6.1.2_平面直角坐标系复习(1)
- 格式:ppt
- 大小:1.53 MB
- 文档页数:28
本节知识要点
1认识平面直角坐标系,了解点与坐标的对应关系
2在给定的直角坐标系中能根据坐标描出点,能由点的位置写出其坐标。
能力测试:
1.在直角坐标系中,坐标轴上到点P(-3,-4)的距离等于5的点共有()
A.1个B.2个C.3个D.4个2.若点A(a,b)在第四象限,则点B(-a-2,b+5)在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知A(a,b),A关于一、三象限平分线对称点为B.B与点C关于y 轴对称,点C与D关于x轴对称.则B与D关于()对称.
A.x轴B.y轴C.原点D.都不是
答案:
1.C 设坐标轴上的点为M(x,0)或M(0,y).由题意,得()5
4
32
2=
+
+
x
或
()5
4
32
2=
+
+y.解得x
1
=0,x2=-6,或y1=0,y2=-8.∴M的坐标是(0,
0),或(-6,0),或(0,-8).
2.B 此题考查的是点的坐标及对称点的概念.若已知A(a,b)在第四象限,就相当于已知a>0,b<0;要判断B点在第几象限,就要判定-a-2与|b|+5的符号.
∵点A(a,b)在第四象限,
∴a>0,b<0.∴-a-2<0.
∵|b|+5>0,∴点B(-a-2,|b|+5)在第二象限,故应选B.3.C 数形结合易知:B与D关于原点对称.。
第六章 6.1.2平面直角坐标系
大连市实验学校刘佳妮
教学过程设计
强调:两条坐标轴要体现数轴的三要素,
画坐标系的同时不要忘记标x轴和y轴正方
向和名称。
y
x -1
-21
23
4
-1-2-3-4-56543
21O
A(4,5)
B(-2,3)C(-4,-1)
D(2.5,-2)
师在屏幕上出示问题,找同学回答。
2.已知P点坐标为(a-1,a-5):
①点P在x轴上,a= ;
②点P在y轴上,a= ;
③若a=-3,则P在第象限内;
(2)动手实践:如图,这是一所学校的平面示意图,建立适当的
平面直角坐标系,并用坐标表
示教学楼、图书馆、校门、实
验楼、国旗杆的位置。
思考:点的坐标是唯一的吗?
(3)发散思维。
联系生活,谈一谈利用平面直角坐标系可以解决那些问题?。
平面直角坐标系知识点汇总平面直角坐标系知识点汇总知识点一确定位置1.平面内确定一个物体的位置需要2个数据。
2.平面内确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。
(2)方位角距离定位法:方位角和距离。
(3)经纬定位法:它也需要两个数据:经度和纬度。
(4)区域定位法:只描述某点所在的大致位置。
如“解放路22号”。
知识点二平面直角坐标系1.定义在平面内,两条互相(垂直)且具有公共(焦点)的数轴组成平面直角坐标系.其中水平方向的数轴叫(X轴)或(横轴),向(右)为正方向;竖直方向的数轴叫(Y轴)或(纵轴),向(上)为正方向;两条数轴交点叫平面直角坐标系的(原点)。
.2.平面内点的坐标对于平面内任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a叫P的(横)坐标,y轴上的垂足对应的数b叫P的(纵)坐标。
有序数对(a,b),叫点P的坐标。
若P的坐标为(a,b),则P到x轴距离为(|b|),到y轴距离为(|a|) 注意:平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标.3.平面直角坐标系内点的坐标特征:(1)坐标轴把平面分隔成四个象限。
根据点所在位置填表点的位置横坐标符号纵坐标符号第一象限+ +第二象限_ +第三象限_ _第四象限+ _(2)坐标轴上的点不属于任何象限,它们的坐标特征①在x轴上的点(纵)坐标为0;②在y轴上的点(横)坐标为0;(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征①点P(a,b)关于x轴对称点P1(a,-b);②点 P(a,b)关于y轴对称点P2(-a,b);③点P(a,b)关于原点对称点P3(-a,-b);④若点P(a,b)关于一三象限角平分线对称点P4(b,a);⑤若点P(a,b)关于二四象限角平分线对称点P5(-b,a);4.平行于x轴的直线上的点(纵)坐标相同;平行于y轴的直线上的点(横)坐标相同。
第六章 6.1.2《平面直角坐标系——特殊点》复习准备:1.坐标平面内的点的坐标有如下特征:点(),P x y 在第一象限:0,0.x y >>点(),P x y 在第二象限:_________.点(),P x y 在第三象限:_________.点(),P x y 在第四象限:_________.点(),P x y 在x 轴上:点(),P x y 在y 轴上:点(),P x y 在原点上:边想边做:1. 特殊位置的点的坐标特征(1)x 轴将坐标平面分为上下两部分,x 轴上方的点的纵坐标为正数,x 轴下方的点的纵坐标为______;y 轴把坐标平面分为两部分,y 轴左侧的点的横坐标为_____,y 轴右侧的点的横坐标为_____.(2)规定原点坐标是_____.(3)坐标轴上点的坐标特征:x 轴上的点,_________为零;y 轴上的点, 横坐标 为零;原点坐标为_________。
(4)点P (a,b )在第一、第三象限的角平分线上,则a=b;点P (a,b )在第二、第四象限的角平分线上,则(5)平行于x 轴,y 轴的直线上点的坐标特征平行于x 轴的直线上点的纵坐标相同;平行于y 轴的直线上点的_____相同.(6)点到x 轴,y 轴的距离点P (3,-2)到x 轴的距离为 ,y 轴的距离为_______。
点Q (a ,b )到x轴的距离为 ,y 轴的距离为_______。
即:点坐标A (x,y )到x 轴的距离为y ,y 轴的距离为x 。
(7)、平面直角坐标系中对称点的特点1.关于x成轴对称的点的坐标,横坐标相等.,纵坐标互为相反数.2.关于y成轴对称的点的坐标,__________________.,__________________.. 3关于原点成中心对称的点的坐标,横坐标互为相反数.,纵坐标____________..试一试:1、若点A(a -9,a+2)在y轴上,则a=______. (提示:y轴上的点,横坐标为0)2、点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)3、当b=______时,点B(3,b-1)在第一.三象限角平分线上.4、当b=______时,点B(3,b-1)在第二.四象限角平分线上.(提示:在第二.四象限角平分线上的点,横、纵坐标互为相反数)5、已知点A(3x-2y,y+1)在象限的角平分线上,且点A的横坐标为5,求x、y的值6、已知点A(1,2),AC∥x轴, 点C在A的右边,AC=5则点C的坐标是_____.(提示:平行于x轴的直线上点的纵坐标相同,再画个草图看看吧:))7、已知点A(1,2),AC∥y轴, 点C在A的上边,AC=5,则点C的坐标是______.8、已知长方形ABCD中,AB=5,BC=8,并且AB∥x轴,若点A的坐标为(-2,4),则点C的坐标为__________________________.9、M为x轴上方的点,到x轴距离为5,到y 的距离为3,则M点的坐标为( D ).A(5,3)B(-5,3)或(5,3)C(3,5)D(-3,5)或(3,5)10、在平面直角坐标系中,点A到横轴的距离为8,到纵轴的距离为4,则点A的坐标为_____________.11、点M(5,-6)关于x轴的对称点的坐标是().————(提示:画个坐标系吧,点出它们,很快就有答案了!)(A)(-6,5)(B)(-5,-6)(C)(5,6)(D)(-5,6)12、点N(a,-b)关于原点的对称点是坐标是().(A)(-a,b)(B)(-a,-b)(C)(a,b)(D)(-b,a)课堂练习:1.如果点P(a+5,a-2)在x轴上,那么P点坐标为________.2.点A(-2,-1)与x轴的距离是________;与y轴的距离是________.3.点M(a,b)在第二象限,则点N(-b,b-a)在________象限.4.点A(3,a)在x 轴上,点B(b,4)在y 轴上,则a=______,b=______,S △AOB=_____.5.若点P (x,y )的坐标满足xy=0(x ≠y),则点P ( )A .原点上B .x 轴上C .y 轴上D .x 轴上或y 轴上 .6.如图所示,点A 的坐标为_______,点A 关于x 轴的对称点B 的坐标为______, 点B 关于y 轴的对称点C 的坐标为________.分层提高:1. 已知()6,0A 、()2,1B 、()0,0C ,则三角形ABC 的面积为( )A . 1B .2C .3D .4课后练习: 1..如图1所示,点A 的坐标是 ( ) A.(3,2); B.(3,3); C.(3,-3); D.(-3,-3) 2.如图1所示,横坐标和纵坐标都是负数的点是 ( ) A. A 点 B. B 点 C. C 点 D.D 点 3.如图1所示,坐标是(-2,2)的点是 ( ) A.点A B.点B C.点C D. 点D 4.若点M 的坐标是(a,b),且a>0,b<0,则点M 在( ) A.第一象限; B.第二象限;C.第三象限;D.第四象限5. .点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C( 3, 2) 在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F( 2, 0) 在______轴上(2)(1)。
第六章平面直角坐标系
6.1平面直角坐标系
6.1.2平面直角坐标系
引导学生发现表示点的方法:
由点A分别向x轴和y轴作垂线,垂足M 在x轴上的坐标是4,垂足N在y轴上的坐标是2,有序数对(4,2)就叫做点A 的坐标,记作A(4,2),类似地能够确定
B、C、D的坐标分别是B(-3,-2),C(0,
1),D (0, -1) .
引导学生探索平面直角坐标系中各个局部的名称.
象限:x轴和y轴把坐标平面分成四个局部,如图4:
图4
每一个局部叫做一个象限.按逆时针方向分别为:第一象限、第二象限、第三象限、第四象限.
注意:坐标轴不属于任何象限.
活动4问题探究,合作交流,引导学生发现坐标平面内的点的坐标的特征.
问题:
(1)坐标原点的坐标是什么?(2)x轴、y轴上的点有什么特征?
(3)各个象限内点的横纵坐标有学生活动设计:
小组合作,分组讨论,然后实行交流;学
生经过思考,不难发现坐标原点的坐标是
(0,0),x轴上的点的纵坐标都是0,而y
轴上的点的横坐标都是0.如图5,由第一
象限内的点A向x轴作垂线,垂足一定在x
轴的正半轴上,所以横坐标是正数,向y
使学生探
究出特殊
位置点的
坐标特
征.。
位置与坐标一、知识要点回顾(一)基础知识知识点1.生活中位置确定的方法① 行列定位法:用,表示位置;② 极坐标定位法(方向定位法):用,表示位置;③ 经纬网定位法:用,表示位置;④ 区域定位法:用,表示位置;知识点2.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b ).注意:(1)a 与b 要用逗号分开,以示它们是两个独立有序的数,又要用括号“包装”起来,表示它们是一个整体;(2)若a≠b 则(a,b)与(b,a)表示两个不同的有序数对;(3)在直角坐标系中,有序数对(a,b )表示点的坐标,a,b 依次表示横坐标、纵坐标.知识点3.平面直角坐标系的意义:在平面内,两条具有公共原点、并且的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,向______方向为正方向,竖直的数轴叫做______或_______,向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限;注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同. 知识点4根据坐标描点(1)在平面直角坐标系内描点的方法:① 先在横轴上找到点的横坐标对应的点,过该点作横轴的;② 再在纵轴上找到点的纵坐标对应的点,过该点作纵轴的;③ 两垂线的交点就是所要描出的点。
(2)在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与之对应;反过来,对于任意一个有序实数对,在平面内都有的一点与它对应。