Ⅰ理科)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.考向四 空间角和距离样题8 (2017年高考新课标Ⅱ卷)已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A.2B.5 CD【答案】C【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====易得22211C D BD BC =+,因此111cos BC BC D C D ∠===,故选C .样题9 (2017年高考新课标Ⅲ卷) a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 【答案】②③【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=,故BD =,又在Rt BDE △中,2,B E D E =∴B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.。
限时规范训练十三空间中的平行与垂直限时40分钟,实际用时________分值80分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.(2016·高考山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为直线a和直线b相交,所以直线a与直线b有一个公共点,而直线a,b分别在平面α、β内,所以平面α与β必有公共点,从而平面α与β相交;反之,若平面α与β相交,则直线a与直线b可能相交、平行、异面.故选A.2.(2017·高考全国卷Ⅲ)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:选C.根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A项,若A1E⊥DC1,那么D1E⊥DC1,很显然不成立;B项,若A1E⊥BD,那么BD⊥AE,显然不成立;C项,若A1E⊥BC1,那么BC1⊥B1C,成立,反过来BC1⊥B1C时,也能推出BC1⊥A1E,所以C 成立,D项,若A1E⊥AC,则AE⊥AC,显然不成立,故选C.3.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析:选A.选项A中,由平面与平面垂直的判定定理可知A正确;选项B中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;选项C中,l∥β时,α,β可以相交;选项D中,α∥β时,l,m也可以异面.4.已知α,β为两个平面,l为直线,若α⊥β,α∩β=l,则( )A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直解析:选D.由α⊥β,α∩β=l,知:垂直于平面β的平面与平面α平行或相交,故A不正确;垂直于直线l的直线若在平面β内,则一定垂直于平面α,否则不一定,故B不正确;垂直于平面β的平面与l的关系有l⊂β,l∥β,l与β相交,故C不正确;由平面垂直的判定定理知:垂直于直线l的平面一定与平面α,β都垂直,故D正确.5.设a,b,c表示三条直线,α,β表示两个平面,则下列命题中逆命题不成立的是( ) A.c⊥α,若c⊥β,则α∥βB.b⊂α,c⊄α,若c∥α,则b∥cC.b⊂β,若b⊥α,则β⊥αD.a,b⊂α,a∩b=P,c⊥a,c⊥b,若α⊥β,则c⊂β解析:选C.利用排除法求解.A的逆命题为:c⊥α,若α∥β,则c⊥β,成立;B的逆命题为:b⊂α,c⊄α,若b∥c,则c∥α,成立;C的逆命题为:b⊂β,若β⊥α,则b⊥α,不成立;D的逆命题为:a,b⊂α,a∩b=P,c⊥a,c⊥b,若c⊂β,则α⊥β,成立,故选C.6.(2017·江西六校联考)已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确命题的序号是( )A.①④B.②④C.①D.④解析:选A.借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,故①正确;对于②,平面α,β可能垂直,如图(1)所示,故②不正确;对于③,平面α,β可能垂直,如图(2)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(3)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.综上,选A.二、填空题(本题共3小题,每小题5分,共15分)7.如图,四棱锥PABCD的底面是直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E 为PC的中点,则BE与平面PAD的位置关系为________.解析:取PD的中点F,连接EF,AF,在△PCD 中,EF 綊12CD .又因为AB ∥CD 且CD =2AB ,所以EF 綊AB ,所以四边形ABEF 是平行四边形, 所以EB ∥AF .又因为EB ⊄平面PAD ,AF ⊂平面PAD , 所以BE ∥平面PAD . 答案:平行8.(2017·山师大附中模拟)若α,β是两个相交平面,则在下列命题中,真命题的序号为________.(写出所有真命题的序号)①若直线m ⊥α,则在平面β内,一定不存在与直线m 平行的直线; ②若直线m ⊥α,则在平面β内,一定存在无数条直线与直线m 垂直; ③若直线m ⊂α,则在平面β内,不一定存在与直线m 垂直的直线; ④若直线m ⊂α,则在平面β内,一定存在与直线m 垂直的直线.解析:对于①,若直线m ⊥α如果α,β互相垂直,则在平面β内,存在与直线m 平行的直线,故①错误;对于②,若直线m ⊥α,则直线m 垂直于平面α内的所有直线,在平面β内存在无数条与交线平行的直线,这无数条直线均与直线m 垂直,故②正确;对于③,④,若直线m ⊂α,则在平面β内,一定存在与直线m 垂直的直线,故③错误,④正确.答案:②④9.(2017·沈阳三模)如图,已知四边形ABCD 为矩形,PA ⊥平面ABCD ,下列结论中正确的是________.(把正确结论的序号都填上)①PD ⊥CD ; ②BD ⊥平面PAO ; ③PB ⊥CB ; ④BC ∥平面PAD .解析:对于①,因为CD ⊥AD ,CD ⊥PA ,AD ∩PA =A ,所以CD ⊥平面PAD ,所以CD ⊥PD ,则①正确;对于②,BD ⊥PA ,当BD ⊥AO 时,BD ⊥平面PAO ,但BD 与AO 不一定垂直,故②不正确;对于③,因为CB ⊥AB ,CB ⊥PA ,AB ∩PA =A ,所以CB ⊥平面PAB ,所以CB ⊥PB ,则③正确; 对于④,因为BC ∥AD ,BC ⊄平面PAD ,AD ⊂平面PAD ,所以BC ∥平面PAD ,则④正确.故填①③④.答案:①③④三、解答题(本题共3小题,每小题12分,共36分)10.(2017·高考全国卷Ⅱ)如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积. 解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =32AD =3x ,PC =PD =PM 2+CM 2=2x . 如图,取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =PC 2-⎝ ⎛⎭⎪⎫12CD 2=4x 2-14×2x 2=142x .因为△PCD 的面积为27,所以12×2x ×142x =27,解得x =-2(舍去)或x =2. 于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P ABCD 的体积V =13×+2×23=4 3.11.(2017·山东潍坊模拟)如图,在四棱台ABCD A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ; (2)证明:CC 1∥平面A 1BD .证明:(1)因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD , 所以D 1D ⊥BD .又因为AB =2AD ,∠BAD =60°, 在△ABD 中,由余弦定理得BD =AB 2+AD 2-2AB ·AD ·cos 60°=4AD 2+AD 2-2AD 2=3AD , 所以AD 2+BD 2=AB 2,即AD ⊥BD . 又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1. 又AA 1⊂平面ADD 1A 1,所以AA 1⊥BD . (2)连接AC ,A 1C 1. 设AC ∩BD =E ,连接EA 1,因为四边形ABCD 为平行四边形, 所以EC =12AC .由棱台定义及AB =2AD =2A 1B 1知,A 1C 1∥EC 且A 1C 1=EC , 所以四边形A 1ECC 1为平行四边形, 因此CC 1∥EA 1.又因为EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD . 所以CC 1∥平面A 1BD .12.(2017·吉林调研)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图②中△A 1BE 的位置,得到四棱锥A 1BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.解:(1)证明:在题图①中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图②中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC . (2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE ,又由(1),A 1O ⊥BE ,所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1BCDE 的高. 由题图①知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6.。
立体几何热点一 空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO⊥平面ABC ,2DA =2AO =PO ,且DA∥PO. (1)求证:平面PBD⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z), ∴⎩⎪⎨⎪⎧n·BC →=0,n·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n| =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F. (1)证明:EF∥B 1C.(2)求二面角EA 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB→,AD→,AA1→为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B 1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为⎝⎛⎭⎪⎫12,12,1.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E→=⎝⎛⎭⎪⎫12,12,0,A1D→=(0,1,-1),由n1⊥A1E→,n 1⊥A1D→得r1,s1,t1应满足的方程组⎩⎨⎧12r1+12s1=0,s1-t1=0,(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1→=(1,0,0),A1D→=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为|n1·n2||n1|·|n2|=23×2=63.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB =1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD ,AB ⊥AD , 所以AB⊥平面PAD ,所以AB⊥PD.又PA⊥PD,AB ∩PA =A ,所以PD⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z),则 ⎩⎪⎨⎪⎧n·PD →=0,n·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n·PB →|n||PB→|=-33.所以直线PB 与平面PCD 所成角的正弦值为33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →. 因此点M(0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM∥平面PCD ,此时AM AP =14. 【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45°,E 为PA 的中点. (1)求证:DE∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF⊥DB?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN⊥AB,垂足为点N.∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB∥CD,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为PA ,PB 的中点, ∴EM ∥AB 且EM =6,又DC∥AB,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8). 假设AB 上存在一点F 使CF⊥BD, 设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z). 又PC →=(0,6,-8),FC →=⎝⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n·PC →=0,n·FC →=0,得⎩⎨⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n·m |n||m|=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817.热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H.将△DEF 沿EF 折到△D′EF 的位置,OD ′=10.(1)证明:D′H⊥平面ABCD ; (2)求二面角B -D′A-C 的正弦值.(1)证明 由已知得AC⊥BD,AD =CD. 又由AE =CF 得AE AD =CFCD,故AC∥EF. 因此EF⊥HD,从而EF⊥D′H.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D′H 2+OH 2=32+12=10=D′O 2,故D′H⊥OH. 又D′H⊥EF,而OH∩EF=H , 所以D′H⊥平面ABCD.(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz. 则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD′的一个法向量, 则⎩⎪⎨⎪⎧m·AB →=0,m·AD′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD′的一个法向量, 则⎩⎪⎨⎪⎧n·AC →=0,n·AD′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m·n |m||n|=-1450×10=-7525.sin 〈m ,n 〉=29525. 因此二面角B -D′A-C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE⊥AC.即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE⊥平面A 1OC.又CD∥BE,所以CD⊥平面A 1OC. (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
全国高考立体几何一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB 所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC 的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q 为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE 沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B ﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD ⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N 的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC 的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF ∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f(x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案一.解答题(共40小题)1.;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;31.;32.;33.;34.;35.;36.;37.;38.;39.;40.;。
限时规范训练十三空间中的平行与垂直限时45分钟,实际用时分值81分,实际得分
一、选择题(本题共6小题,每小题5分,共30分)
1.(2016·高考山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
解析:选A.因为直线a和直线b相交,所以直线a与直线b有一个公共点,而直线a,b分别在平面α、β内,所以平面α与β必有公共点,从而平面α与β相交;反之,若平面α与β相交,则直线a与直线b可能相交、平行、异面.故选A.
2.(2017·高考全国卷Ⅲ)在正方体ABCD A
1B
1
C
1
D
1
中,E为棱CD的中点,则( )
A.A
1E⊥DC
1
B.A
1
E⊥BD
C.A
1E⊥BC
1
D.A
1
E⊥AC
解析:选C.根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线
在平面内的射影,A项,若A
1E⊥DC
1
,那么D
1
E⊥DC
1
,很显然不成立;B项,若A
1
E⊥BD,
那么BD⊥AE,显然不成立;C项,若A
1E⊥BC
1
,那么BC
1
⊥B
1
C,成立,反过来BC
1
⊥B
1
C
时,也能推出BC
1⊥A
1
E,所以C成立,D项,若A
1
E⊥AC,则AE⊥AC,显然不成立,
故选C.
3.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β( ) A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m
C.若l∥β,则α∥βD.若α∥β,则l∥m
解析:选A.选项A中,由平面与平面垂直的判定定理可知A正确;选项B中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;选项C中,l∥β时,α,β可以相交;选项D中,α∥β时,l,m也可以异面.
4.已知α,β为两个平面,l为直线,若α⊥β,α∩β=l,则( )
A.垂直于平面β的平面一定平行于平面α
B.垂直于直线l的直线一定垂直于平面α
C.垂直于平面β的平面一定平行于直线l
D.垂直于直线l的平面一定与平面α,β都垂直
解析:选D.由α⊥β,α∩β=l,知:
垂直于平面β的平面与平面α平行或相交,故A不正确;
垂直于直线l的直线若在平面β内,则一定垂直于平面α,否则不一定,故B 不正确;垂直于平面β的平面与l的关系有l⊂β,l∥β,l与β相交,故C不正确;
由平面垂直的判定定理知:垂直于直线l的平面一定与平面α,β都垂直,故D正确.
5.设a,b,c表示三条直线,α,β表示两个平面,则下列命题中逆命题不成立的是( )
A.c⊥α,若c⊥β,则α∥β
B.b⊂α,c⊄α,若c∥α,则b∥c
C.b⊂β,若b⊥α,则β⊥α
D.a,b⊂α,a∩b=P,c⊥a,c⊥b,若α⊥β,则c⊂β
解析:选C.利用排除法求解.A的逆命题为:c⊥α,若α∥β,则c⊥β,成立;B的逆命题为:b⊂α,c⊄α,若b∥c,则c∥α,成立;C的逆命题为:b⊂β,若β⊥α,则b⊥α,不成立;D的逆命题为:a,b⊂α,a∩b=P,c⊥a,c⊥b,若c⊂β,则α⊥β,成立,故选C.
6.(2017·江西六校联考)已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:
①若m⊥α,n⊥β,m⊥n,则α⊥β;
②若m∥α,n∥β,m⊥n,则α∥β;
③若m⊥α,n∥β,m⊥n,则α∥β;
④若m⊥α,n∥β,α∥β,则m⊥n.
其中所有正确命题的序号是( )
A.①④B.②④
C.①D.④
解析:选A.借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,故①正确;对于②,平面α,β可能垂直,如图(1)所示,故②不正确;对于③,平面α,β可能垂直,如图(2)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(3)所示,所以n。