基础知识讲解
- 格式:doc
- 大小:23.50 KB
- 文档页数:1
认识三角形(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法.2. 理解并会应用三角形三边间的关系.3. 理解三角形的高、中线、角平分线的概念,学会它们的画法.4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义>由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段.②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角.③三角形的顶点:即相邻两边的公共端点.'(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC 来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.要点二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.、(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形.【②钝角三角形:有一个内角为钝角的三角形. 2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形要点诠释:①不等边三角形:三边都不相等的三角形.②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角. ③等边三角形:三边都相等的三角形. [要点四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下: 线段名称三角形的高三角形的中线三角形的角平分线 文字语言/从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言·作图语言过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .标示图形(符号1.AD 是△ABC 的高. 1.AD 是△ABC 的角平分语言2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)!1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=12BC4.点D是BC边的中点.线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=12∠BAC.推理语言·因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.^1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—…与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.要点五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.!要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.(2015秋•平凉校级期中)如图,图中共有三角形())A.4个B.5个C.6个D.8个【思路点拨】对比三角形的相关概念分析和思考.【答案】D.【解析】解:图中三角形有:△ABC,△ABE,△ACD,△BCF,△BCD,△BCE,△BFD,△CFE,共8个三角形.,【总结升华】本题考查了三角形,注意找的时候要有顺序,也可从小到大找.举一反三:【变式】如图,以A为顶点的三角形有几个用符号表示这些三角形./【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. (四川南充)三根木条的长度如图所示,能组成三角形的是( );【思路点拨】三角形三边关系的性质,即三角形的任意两边之和大于第三边,任意两边之差小于第三边.注意这里有“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般取“差”的绝对值.【答案】D【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A 、B 、C 三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D 选项中,2cm+3cm >4cm .故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形. 举一反三:【变式】判断下列三条线段能否构成三角形.|(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b. 举一反三:[【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对. 类型三、三角形中重要线段4. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高. 】【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三: 【变式】(2015•长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【答案】A .5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长..【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.。
化学键要点一、离子键1.定义:带相反电荷离子之间的相互作用称为离子键。
要点诠释:原子在参加化学反应时,都有通过得失电子或形成共用电子对使自己的结构变成稳定结构的倾向。
例如Na 与Cl2反应过程中,当钠原子和氯原子相遇时,钠原子的最外电子层的1个电子转移到氯原子的最外电子层上,使钠原子和氯原子分别形成了带正电荷的钠离子和带负电荷的氯离子。
这两种带有相反电荷的离子通过静电作用,形成了稳定的化合物。
我们把带相反电荷离子之间的相互作用称为离子键。
2.成键的粒子:阴阳离子。
3.成键的性质:静电作用。
阴阳离子间的相互作用(静电作用)包括:①阳离子与阴离子之间的吸引作用;②原子核与原子核之间的排斥作用;③核外电子与核外电子之间的作用。
4.成键原因:通过电子得失形成阴阳离子。
5.成键条件:(1)活泼金属与活泼的非金属化合时,一般都能形成离子键。
如IA、ⅡA族的金属元素(如Li、Na、K、Mg、Ca等)与ⅥA、ⅦA族的非金属元素(如O、S、F、Cl、Br、I等)之间化合。
(2)金属阳离子(或铵根离子)与某些带负电荷的原子团之间(如Na+与OH-、SO42-等)含有离子键。
6.存在离子键的物质:强碱、低价态金属氧化物和大部分盐等离子化合物。
7.离子键的形成过程的表示:要点二、共价键1.定义:原子间通过共用电子对所形成的相互作用称为共价键。
要点诠释:从氯原子和氢原子的结构分析,由于氯和氢都是非金属元素,这两种元素的原子获得电子难易的程度相差不大,原子相互作用的结果是双方各以最外层的一个电子组成一个电子对,电子对为两个原子所共用,在两个原子核外的空间运动,从而使双方最外层都达到稳定结构,这种电子对,就是共用电子对。
共用电子对受两个核的共同吸引,使两个原子结合在一起。
我们把这种原子间通过共用电子对所形成的相互作用称为共价键。
2.成键元素:一般存在于非金属元素原子之间。
要点诠释:某些不活泼的金属和非金属元素原子(如AlCl3)之间也存在共价键。
方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断.【答案】B.【解析】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三: 【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②. 类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的.(1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11;(2).(-by ); 根据等式的性质1,等式两边都加上-by ;(3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a b c c =++. C .在等式b c a a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b.【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80. 可以采用列表法探究其解显然,当x =21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。
化学基础知识(入门)化学基础知识一.原子核a.数量关系:核内质子数=核外电子数b、电性关系:原子:核电荷数=核内质子数=核外电子数阳离子:核内质子数>核外电子数阴离子:核内质子数<核外电子数c、质量关系:质量数(A)=质子数(Z)+中子数(N)二微粒的性质1.分子是很小的粒子体积小:如果用水分子的大小跟乒乓球比,就像拿乒乓球跟地球比一样。
质量小:以水分子为例,1个水分子的质量大约是3×10-26 kg。
分子虽然小且轻,却是真实存在的。
2.分子总是在不断地运动分子运动的例子很多。
湿衣服经过晾晒会干;很远的地方就能嗅到花香;糖块放到水里,糖不见了,水却变甜了,这些都是分子不断运动的结果。
分子的运动跟温度有关,温度高,分子运动快;温度低,分子运动慢。
3.构成物质的微粒一、分子分子是保持物质化学性质的最小微粒。
混合物纯净物区别宏观:1、由两种或多种物质混合而成2、各物质仍保持原有的化学性质微观:混合物中含有多种分子宏观:1、由一种物质组成,有固定的组成2、有一定的物理、化学性质微观:纯净物中只有一种分子原子是化学反应变化中最小的微粒。
三、分子、原子的区别与联系:例题解析例1、下列说法有错的是()A.原子可以直接构成物质B.分子可以再分,原子不能再分C.化学反应中,分子改变而原子不变,说明分子是运动的,原子是静止的D.水分子保持水的化学性质解:分子和原子均可以直接构成物质,分子由原子构成,原子可分为质子和中子。
分子是保持物质化学性质的最小微粒,分子原子都在做不规则的运动。
三元素1.元素的概念:具有相同核电荷数(即核内质子数)的一类原子的总称。
水是由水分子构成的,水分子是由氢原子和氧原子构成的;氧气是由氧分子构成的,氧分子又是由氧原子构成的。
同种原子质子数相同,即水分子中的氧原子和氧分子中的氧原子,其质子数都是8,化学上把质子数都是8的氧原子统称为氧元素。
【小结】(1)既然核电荷数=核内质子数=核外电子数,为何不说元素是具有相同电子数的一类原子的总称呢?因为在发生化学反应时,有些原子的核外电子失去或得到(变为离子),核外电子数发生了变化。
中医基础知识点讲解
中医是中国传统医学,有着悠久的历史和博大精深的理论体系。
中医基础知识包括以下几个方面。
1. 中医基本理论:中医主要包括阴阳五行学说、精气神理论、
藏象学说和经络学说等。
其中,阴阳五行学说是中医的理论基础,强
调各种事物在宇宙中相互关联和影响;精气神理论则指导着中医诊疗
和药物运用;藏象学说强调人体内脏器官的生理功能和病理表现;经
络学说则是中医治疗手段的基础。
2. 中医诊断:中医诊断主要包括四诊法,即望、闻、问、切。
望指观察病人的外表、舌苔、面色等;闻则指倾听病人的言语、声音、呼吸等;问是了解病人的病史、症状及感受;切是通过按摩腧穴、按
压部位等手法,感受病人的脉搏来判断病情。
3. 中药学:中药学是中医学的重要分支,它主要研究古代医书
和方剂,探讨中药治疗和调理病人的作用和机理。
中药学中有着广泛
的药材,如枸杞、桂圆、黄芪、人参等,这些草药往往可用于中药配方,以达到最佳的治疗效果。
4. 针灸学:针灸学是中医学的另一个重要分支,以针刺经络为
主要治疗手段,具有疏通经脉、活血化瘀、调和阴阳的作用。
总的来说,中医学是一门综合的医学学科,在治疗和预防疾病方
面有着独特的理论和方法。
通过对中医基础理论的学习和理解,有助
于提高我们的身体健康意识和保健能力。
100个基础知识讲解大全1. 数学基础知识讲解数学是一门基础学科,广泛应用于科学、工程与经济等各个领域。
以下是100个数学基础知识的讲解。
1. 数字:数字是表示数量的符号,包括0-9这十个基本数字。
2. 数字系统:常见的数字系统包括十进制、二进制和十六进制等。
3. 数与运算:数可以进行加、减、乘、除等运算。
4. 整数:整数是没有小数部分的数,可以是正数、负数或0。
5. 分数:分数是两个整数之间的比值,表示一个数与单位值的关系。
6. 小数:小数是有小数部分的数,可以是有限小数或无限循环小数。
......(依次类推,介绍完全部的基础知识)100. 概率:概率是事件发生的可能性,通常用0到1之间的数值表示。
2. 物理基础知识讲解物理学是研究物质、能量和宇宙基本规律的学科,以下是100个物理基础知识的讲解。
1. 物质:物质是组成宇宙的基本元素,包括固体、液体和气体等形态。
2. 质量:质量是物质所固有的属性,用来衡量物体的惯性和引力。
3. 速度:速度是物体在单位时间内所移动的距离。
4. 加速度:加速度是速度的变化率,表示单位时间内速度增加或减少的程度。
5. 力:力是导致物体产生加速度的作用,常用牛顿为单位进行衡量。
6. 能量:能量是物体的一种属性,可以转化为其他形式或产生动力。
7. 功:功是力在物体上所做的功夫,用来衡量物体得到或失去的能量。
......(依次类推,介绍完全部的基础知识)100. 引力:引力是物体之间的相互吸引力,是宇宙中普遍存在的力之一。
3. 化学基础知识讲解化学是研究物质组成、结构、性质和变化的学科,以下是100个化学基础知识的讲解。
1. 原子:原子是化学元素的最小单位,由质子、中子和电子组成。
2. 元素:元素是由具有相同原子数的原子组成的物质,每个元素由不同的原子组成。
3. 分子:分子是由两个或多个原子通过化学键连接在一起形成的单位。
4. 化学键:化学键是原子之间由电子共享或转移而产生的连接。
圆的基本概念和性质—知识讲解(基础)【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.在下列说法中:①圆心决定圆的位置;②半径决定圆的大小;③半径相等的圆是同心圆;④两个半径相等且圆心不同的圆是等圆,你认为正确的结论有()A.1个B.2个C.3个D.4个【答案】C.【解析】对照圆的定义及同心圆、等圆的概念进行判断.显然①②④正确,③不正确.【总结升华】考查确定圆的条件,同心圆、等圆的定义.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个B.2个C.3个D.4个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√②×③×④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】下列说法错误的是( )A.半圆是弧B.圆中最长的弦是直径C.半径不是弦D.两条半径组成一条直径【答案】弧有三类,分别是优弧、半圆、劣弧,所以半圆是弧,A正确;直径是弦,并且是最长的弦,B 正确;半径的一个端点为圆心,另一个端点在圆上,不符合弦的定义,所以不是弦,C正确;两条半径只有在同一直线上时,才能组成一条直径,否则不是,故D错误.所以选D.3.直角三角形的三个顶点在⊙O上,则圆心O在 .【答案】斜边的中点.【解析】根据圆的定义知圆心O到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等.4.判断正误:有AB、CD,AB的长度为3cm, CD的长度为3cm,则AB与CD是等弧. 【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此,只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O中的优弧AmB,中的劣弧CD,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以O为圆心的同心圆中,大圆的弦AB交小圆于C,D.求证:AC=BD.【答案与解析】证明:过O点作OM⊥AB于M,交大圆与E、F两点.如图,则EF所在的直线是两圆的对称轴,所以AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.。
线段、射线、直线(基础)知识讲解【学习目标】1.在现实情境中进一步理解线段、射线、直线,并会用不同的方法表示;2. 通过操作活动,了解“两点确定一条直线”的几何事实,积累数学活动经验,并初步掌握用尺规作图法作出相关线段;3. 能够运用几何事实解释和解决具体情境中的实际问题;4. 通过从事观察、比较、概括等活动,发展抽象思维能力和有条理的数学表达能力.【要点梳理】要点一、线段、射线、直线的概念及表示1.概念:绷紧的琴弦、黑板的边沿都可以近似地看作线段,如果把“线段”作为最简单、最基本原始概念,则用“线段”定义射线和直线如下:(1)将线段向一个方向无限延长就形成了射线.(2)将线段向两个方向无限延长就形成了直线.要点诠释:(1)线段有两个端点,可以度量,可以比较长短.(2)射线只向一方无限延伸,有一个端点,不能度量,不能比较大小.(3)直线是向两方无限延伸的,无端点,不可度量,不能比较大小.(4)线段、射线、直线都没有粗细.2.表示方法:如图1、图2、图3,线段、射线、直线的表示方法都有两种:它们都可以用两个大写字母表示,也可以一个小写字母表示.要点诠释:(1)从表示方法上看,虽然它们都可以用一个小写字母表示,也可以用两个大写字母表示,但直线取的是直线上任意两点的字母,线段用的是两个端点的字母,射线用的是一个端点和任意一点的字母,而直线和线段的两个大写字母没有顺序之分,但射线的两个大写字母有顺序之分,第一个大写字母必须是表示端点.即端点相同,而延伸方向不同,表示不同的射线.如下图4中射线OA,射线OB是不同的射线;端点相同且延伸方向也相同的射线,表示同一条射线.如下图5中射线OA、射线OB、射线OC都表示同一条射线.图4图5(2)表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.3.线段、射线、直线的区别与联系线段射线直线图示表示方法线段AB或线段a 射线OA或射线a 直线AB或直线a端点两个一个无长度可度量不可度量不可度量延伸性不向两方延伸向一方无限延伸向两方无限延伸要点二、基本事实1. 直线:过两点有且只有一条直线.简单说成:两点确定一条直线.要点诠释:(1)点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点.如图6中,点O在直线l上,也可以说成是直线l经过点O;②点在直线外,或者说直线不经过这个点.如图6中,点P在直线l外,也可以说直线l 不经过点P.(2)两条不同直线相交:当两条不同的直线只有一个公共点时,称这两条直线相交,这个公共点叫做它们的交点.2.线段:两点之间的所有连线中,线段最短.简记为:两点之间,线段最短.如图7所示,在A,B两点所连的线中,线段AB的长度是最短的.图7要点诠释:(1)连接两点间的线段的长度,叫做这两点的距离.(2)两条线段可能无公共点,可能有一个公共点,也可能有无穷多个公共点.要点三、比较线段的长短1. 尺规作图的定义:仅用圆规和没有刻度的直尺作图的方法叫做尺规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.线段的中点:如下图,若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时点B叫做线段AC的中点.要点诠释:(1)若点B是线段AC的中点,则点B一定在线段AC上且12AB CB AC==,或AC=2AB=2BC.(2)类似地,还有线段的三等分点、四等分点等.3. 用尺规作线段或比较线段(1)作一条线段等于已知线段:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.要点诠释:几何中连结两点,即画出以这两点为端点的线段.(2)线段的比较:叠合比较法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:要点诠释:线段的比较方法除了叠合比较法外,还可以用度量比较法.【典型例题】类型一、相关概念1.下列说法中,正确的是( ) .A.射线OA与射线AO是同一条射线.B.线段AB与线段BA是同一条线段.C.过一点只能画一条直线.D.三条直线两两相交,必有三个交点.【答案】B【解析】射线OA的端点是O,射线AO的端点是A,所以射线OA与射线AO不是同一条射线,故A错误;过一点能画无数条直线,所以C错误;三条直线两两相交,有三个交点或一个交点(三条直线相交于一点时),所以D错误;线段AB与线段BA是同一条线段,所以B正确.【总结升华】直线和线段用两个大写字母表示时,与字母的前后顺序无关,但射线必须是表示端点的字母写在前面,不能互换.举一反三:【变式1】以下说法中正确的是().A.延长线段AB到C B.延长射线ABC.直线AB的端点之一是A D.延长射线OA到C【答案】A【变式2】如图所示,请分别指出图中的线段、射线和直线的条数,并把它们分别表示出来.【答案】解:如下图所示,在直线上点A左侧和点C右侧分别任取点X和Y.图中有6条射线:射线AX、射线AY、射线BX、射线BY、射线CX、射线CY.有3条线段:线段AB(或BA)、线段BC(或CB)、线段AC(或CA)有1条直线:直线AC(或AB,BC).类型二、有关作图2.如图所示,线段a,b,且a>b.用圆规和直尺画线段:(1)a+b;(2)a-b.【答案与解析】解:(1) 画法如图(1),画直线AF,在直线AF上画线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是a与b的和,记作AC=a+b.(2) 画法如图(2),画直线AF,在直线AF上画线段AB=a,再在线段AB上画线段BD=b,线段AD就是a与b的差,记作AD=a-b.【总结升华】在画线段时,为使结果更准确,一般用直尺画直线,用圆规量取线段的长度.举一反三:【变式1】下列语句正确的是( ) .A.画直线AB=10cm. B.画直线AB的垂直平分线.C.画射线OB=3cm. D.延长线段AB到C使BC=AB.【答案】D【变式2】用直尺作图:P是直线a外一点,过点P有一条线段b与直线a不相交.【答案】 解:类型三、有关条数及长度的计算3.如图,A 、B 、C 、D 为平面内任意三点都不在同一条直线上的四点,那么过其中两点,可画出 条直线.【思路点拨】根据两点确定一条直线即可计算出直线的条数. 【答案】6条直线【解析】由两点确定一条直线知,点A 与B,C,D 三点各确定一条直线,同理点B 与C 、D 各确定一条直线,C 与D 确定一条直线,综上:共有直线:3+2+1=6(条).【总结升华】平面上有n 个点,其中任意三点不在一条直线上,则最多确定的直线条数为:(1)123...(1)2n n n -++++-=. 举一反三:【变式1】如图所示,已知线段AB 上有三个定点C 、D 、E . (1)图中共有几条线段?(2)如果在线段CD 上增加一点,则增加了几条线段?你能从中发现什么规律吗? 【答案】解:(1)线段的条数:4+3+2+1=10(条);(2)如果在线段CD 上增加一点P ,则P 与其它五个点各组成一条线段,因此,增加了5条线段.(注解:若在线段AB 上增加一点,则增加2条线段,此时线段总条数为1+2;若再增加一点,则又增加了3条线段,此时线段总条数为1+2+3;…;当线段AB 上增加到n 个点(即增加n -2个点)时,线段的总条数为1+2+……+(n -1)=21n(n -1) .) 【变式2】如图直线m 上有4个点A 、B 、C 、D ,则图中共有________条射线.【答案】84. 如图所示,AB =40,点C 为AB 的中点,点D 为CB 上的一点,点E 是BD 的中点,且EB =5,求CD 的长.【思路点拨】显然CD =CB -BD ,要求CD 的长,应先确定CB 和BD 的长.【答案与解析】解:因为AB=40,点C为AB的中点,所以11402022CB AB==⨯=.因为点E为BD的中点,EB=5,所以BD=2EB=10.所以CD=CB-BD=20-10=10.【总结升华】求线段的长度,注意围绕线段的和、差、倍、分展开,若每一条线段长度均已确定,所求问题便可迎刃而解.举一反三:【变式】在直线l上按指定方向依次取点A、B、C、D,且使AB:BC:CD=2:3:4,如图所示,若AB的中点M与CD的中点N的距离是15cm,求AB的长.【答案】解:依题意,设AB=2x cm,那么BC=3x cm,CD=4x cm.则有:MN=BM+BC+CN= x+3x+2x=15解得:52 x=所以AB=2x =5252⨯=cm.类型四、最短问题5.如图所示,在一条笔直公路a的两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村的距离之和最小,问汽车站C的位置应如何确定?【答案与解析】解:如图,连接AB与直线a交于点C,这个点C的位置就是符合条件的汽车站的位置.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】 (1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.。
压强(基础)【学习目标】1、了解压力,通过实验探究,知道影响压力作用效果的因素;2、理解压强的定义、公式及单位,能运用压强公式进行简单计算;3、知道增大压强和减小压强的方法。
【要点梳理】要点一、压力垂直作用在物体表面上的力叫做压力。
要点诠释:1、产生的条件:相互接触的两个物体相互挤压。
例如:静止在地上的篮球和地面间有相互挤压的作用,篮球对地面有压力;静止在竖直墙壁旁的篮球与墙壁之间没有相互挤压,所以没有压力。
2、方向:与受力物体的受力面垂直,并指向受力面,由于受力物体的受力面可能是水平面,也可能是竖直面,还可能是角度不同的倾斜面,因此压力的方向没有固定指向,它可能指向任何方向,但始终和受力物体的受力面相垂直。
3、单位:牛顿,符号:N4、压力和重力的区别如下:压力重力施力物体物体地球受力物体支持物物体大小决定于相互挤压所发生形变大小G=mg方向垂直于受力物体表面,并指向受力面竖直向下作用点在支持面上物体重心力的性质接触的物体间相互挤压而发生形变产生的,属于弹力来源于万有引力,是非接触力受力示意图要点二、压强表示压力作用效果的物理量。
要点诠释:1、压力的作用效果与压力和受力面积有关。
探究实验提出问题:压力的作用效果跟什么因素有关。
猜想和假设:跟压力的大小有关,跟受力面积的大小有关。
进行实验:①照图甲那样,把小桌腿朝下放在泡沫塑料上;观察泡沫塑料被压下的深度;②再照图乙那样,在桌面上放一个砝码观察泡沫塑料被压下的深度;③再把小桌翻过来,如图丙,观察泡沫塑料被压下的深度。
实验步骤①、②是受力面积一定,改变压力的大小,步骤②、③是压力一定,改变受力面积。
实验结果:泡沫塑料被压下的深度与压力的大小和受力面积的大小有关。
压力越大,效果越明显,受力面积越小效果越明显。
2、定义:物体所受压力的大小与受力面积之比叫做压强。
3、计算公式及单位①公式:(定义公式)②单位:国际单位为帕斯卡(Pa),简称帕。
1Pa=1N/m2。
中医基础知识入门讲解中医学是中国传统医学的重要组成部分,拥有悠久的历史和广泛的应用。
本文将为大家讲解中医的基本概念、理论基础、诊断方法和治疗原则,帮助读者初步了解中医学的核心内容。
一、中医的基本概念中医学起源于中国古代,与其他医学系统相比,它有着独特的理论体系和治疗方法。
中医强调人与自然环境的相互关系,将人体视为一个有机整体,强调平衡和调节的重要性。
中医学的核心理念是“阴阳五行”,它代表了万物的生成和变化规律。
通过调节阴阳和五行,中医能够维护人体的健康状态。
二、中医的理论基础1. 阴阳学说:阴阳是中医理论中最基本的概念之一,它表征了事物相对而言的两种属性。
阴阳相互依存、相互制约,保持了事物的动态平衡。
2. 五行学说:五行包括金、木、水、火、土,它们代表了自然界万物的不同属性和相互关系。
五行学说能够解释人体生理和疾病发生的规律,为中医的诊断和治疗提供了指导。
3. 经络学说:经络是中医理论中的重要概念,它指的是人体内部的能量通道。
中医认为,经络是联系组织器官的桥梁,通过调节经络的畅通,可以达到治疗疾病的目的。
4. 辨证论治:中医治疗疾病强调辨证论治,即根据患者的特定病情和体质,调节阴阳和五行的平衡,从而恢复人体的健康状态。
三、中医的诊断方法中医有许多独特的诊断方法,其中最常见的包括四诊法和望闻问切法。
1. 四诊法:四诊法是中医诊断的基本工具,包括望诊、闻诊、问诊和切诊。
通过仔细观察患者的面色、舌苔、脉搏等,中医医生能够了解患者的疾病状况和体质特点。
2. 望闻问切法:望闻问切法是中医辨证论治的关键步骤。
医生通过观察患者的面色、听取患者的病情描述、询问患者的病史和利用切诊技巧(包括脉诊和舌诊),判断病因和病性,制定相应的治疗方案。
四、中医的治疗原则中医治疗依据患者的具体病情和体质特点,根据不同的辨证论治,制定相应的治疗原则。
1. 辨证施治:中医强调辨证施治,即根据患者的病情和体质,针对不同的病因和病性,采用相应的治疗方法。