高一数学必修4同步练习:1-2-0-1任意角的三角函数的定义
- 格式:doc
- 大小:65.50 KB
- 文档页数:7
数学必修(4)同步练习参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x|x=k•3600+1800, k∈Z}, {x|x=k•1800+450,k∈Z} ; 8.-345°; 9. ;10.第二或第四象限, 第一或第二象限或终边在y轴的正半轴上三、11.{ α|α=k•3600+1200或α=k•3600+3000, k∈Z } -60° 120°12.由7θ=θ+k•360°,得θ=k•60°(k∈Z)∴θ=60°,120°,180°,240°,300°13.∵l=20-2r,∴S= lr= (20-2r)•r=-r2+10r=-(r-5)2+25∴当半径r=5 cm时,扇形的面积最大为25 cm2,此时,α= = =2(rad)14.A点2分钟转过2θ,且π<2θ<π,14分钟后回到原位,∴14θ=2kπ,θ= ,且 <θ< π,∴θ= π或π§1.2.1 任意角的三角函数一、CCDBCD二、7.一、三; 8. 0 ; 9. 或π; 10.二、四三、11.[2kπ, 2kπ,+ ( k∈Z)12.13.∵sinθ= - ,∴角θ终边与单位圆的交点(cosθ,sinθ)=( ,- )又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= - .14.略.§1.2.2同角三角函数的基本关系式一、BCDBBA二、7. ; 8.0; 9. ; 10.三、11.12.原式= - ==sinx+cosx13.左边=tan2θ-sin2θ= -sin2θ=sin2θ• =sin2θ• =sin2θ•tan2θ=右边14.(1)当m=0时, α=kπ, k∈Z ,cosα=±1, tanα=0(2)当|m|=1时, α=kπ+ , k∈Z ,cosα=0, tanα=0不存在(3)当0<|m|<1时,若α在第一或第四象限,则cosα= tanα= ;若α在第二或第三象限,则cosα=- tanα=- .§1.3 三角函数的诱导公式一、BBCCBC二、7. ; 8.1 ; 9.1 ; 10.三、11. 112. f(θ)= = =cosθ-1∴f( )=cos -1=-13.∵cos(α+β)=1, ∴α+β=2kπ, k∈Z. ∴cos(2α+β)= cos(α+α+β)= cos(π+α)=- cosα= - .14. 由已知条件得:sinα= sinβ①, cos α=- cosβ②,两式推出sinα= ,因为α∈(- , ),所以α= 或- ;回代②,注意到β∈(0,π),均解出β= ,于是存在α= ,β= 或α=- ,β= ,使两等式同时成立。
第一章 三角函数§1.1 任意角和弧度制一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( ) (A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z} (C){α|α=k ·180°,k ∈Z} (D){α|α=k ·90°,k ∈Z}3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( ) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( )(A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π(B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( ) (A)0个 (B)2个 (C)3个 (D)4个 二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍. *10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 . 三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少? *14.如下图,圆周上点A 依逆时针方向做匀速圆周运动.已知A 点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.§1.2.1.任意角的三角函数一.选择题1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是 ( )(A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3} 2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( )(A) 25 (B) -25 (C) 25或 -25(D) 不确定3.设A 是第三象限角,且|sin 2A |= -sin 2A ,则2A是 ( )(A) 第一象限角 (B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0 (B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形 *6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( )(A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题 7.若sin θ·cos θ>0, 则θ是第 象限的角;8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ;9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ; *10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角. 三.解答题11.求函数y =lg(2cos x12.求:13sin 330tan()319cos()cos6906ππ︒⋅--⋅︒的值.13.已知:P (-2,y )是角θ终边上一点,且sin θ= -55,求cos θ的值. *14.如果角α∈(0,2π),利用三角函数线,求证:sin α<α<tan α.数学必修(4)第一章、三角函数超辉数学- 3 - 同步练习§1.2.2 同角三角函数的基本关系式一、选择题1.已知sin α=45,且α为第二象限角,那么tan α的值等于( )(A)34(B)43- (C)43(D)43-2.已知sin αcos α=81,且4π<α<2π,则cos α-sin α的值为( )(A)23 (B)43(C) (D)±23 3.设是第二象限角,则sin cos αα ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1-4.若tan θ=31,π<θ<32π,则sin θ·cos θ的值为( )(A)±310 (B)3105.已知sin cos 2sin 3cos αααα-+=51,则tan α的值是( )(A)±83 (B)83(C)83- (D)无法确定*6.若α是三角形的一个内角,且sin α+cos α=32,则三角形为( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形(D)等腰三角形二.填空题7.已知sin θ-cos θ=12,则sin 3θ-cos 3θ= ;8.已知tan α=2,则2sin 2α-3sin αcos α-2cos 2α= ;9.(α为第四象限角)= ;*10.已知cos (α+4π)=13,0<α<2π,则sin(α+4π)= .三.解答题11.若sin x = 35m m -+,cos x =425mm -+,x ∈(2π,π),求tan x 。
高中数学学习材料唐玲出品任意角的三角函数的定义1.若角α的终边上有一点是A (2,0),则tan α的值是( ) A .-2 B .2 C .1 D .0 [答案] D=-45<0得角α的终边在第二或第三象限.综上,角α所在的象限是第二象限.3.sin585°的值为( ) A .-22 B.22 C .-32 D.32[答案] A[解析] sin585°=sin(360°+225°)=sin225°. 由于225°是第三象限角,且终边与单位圆的交点为(-22,-22),所以sin225°=-22.4.若三角形的两内角α、β满足sinαcosβ<0,则此三角形必为() A.锐角三角形B.钝角三角形C.直角三角形D.以上三种情况都有可能[答案] B[解析]∵sinαcosβ<0,∴cosβ<0,∴β是钝角,故选B.5.若sinα<0且tanα>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限[答案] C[解析]由于sinα<0,则α的终边在第三或四象限,又tanα>0,则α的终边在第一或三象限,所以α的终边在第三象限.6.若角α的终边过点(-3,-2),则()A.sinαtanα>0 B.cosαtanα>0C.sinαcosα>0 D.sinαcosα<0[答案] C[解析]∵角α的终边过点(-3,-2),∴sinα<0,cosα<0,tanα>0,∴sinαcosα>0,故选C.7.使得lg(cosθ·tanθ)有意义的角θ是第________象限角.[答案]一或二[解析]要使原式有意义,必须cosθ·tanθ>0,即需cosθ、tanθ同号,∴θ是第一或第二象限角.8.判断下列各式的符号.(1)tan250°cos(-350°);(2)sin105°cos230°.[解析] (1)∵250°是第三象限角,-350°=-360°+10°是第一象限角,∴tan250°>0,cos(-350°)>0,∴tan250°cos(-350°)>0.(2)∵105°是第二象限角,230°是第三象限角, ∴sin105°>0,cos230°<0,∴sin105°cos230°<0.9.已知P (2,-3)是角θ终边上一点,则tan(2π+θ)等于( ) A.32 B.23 C .-32 D .-23[答案] C[解析] tan(2π+θ)=tan θ=-32=-32. 10.cos 2201.2°可化为( ) A .cos201.2° B .-cos201.2° C .sin201.2° D .tan201.2° [答案] B[解析] ∵201.2°是第三象限角,∴cos201.2°<0, ∴cos 2201.2°=|cos201.2°|=-cos201.2°.11.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] C[解析] 由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则⎩⎪⎨⎪⎧sin θ+cos θ<0,sin θcos θ>0,所以有sin θ<0,cos θ<0,所以θ是第三象限角. 12.α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则sin α的值为( )A.104B.64C.24 D .-104[答案] A[解析] ∵|OP |=x 2+5,∴cos α=x x 2+5=24x 又因为α是第二象限角,∴x <0,得x =- 3 ∴sin α=5x 2+5=104,故选A.13.如果α的终边过点P (2sin30°,-2cos30°),则sin α的值等于( ) A.12 B .-12 C .-32 D .-33[答案] C[解析] ∵P (1,-3),∴r =12+(-3)2=2, ∴sin α=-32.14.已知角θ的终边经过点(-32,12),那么tan θ的值是________. [答案] -3315.(宁夏银川期中)若角α的终边经过点P (1,-2),则2tan α1-tan 2α的值为________.[答案] 43[解析] 根据任意角的三角函数的定义知tan α=-21=-2,所以2tan α1-tan 2α=2×(-2)1-(-2)2=43. 16.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,求实数a 的取值范围.[解析] ∵cos α≤0,sin α>0,∴角α的终边在第二象限或y 轴非负半轴上, ∵α终边过(3a -9,a +2),∴⎩⎪⎨⎪⎧3a -9≤0a +2>0,∴-2<a ≤3. 17.已知角θ的终边上有一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ的值.[解析] 由题意可知m m 2+3=2m4,∴m =0或5或- 5.(1)当m =0时,cos θ=-1,tan θ=0; (2)当m =5时,cos θ=-64,tan θ=-153; (3)当m =-5时,cos θ=-64,tan θ=153.B级1.sin90°+2cos0°-3sin270°+10cos180°=________.[答案] -42.利用定义求sin 5π4、cos 5π4、tan 5π4的值. [解析] 如图所示,在坐标系中画出角54π的终边.设角5π4的终边与单位圆的交点为P , 则有P (-22,-22).∴tan 5π4=-22-22=1,sin 5π4=-22,cos 5π4=-22.3.已知角α的终边在直线y =x 上,则sin α+cos α的值为________. [答案] ±2[解析] 在角α终边上任取一点P (x ,y ),则y =x , 当x >0时,r =x 2+y 2=2x , sin α+cos α=y r +x r =22+22=2, 当x <0时,r =x 2+y 2=-2x , sin α+cos α=y r +x r =-22-22=- 2.[答案] B4.已知1|sin α|=-1sin α,且lgcos α有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点是M (35,m ),且|OM |=1(O 为坐标原点),求m 的值及sin α的值.[解析] (1)由1|sin α|=-1sin α 可知sin α<0,∴α是第三或第四象限角或终边在y 轴的负半轴上的角. 由lgcos α有意义可知cos α>0,∴α是第一或第四象限角或终边在x 轴的正半轴上的角. 综上可知角α是第四象限的角. (2)∵|OM |=1,∴(35)2+m 2=1,解得m =±45.又α是第四象限角,故m <0,从而m =-45. 由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.。
1.2.1三角函数的定义(1)任意角的三角函数的定义是什么?(2)三角函数值的大小与其终边上的点P的位置是否有关?(3)如何求三角函数的定义域?(4)如何判断三角函数值在各象限内的符号?[新知初探]1.三角函数的定义(1)前提准备:①以角α的顶点O 为坐标原点,以角α的始边的方向作为x 轴的正方向,建立平面直角坐标系xOy ,如图所示.②设角α的终边上任一点P (x ,y ),OP =r (r ≠0). (2)定义:①余弦函数:x r 叫做角α的余弦,记作cos α,即cos α=xr . ②正弦函数:y r 叫做角α的正弦,记作sin α,即sin α=yr . ③正切函数:y x 叫做角α的正切,记作tan α,即tan α=yx .④正割函数:角α的正割sec α=1cos α=r x .⑤余割函数:角α的余割csc α=1sin α=r y .⑥余切函数:角α的余切cot α=1tan α=x y .[点睛] 三角函数也是函数,都是以角为自变量,以单位圆上点的坐标(坐标的比值)为函数值的函数;三角函数值只与角α的大小有关,即由角α的终边位置决定.2.正弦函数、余弦函数和正切函数的定义域3.三角函数值的符号 如图所示:正弦:一二象限正,三四象限负; 余弦:一四象限正,二三象限负; 正切:一三象限正,二四象限负.简记口诀:一全正、二正弦、三正切、四余弦.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)三角函数也是函数,它们都是以角为自变量的,以比值为函数值的函数.( ) (2)若sin α=sin β,则α=β.( )(3)已知α是三角形的内角,则必有sin α>0.( ) 答案:(1)√ (2)× (3)√2.若sin α<0,tan α>0,则α在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:C3.若角α的终边经过点P (2,3),则有( ) A .sin α=21313 B .cos α=132C .sin α=31313D .tan α=23答案:C4.sin π3=________,cos 3π4=________.答案:32 -22[典例] 已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值. [解] r =(-4a )2+(3a )2=5|a |.若a >0,则r =5a ,故sin α=y r =3a 5a =35,cos α=x r =-4a 5a =-45,tan α=y x =3a -4a =-34.若a <0,则r =-5a .同理可得sin α=-35,cos α=45,tan α=-34.利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种: 法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.法二:在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=yr ,cos α=xr .已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.[活学活用]1.设θ是第三象限角,P (-4,y )为其终边上的一点,且sin θ=16y ,则tan θ等于( )A .-52B .-255C.255D.52 解析:选D 因为sin θ=y(-4)2+y 2=16y , 所以16+y 2=6,解得y =±25,又θ是第三象限角,所以y =-25, 所以tan θ=-25-4=52,故选D.2.已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α,sec α,csc α,cot α的值.解:直线3x +y =0,即y =-3x ,则直线通过第二和第四象限. ①在第二象限内取直线上的点(-1,3),则r =(-1)2+(3)2=2,所以sin α=32,则csc α=23=233; cos α=-12,则sec α=-2;tan α=-3,则cot α=-33. ②在第四象限内取直线上的点(1,-3),则r =12+(-3)2=2,所以sin α=-32,则csc α=-233; cos α=12,则sec α=2;tan α=-3,则cot α=-33.[典例] (1)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)设α是第三象限角,且⎪⎪⎪⎪cos α2=-cos α2,则α2所在象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] (1)由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边只能位于第四象限.(2)∵α是第三象限角, ∴2k π+π<α<2k π+3π2,k ∈Z.∴k π+π2<α2<k π+3π4, k ∈Z ,∴α2在第二、四象限. 又∵⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2在第二象限. [答案] (1)D (2)B对于已知角α,判断α的相应三角函数值的符号问题,常依据三角函数的定义,或利用口诀“一全正、二正弦、三正切、四余弦”来处理.[活学活用]1.设△ABC 的三个内角为A ,B ,C ,则下列各组数中有意义且均为正值的是( ) A .tan A 与cos B B .cos B 与sin C C .sin C 与tan AD .tan A2与sin C解析:选D ∵0<A <π,∴0<A 2<π2,∴tan A2>0;又∵0<C <π,∴sin C >0.2.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-2解析:选C ∵α为第二象限角,∴sin α>0,cos α<0. ∴|sin α|sin α-cosα|cos α|=sin αsin α-cos α-cos α=2.求三角函数的定义域[典例] 求函数f (x )=sin x +lg cos xtan x的定义域.[解] 要使f (x )有意义,则⎩⎪⎨⎪⎧sin x ≥0,cos x >0,tan x ≠0,x ≠k π+π2,k ∈Z ,所以⎩⎨⎧2k π≤x ≤2k π+π,k ∈Z ,2k π-π2<x <2k π+π2,k ∈Z ,x ≠k π+π2,x ≠k π,k ∈Z.解得:2k π<x <2k π+π2,k ∈Z.所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x <2k π+π2,k ∈Z .求三角函数定义域的方法(1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得.对于三角函数的定义域问题,还要考虑三角函数自身定义域的限制.(2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以用取特殊值把不固定的集合写成若干个固定集合再求交集.[活学活用]求下列函数的定义域: (1)y =sin x +cos xtan x;(2)y =cos x +-tan x .解:(1)要使函数式有意义,需tan x ≠0,解得x ≠k π(k ∈Z). 要使tan x 有意义,需x ≠k π+π2(k ∈Z),解得x ≠k π2(k ∈Z).所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2,k ∈Z . (2)由题意得⎩⎪⎨⎪⎧cos x ≥0,-tan x ≥0.x ≠π2+k π,k ∈Z ,由cos x ≥0得x 的终边在y 轴上,或第一象限,或第四象限,或在x 轴非负半轴上. 由-tan x ≥0,得tan x ≤0,则角x 的终边在第二象限,或第四象限,或在x 轴上. 综上,角x 的终边在第四象限或x 轴非负半轴上.所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪-π2+2k π<x ≤2k π,k ∈Z .层级一 学业水平达标1.若α=2π3,则α的终边与圆x 2+y 2=1的交点P 的坐标是( ) A.⎝⎛⎭⎫12,32 B.⎝⎛⎭⎫-12,32 C.⎝⎛⎭⎫-32,12 D.⎝⎛⎭⎫12,-32解析:选B 设P (x ,y ),∵角α=2π3在第二象限, ∴x =cos2π3=-12,y =sin 2π3=32,∴P ⎝⎛⎭⎫-12,32.2.如果角α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于( ) A.12B .-12C .-32D .-33解析:选C 由题意得P (1,-3),它与原点的距离r =12+(-3)2=2,所以sin α=-32. 3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .以上三种情况都可能解析:选B ∵sin αcos β<0,α,β∈(0,π), ∴sin α>0,cos β<0,∴β为钝角. 4.代数式sin 120°cos 210°的值为( ) A .-34B.34C .-32D.14解析:选A 利用三角函数定义易得sin 120°=32, cos 210°=-32,∴sin 120°cos 210°=32×⎝⎛⎭⎫-32=-34,故选A.5.若角α的终边在直线y =-2x 上,则sin α等于( ) A .±15B .±55C .±255D .±12解析:选C 在α的终边上任取一点(-1,2),则r =1+4=5,所以sin α=y r =25=255.或者取P (1,-2),则r =1+4=5,所以sin α=y r =-25=-255.6.计算:tan π6=________,csc π6=________.解析:∵α=π6,在α的终边上取一点P (3a ,a ),∴r =2a .∴tan π6=33,csc π6=2.答案:332 7.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α=________. 解析:∵tan α=a 5=-125,∴a =-12.∴r =25+a 2=13. ∴sin α=-1213,cos α=513. ∴sin α+cos α=-713.答案:-7138.已知角θ的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边与射线y =3x (x ≥0)重合,则cos θ=________.解析:根据题意,在射线上取一点P (1,3),则x =1,y =3,r =12+32=10,所以cosθ=x r =1010.答案:10109.已知角θ终边上有一点P (-3,m ),且sin θ=24m (m ≠0),试求cos θ与tan θ的值.解:点P (-3,m )到坐标原点O 的距离r =3+m 2,由三角函数的定义,得sin θ=yr=m3+m 2=24m ,解得m =±5.∴r =2 2. 当m =5时,cos θ=x r =-322=-64,tan θ=yx =5-3=-153.当m =-5时,cos θ=x r =-322=-64,tan θ=y x =-5-3=153.10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22,即y 1=-22. ∵点M 在圆x 2+y 2=1上,∴x 21+y 21=1,即x 21+⎝⎛⎭⎫-222=1,解得x 1=22或x 2=-22.∴cos α=22或cos α=-22, ∴tan α=-1或tan α=1.层级二 应试能力达标1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,即-2<a ≤3.2.设a <0,角α的终边与圆x 2+y 2=1的交点为P (-3a,4a ),那么sin α+2cos α的值等于( )A.25B .-25 C.15 D .-15解析:选A ∵点P 在圆x 2+y 2=1上,则|OP |=1. 即(-3a )2+(4a )2=1,解得a =±15. ∵a <0,∴a =-15. ∴P 点的坐标为⎝⎛⎭⎫35,-45. ∴sin α=-45,cos α=35. ∴sin α+2cos α=-45+2×35=25. 3.若tan x <0,且sin x -cos x <0,则角x 的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0,∴角x 的终边在第四象限.4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =( ) A .8B .-8C .4D .-4 解析:选B 由题意r =|OP |=m 2+(-6)2=m 2+36,故cos α=m m 2+36=-45,解得m =-8.5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 解析:|OP |=42+y 2.根据任意角三角函数的定义得,y 42+y 2=- 255,解得y =±8.又∵sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8. 答案:-86.设0≤θ<2π,若sin θ<0且cos 2θ<0,则θ的取值范围是________.解析:因为0≤θ<2π且sin θ<0,所以π<θ<2π.又cos 2θ<0,所以2k π+π2<2θ<2k π+3π2,k ∈Z ,所以k π+π4<θ<k π+3π4,k ∈Z.因为π<θ<2π,所以k =1,即θ的取值范围是5π4<θ<7π4. 答案:⎝⎛⎭⎫5π4,7π47.求下列函数的定义域:(1)f (x )= 2+log 12x +tan x ;(2)f (x )=cos x .解:(1)由题意得⎩⎨⎧ 2+log 12x ≥0,x ≠k π+π2(k ∈Z ), 即⎩⎪⎨⎪⎧ 0<x ≤4,x ≠k π+π2(k ∈Z ). 解得0<x <π2或π2<x ≤4,所以原函数的定义域为⎝⎛⎭⎫0,π2∪⎝⎛⎦⎤π2,4. (2)若使函数有意义,则需满足cos x ≥0,即2k π-π2≤x ≤2k π+π2,k ∈Z. ∴函数的定义域为⎣⎡⎦⎤2k π-π2,2k π+π2,k ∈Z.8.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限.(2)若角α的终边上一点是M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,所以sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,得m =±45. 又α为第四象限角,故m <0,从而m =-45, sin α=y r =m |OM |=-451=-45.。
任意角的三角函数的定义1.[答案] D2.[答案] B[解析]sin585°=sin(360°+225°)=sin225°.由于225°是第三象限角,且终边与单位圆的交点为(-22,-22),所以sin225°=-22.4.[答案] B[解析]∵sinαcosβ<0,∴cosβ<0,∴β是钝角,故选B.5.[答案] C[解析]由于sinα<0,则α的终边在第三或四象限,又tanα>0,则α的终边在第一或三象限,所以α的终边在第三象限.6.[答案] C[解析]∵角α的终边过点(-3,-2),∴sinα<0,cosα<0,tanα>0,∴sinαcosα>0,故选C.7.[答案]一或二[解析]要使原式有意义,必须cosθ·tanθ>0,即需cosθ、tanθ同号,∴θ是第一或第二象限角.8.[解析](1)∵250°是第三象限角,-350°=-360°+10°是第一象限角,∴tan250°>0,cos(-350°)>0,∴tan250°cos(-350°)>0.(2)∵105°是第二象限角,230°是第三象限角,∴sin105°>0,cos230°<0,∴sin105°cos230°<0.9.[答案] C[解析] tan(2π+θ)=tan θ=-32=-32. 10.[答案] B[解析] ∵201.2°是第三象限角,∴cos201.2°<0, ∴cos 2201.2°=|cos201.2°|=-cos201.2°.11.[答案] C[解析] 由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则⎩⎪⎨⎪⎧ sin θ+cos θ<0,sin θcos θ>0,所以有sin θ<0,cos θ<0,所以θ是第三象限角.12.[答案] A[解析] ∵|OP |=x 2+5,∴cos α=x x 2+5=24x 又因为α是第二象限角,∴x <0,得x =- 3∴sin α=5x 2+5=104,故选A. 13.[答案] C[解析] ∵P (1,-3),∴r =12+(-3)2=2, ∴sin α=-32. 14.[答案] -3315.[答案] 43[解析] 根据任意角的三角函数的定义知tan α=-21=-2,所以2tan α1-tan 2α=2×(-2)1-(-2)2=43. 16.[解析] ∵cos α≤0,sin α>0,∴角α的终边在第二象限或y 轴非负半轴上,∵α终边过(3a -9,a +2),∴⎩⎪⎨⎪⎧ 3a -9≤0a +2>0,∴-2<a ≤3.17.[解析] 由题意可知m m 2+3=2m 4, ∴m =0或5或- 5.(1)当m =0时,cos θ=-1,tan θ=0;(2)当m =5时,cos θ=-64,tan θ=-153; (3)当m =-5时,cos θ=-64,tan θ=153. B 级1.[答案] -42.[解析] 如图所示,在坐标系中画出角54π的终边.设角5π4的终边与单位圆的交点为P , 则有P (-22,-22). ∴tan 5π4=-22-22=1,sin 5π4=-22,cos 5π4=-22. 3.[答案] ± 2[解析] 在角α终边上任取一点P (x ,y ),则y =x ,当x >0时,r =x 2+y 2=2x ,sin α+cos α=y r +x r =22+22=2, 当x <0时,r =x 2+y 2=-2x ,sin α+cos α=y r +x r =-22-22=- 2. [答案] B4.已知1|sin α|=-1sin α,且lgcos α有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点是M (35,m ),且|OM |=1(O 为坐标原点),求m 的值及sin α的值.[解析] (1)由1|sin α|=-1sin α可知sin α<0,∴α是第三或第四象限角或终边在y 轴的负半轴上的角.由lgcos α有意义可知cos α>0,∴α是第一或第四象限角或终边在x 轴的正半轴上的角.综上可知角α是第四象限的角.(2)∵|OM |=1,∴(35)2+m 2=1,解得m =±45. 又α是第四象限角,故m <0,从而m =-45. 由正弦函数的定义可知sin α=y r =m |OM |=-451=-45.。
任意角的三角函数(一)[学习目标] 1.借助单位圆理解任意角的三角函数定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.通过对任意角的三角函数的定义理解终边相同角的同一三角函数值相等.知识点一 三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α, 即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ; (3)y x叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r,cosα=x r ,tan α=yx.思考 角α三角函数值的大小与角α终边上的点P 离原点距离的远近有关吗?答案 角α的三角函数值是比值,是一个实数,这个实数的大小与点P (x ,y )在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关. 知识点二 正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).思考三角函数在各象限的符号由什么决定?答案三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z.题型一三角函数定义的应用例1 已知θ终边上一点P(x,3)(x≠0),且cos θ=1010x,求sin θ,tan θ.解由题意知r=|OP|=x2+9,由三角函数定义得cos θ=xr=xx2+9.又∵cos θ=1010x,∴xx2+9=1010x.∵x≠0,∴x=±1.当x=1时,P(1,3),此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3.跟踪训练1 (1)已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值; (2)已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值.解 (1)r =-4a2+3a2=5|a |.若a >0,则r =5a ,α是第二象限角,则 sin α=y r =3a 5a =35,cos α=x r =-4a5a =-45,tan α=y x =3a-4a =-34,若a <0,则r =-5a ,α是第四象限角,则 sin α=-35,cos α=45,tan α=-34.(2)因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点. 则r =a 2+3a2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32,cos α=a2a =12,tan α=3a a=3.若a <0,则α为第三象限,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3a a=3.题型二 三角函数值符号的判断 例2 判断下列三角函数值的符号: (1)sin 3,cos 4,tan 5; (2)sin(cos θ)(θ为第二象限角). 解 (1)∵π2<3<π<4<3π2<5<2π,∴3,4,5分别在第二、三、四象限, ∴sin 3>0,cos 4<0,tan 5<0. (2)∵θ是第二象限角, ∴-π2<-1<cos θ<0,∴sin(cos θ)<0.跟踪训练2 若sin θ<0且tan θ<0,则θ是第 象限的角. 答案 四解析 ∵sin θ<0,∴θ是第三或第四象限或终边在y 轴的非正半轴上的角,又tan θ<0,∴θ是第四象限的角.题型三 诱导公式一的应用 例3 求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64.(2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.跟踪训练3 求下列各式的值:(1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4; (2)sin 810°+tan 765°-cos 360°.解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32;(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.利用任意角的三角函数的定义求值,忽略对参数的讨论而致错例4 已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值. 错解 令x =24k ,y =7k ,则有r =24k 2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.错因分析 点P (24k,7k )中参数k 只告诉了k ≠0,而没有告诉k 的符号,需分k >0与k <0讨论,而上述解法错在默认为k >0. 正解 当k >0时,令x =24k ,y =7k , 则有r =24k2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724. 当k <0时,令x =24k ,y =7k ,则有r =-25k , ∴sin α=y r =-725,cos α=xr =-2425,tan α=y x =724.1.cos(-11π6)等于( )A.12 B .-12 C.32 D .-32 2.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-2 3.如果角α的终边过点P (2sin 30°,-2cos 30°),则cos α的值等于( ) A.12 B .-12 C .-32 D.324.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α= .5.已知角α的终边经过点P (2,-3),求α的三个函数值.一、选择题1.若sin θcos θ>0,则θ在( ) A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限2.sin(-1 380°)的值为( )A .-12 B.12 C .-32 D.323.设角α终边上一点P (-4a,3a )(a <0),则2sin α+cos α的值为( ) A.25 B.25或-25 C .-25D .与a 有关 4.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π6 6.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .5 二、填空题7.使得lg(cos αtan α)有意义的角α是第 象限角.8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为 . 9.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .10.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域是 .三、解答题11.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.12.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)tan 405°-sin 450°+cos 750°.当堂检测答案1.答案 C解析 cos(-116π)=cos(-2π+π6)=cos π6=32.2.答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2. 3.答案 A解析 ∵2sin 30°=1,-2cos 30°=-3,∴r =2,∴cos α=12.4.答案 -43解析 ∵cos α=332+y 2=35,∴32+y 2=5,∴y 2=16,∵y <0,∴y =-4,∴tan α=-43. 5.解 因为x =2,y =-3, 所以r =22+-32=13.于是sin α=y r=-313=-31313,cos α=x r=213=21313,tan α=y x =-32.课时精练答案一、选择题 1.答案 B 2.答案 D解析 sin(-1 380°)=sin(-360°×4+60°)=sin 60°=32.3.答案 C 解析 ∵a <0,∴r =-4a2+3a 2=5|a |=-5a ,∴cos α=x r =45,sin α=yr =-35,∴2sin α+cos α=-25.4.答案 D解析 ∵tan x <0,∴角x 的终边在第二、四象限, 又sin x -cos x <0,∴角x 的终边在第四象限.故选D. 5.答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限,且tan α=cos 2π3sin 2π3=-33, ∴角α的最小正角为2π-π6=11π6. 6.答案 A解析 ∵r =b 2+16,cos α=-b r =-b b 2+16=-35. ∴b =3.二、填空题7.答案 一或二解析 要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.8.答案 -2<a ≤3解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0,∴-2<a ≤3.9.答案 2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∵|OP |=m 2+n 2=10|m |=-10m =10.∴m =-1,n =-3,∴m -n =2.10.答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0, sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2,故函数y =|sin x |cos x +|cos x |cos x -2|sin x cos x |sin x cos x的值域为{-4,0,2}. 三、解答题11.解 当角α的终边在第一象限时,在角α的终边上取点P (1,2),由r =|OP |=12+22=5, 得sin α=25=255,cos α=15=55,tan α=2; 当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2),由r =|OQ |=-12+-22=5, 得sin α=-25=-255, cos α=-15=-55, tan α=2.12.解 (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0°=a 2+b 2-2ab =(a -b )2.(2)tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32.。
高中数学1.2 任意角的三角函数1.2.1 三角函数的定义课后训练新人教B版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学 1.2 任意角的三角函数1.2.1 三角函数的定义课后训练新人教B版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学 1.2 任意角的三角函数 1.2.1三角函数的定义课后训练新人教B版必修4的全部内容。
三角函数的定义1.(2012·天津测试)若si n α<0且tan α>0,则α的终边在( )A.第一象限 B .第二象限C .第三象限D .第四象限2.下列说法中,正确的个数是( ) ①与角π5的终边相同的角有有限个;②sin 20°<0;③cos 260°>0;④ta n 120°>0。
A.0 B.1 C.2 D .33.当π2k α≠(k ∈Z )时,sin tan cos cot M αααα+=+的取值为( ) A .M ≥0 B.M >0C.M <0 D.M 可正可负4.已知co s α=m,0<|m |<1,且tan mα=α的终边在( ) A.第一或第二象限 B .第三或第四象限C.第一或第四象限 D .第二或第三象限5.若α是第二象限的角,则sin 2α,sin 2α,tan 2α,tan 2α中必取正数的个数是( ) A.0 B .1 C.2 D.36.sin 0°+co s 90°+tan 180°+2 010c os 0°+2ta n 45°=__________.7.函数y =__________.8.已知角θ的顶点为坐标原点,始边为x轴的正半轴,若P (4,y )是角θ终边上一点,且sin 5θ-=,则y =__________. 9.已知角α的终边所在的直线与函数y =3x的图象重合,求α的六个三角函数值.10.证明恒等式2222111121sin 1cos 1sec 1csc αααα+++=++++。
三角函数的定义知识梳理1、任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cos α,即cos α=x ;y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0).2、三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.3、三角函数的定义域三角函数 定义域 sin α R cos α Rtan α⎩⎨⎧⎭⎬⎫α⎪⎪α≠π2+k π,k ∈Z 4、三角函数值的符号5、终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等.(2)公式:sin(α+k ·2π)=sin_α,cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z .例题精讲题型一、三角函数的定义及应用例1、(1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________,tan α=________. (2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. 法二:注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sinα=b a 2+b 2,余弦值cos α=a a 2+b 2,正切值tan α=ba .(2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.变式训练已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.题型二、三角函数值符号的运用例2、(1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°; ②cos 3·tan ⎝⎛⎭⎫-2π3.三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立; (2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立; (3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立; (4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.变式训练若sin 2α>0,且cos α<0,试确定α终边所在的象限.题型三、诱导公式一的应用例3、计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.变式训练求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°.课堂小测1、若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能2、若角α的终边过点(2sin 30°,-2cos 30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 3、sin ⎝⎛⎭⎫-196π=________. 4、已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.5、化简下列各式:(1)a cos 180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.同步练习1、25πsin6等于( )A .12 B .2 C .12- D .2-2、若角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=( )A .1615 B .1615- C .1516D .1516- 3、利用余弦线比较cos1,πcos 3,cos 1.5的大小关系是( ) A .πcos1cos cos1.53<< B .πcos1cos1.5cos 3<< C .πcos1coscos1.53>> D .πcos1.5cos1cos 3>> 4、如图,在单位圆中角α的正弦线、正切线完全正确的是( ) A .正弦线PM ,正切线A T '' B .正弦线MP ,正切线A T '' C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT5、角α的终边经过点(),4P b -且3cos 5α=-,则b 的值为( ) A .3 B .3- C .3± D .5 6、已知x 为终边不在坐标轴上的角,则函数()|sin |cos |tan |sin |cos |tan x x x x f x x x=++的值域是( ) A .{}3,1,1,3-- B .{}3,1-- C .{}1,3 D .{}1,3- 7、在[]0,2π上,满足3sin 2x ≥的x 的取值范围为( ) A .π0,3⎡⎤⎢⎥⎣⎦B .π2π,33⎡⎤⎢⎥⎣⎦ C .π2π,63⎡⎤⎢⎥⎣⎦ D .5π,π6⎡⎤⎢⎥⎣⎦8、若θ为第一象限角,则能确定为正值的是 ( ) A .sin2θB .cos2θC .tan2θD .cos 2θ9、已知α的终边经过点()36,2a a -+,且sin 0,cos 0,αα>≤则α的取值范围为________.10、若角α的终边与直线3y x =重合且sin 0α<,又(),P m n 是α终边上一点,且10OP =,则m n -=_____. 11、已知点()sin cos ,tan P ααα-在第一象限,则在[]0,2π内α的取值范围为__________. 12、(1)23π17πcos tan 34⎛⎫-+ ⎪⎝⎭; (2)sin 630tan 1 125tan 765cos 540︒+︒+︒+︒.13、当π0,2α⎛⎫∈ ⎪⎝⎭时,求证:sin tan ααα<<.14、已知角α的终边落在直线2y x =上,求sin α,cos α,tan α的值.。
任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________ 1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
3.牢固掌握同角三角函数的两个关系式,并能灵活运用于解题. (一)任意角的三角函数: 任意点到原点的距离公式:22y x r +=1.三角函数定义:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos xr α=;(3)比值y x 叫做α的正切,记作tan α,即tan yxα=;(4)比值x y 叫做α的余切,记作cot α,即cot x yα=; 2.说明:(1)α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;(2)根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; (3)当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan yxα=无意义;同理当()k k Z απ=∈时,y x =αcot 无意义;(4)除以上两种情况外,对于确定的值α,比值y r 、x r 、yx、x y 分别是一个确定的实数。
正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
1-2-0-1任意角的三角函数的定义
一、选择题
1.若sin α<0且tan α>0,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
[答案] C
[解析] 由于sin α<0,则α的终边在第三或四象限,又tan α>0,则α的终边在第一或三象限,所以α的终边在第三象限.
2.若角α的终边过点(-3,-2),则( ) A .sin αtan α>0 B .cos αtan α>0 C .sin αcos α>0 D .sin αcos α<0 [答案] C
[解析] ∵角α的终边过点(-3,-2), ∴sin α<0,cos α<0,tan α>0, ∴sin αcos α>0,故选C. 3.cos1110°的值为( ) A.12 B.32
C .-12
D .-3
2
[答案] B
[解析] cos1110°=cos(3×360°+30°)=cos30°=
3
2
. 4.已知P (2,-3)是角θ终边上一点,则tan(2π+θ)等于( ) A.32
B.23
C .-32
D .-23
[答案] C
[解析] tan(2π+θ)=tan θ=-32=-3
2.
5.cos 2201.2°可化为( ) A .cos201.2° B .-cos201.2° C .sin201.2° D .tan201.2°
[答案] B
[解析] ∵201.2°是第三象限角,∴cos201.2°<0, ∴cos 2201.2°=|cos201.2°|=-cos201.2°.
6.已知角α的终边经过点P (m ,-3),且cos α=-4
5,则m 等于
( )
A .-114
B.114C .-4 D .4
[答案] C
[解析] 由题意得cos α=
m
m 2+9=-45,解得m =±4.又cos α=-4
5
<0,则α的终边在第二或三象限,则点P 在第二或三象限,所以m <0,则m =-4.
7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
[答案] C
[解析] 由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则
⎩⎪⎨⎪⎧
sin θ+cos θ<0,sin θcos θ>0,
所以有sin θ<0,cos θ<0,所以θ是第三象限角. 8.α是第二象限角,P (x ,5)为其终边上一点,且cos α=2
4x ,
则sin α的值为( )
A.104
B.64
C.24 D .-10
4
[答案] A
[解析] ∵|OP |=x 2+5,∴cos α=
x
x 2+5
=24x 又因为α是第二象限角,∴x <0,得x =- 3 ∴sin α=5
x 2+5
=10
4,故选A.
9.如果α的终边过点P (2sin30°,-2cos30°),则sin α的值等于( )
A.1
2 B .-1
2
C .-
3
2
D .-
33
[答案] C
[解析] ∵P (1,-3),∴r =12+(-3)2=2, ∴sin α=-
32
. 10.函数y =|sin x |sin x +cos x |cos x |+|tan x |
tan x 的值域是( )
A .{-1,1,3}
B .{1,3}
C .{-1,3}
D .R
[答案] C
[解析] ∵该函数的定义域是{x |x ∈R 且x ≠k π
2,k ∈Z },
∴当x 是第一象限角时,y =3;
当x 是第二象限角时,y =1-1-1=-1; 当x 是第三象限角时,y =-1-1+1=-1; 当x 是第四象限角时,y =-1+1-1=-1. 综上,函数的值域是{-1,3}. 二、填空题
11.使得lg(cos θ·tan θ)有意义的角θ是第________象限角. [答案] 一或二
[解析] 要使原式有意义,必须cos θ·tan θ>0,即需cos θ、tan θ同号,∴θ是第一或第二象限角.
12.已知角θ的终边经过点(-32,12),那么tan θ的值是________.
[答案] -
33
13.已知角α的终边在直线y =x 上,则sin α+cos α的值为_____. [答案] ±2
[解析] 在角α终边上任取一点P (x ,y ),则y =x , 当x >0时,r =x 2+y 2=2x , sin α+cos α=y r +x r =22+2
2=2,
当x <0时,r =x 2+y 2=-2x , sin α+cos α=y r +x r =-22-2
2
=- 2.
14.判断符号,填“>”或“<”: sin3·cos4·tan5________0. [答案] >
[解析] π2<3<π,π<4<3π2,3π
2<5<2π,∴sin3>0,cos4<0,tan5<0,
∴sin3cos4tan5>0.
三、解答题
15.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,求实数a 的取值范围.
[解析] ∵cos α≤0,sin α>0,
∴角α的终边在第二象限或y 轴非负半轴上, ∵α终边过(3a -9,a +2),
∴⎩⎪⎨⎪⎧
3a -9≤0
a +2>0
,∴-2<a ≤3. 16.求下列各式的值: (1)sin
25π3+tan(-23π
4
); (2)sin 1170°+cos360°-tan 125°.
[分析] 此类问题的解答应先将角改写成2k π+α或k ·360°+α(k ∈Z )的形式,再运用诱导公式(一)求值.
[解析] (1)sin 25π3+tan(-23π4)=sin(8π+π3)+tan(-6π+π4)=sin
π3+tan π4=3
2+1=3+22
.
(2)sin1170°+cos360°-tan1125°
=sin(3×360°+90°)+cos(0°+360°)-tan(3×360°+45°) =sin90°+cos0°-tan45°=1+1-1=1.
17.已知1|sin α|=-1
sin α,且lgcos α有意义.
(1)试判断角α所在的象限;
(2)若角α的终边上一点是M (3
5,m ),且|OM |=1(O 为坐标原点),
求m 的值及sin α的值.
[解析] (1)由1|sin α|=-1
sin α
可知sin α<0,
∴α是第三或第四象限角或终边在y 轴的负半轴上的角. 由lgcos α有意义可知cos α>0,
∴α是第一或第四象限角或终边在x 轴的正半轴上的角. 综上可知角α是第四象限的角. (2)∵|OM |=1,
∴(35)2+m 2=1,解得m =±4
5. 又α是第四象限角,故m <0, 从而m =-45
.
由正弦函数的定义可知 sin α=y r =m |OM |=-
451=-45
.
18.(2011~2012·黑龙江五校联考)已知角θ的终边上有一点P (-3,m ),且sin θ=
2
4
m ,求cos θ与tan θ的值. [分析] 此类问题的解答一般根据三角函数的定义求解.对于本题可由定义求出m 的值,再求cos θ与tan θ的值.
[解析] (1)当m =0时,cos θ=-1,tan θ=0;
(2)当m=5时,cosθ=-
6
4,tanθ=-
15
3;
(3)当m=-5时,cosθ=-
6
4,tanθ=
15
3.。