7.1~7.2-Probability 北邮 离散数学 课件 图论 算法
- 格式:ppt
- 大小:425.00 KB
- 文档页数:65
《离散数学教案》PPT课件第一章:离散数学简介1.1 离散数学的定义离散数学是研究离散结构及其相互关系的数学分支。
离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。
1.2 离散数学的应用离散数学在计算机科学、信息技术、密码学等领域有广泛应用。
学习离散数学能够为编程、算法设计、数据结构等课程打下基础。
第二章:集合与逻辑2.1 集合的基本概念集合是由明确定义的元素组成的整体。
集合的表示方法:列举法、描述法、图示法等。
2.2 集合的基本运算集合的并、交、差运算。
集合的幂集、子集、真子集等概念。
2.3 逻辑基本概念命题:可以判断真假的陈述句。
逻辑联结词:与、或、非等。
逻辑等价式与蕴含式。
第三章:图论基础3.1 图的基本概念图是由点集合及连接这些点的边集合组成的数学结构。
图的表示方法:邻接矩阵、邻接表等。
3.2 图的基本运算图的邻接、关联、度等概念。
图的遍历:深度优先搜索、广度优先搜索。
3.3 图的应用图在社交网络、路径规划、网络结构等领域有广泛应用。
学习图论能够帮助我们理解和解决现实世界中的问题。
第四章:组合数学4.1 排列与组合排列:从n个不同元素中取出m个元素的有序组合。
组合:从n个不同元素中取出m个元素的无序组合。
4.2 计数原理分类计数原理、分步计数原理。
函数:求排列组合问题的有效工具。
4.3 鸽巢原理与包含-排除原理包含-排除原理:解决计数问题时,通过加减来排除某些情况。
第五章:命题逻辑与谓词逻辑5.1 命题逻辑命题逻辑关注命题及其逻辑关系。
命题逻辑的基本运算:联结词、逻辑等价式、蕴含式等。
5.2 谓词逻辑谓词逻辑是命题逻辑的推广,引入量词和谓词。
谓词逻辑的基本结构:个体、谓词、量词、逻辑运算等。
5.3 谓词逻辑的应用谓词逻辑在计算机科学中用于描述和验证程序正确性。
学习谓词逻辑能够提高对问题本质的理解和表达能力。
第六章:组合设计6.1 组合设计的基本概念组合设计是指从给定的有限集合中按照一定规则选取元素,构成满足特定条件的组合。
离散数学中的图论与算法离散数学是研究离散对象以及它们之间的关系和性质的数学学科。
其中,图论作为离散数学的重要分支,探究的是图和网络的理论性质和组合结构,而算法则是图论中用于解决问题和优化策略的重要手段。
一、图论基础图是由边和点构成的一种抽象结构。
在图中,点用圆圈表示,边用连接两个点的线表示。
图分为有向图和无向图两类。
有向图中的边跟一个箭头表示方向,无向图中则没有方向。
图的性质包括连通性、路径、环、度数等。
其中,连通性是指图中任意两点存在一条路径相互连通,路径是一条由边相连的点序列,环是有至少一条边和至少一个点与之相邻的路径。
图的度数指的是一个点所连接的边的数目,包括入度和出度。
入度是指指向该点的边的数目,出度是指由该点指向其他点的边的数目。
无向图每个点的度数为连接该点的边的数目。
在图中,存在欧拉回路和欧拉路径,它们分别指遍历图中所有边的路径和遍历所有点和边的路径。
二、图的表示图可以用邻接矩阵、邻接链表或关联矩阵表示。
邻接矩阵用一个二维数组表示,其中行列代表点,值代表边的存在与否。
邻接链表则将每个点的连边保存在链表中,关联矩阵表示的则是点和边的关系,每列代表一个边,每行代表一个点,值代表点和边之间的关系。
三、算法在图论中,不同的算法可以用于不同的问题,包括最小生成树、最短路径、网络流等。
最小生成树是指将一个连通带权图生成一颗生成树的权值和最小。
Prim算法和Kruskal算法是常见的最小生成树算法。
其中,Prim算法是以一个点为起点,每次选取与树中其他点距离最近的点并加入树中,直到生成一颗包括所有点的生成树;而Kruskal算法则是将边按权值从小到大排序,然后每次选取能够连接两个不在同一集合中的最小边。
最短路径算法是指求解两个节点之间最短路径长度的算法,包括Dijkstra算法和Floyd算法。
其中,Dijkstra算法是从起点出发,依次确定到每个节点的最短路径长度,直到到达目标节点;而Floyd算法则是对于所有点对之间的距离进行更新,最终得到任意两点之间的最短路径长度。
《离散数学教案》课件一、引言1.1 离散数学的定义:研究离散结构及其相互关系的数学分支。
1.2 离散数学的应用领域:计算机科学、信息技术、运筹学、生物学等。
1.3 离散数学的重要性:为计算机科学提供数学基础,培养逻辑思维和抽象能力。
二、逻辑基础2.1 命题逻辑:概念、命题、逻辑运算符(与、或、非、蕴含、等价)、真值表。
2.2 谓词逻辑:个体、谓词、逻辑运算符(量词、连接词)、真值表。
2.3 推理规则:演绎推理、归纳推理、反证法。
三、集合与函数3.1 集合的概念:集合、元素、集合运算(并、交、补、幂集)。
3.2 集合的表示:列举法、描述法、图示法。
3.3 函数的定义:函数、域、值域、函数运算(复合函数、反函数)。
四、图论4.1 图的基本概念:图、顶点、边、无向图、有向图、图的表示(邻接矩阵、邻接表)。
4.2 图的性质:连通性、路径、圈、树、网络流。
4.3 图的应用:最短路径问题、最小树问题、网络流问题。
五、组合数学5.1 组合的概念:组合、排列、组合数、排列数。
5.2 组合数的计算:二项式定理、组合恒等式。
5.3 组合数学的应用:计数原理、概率计算、图的着色问题。
《离散数学教案》课件六、组合数学(续)6.4 排列组合问题的解决方法:插板法、捆绑法、倒置法。
6.5 鸽巢原理:鸽巢定理及其应用。
6.6 数论基础:整数、素数、最大公约数、最小公倍数。
七、数理逻辑7.1 命题逻辑的等值关系:等价、蕴涵、矛盾。
7.2 谓词逻辑的等值关系:量词、域、谓词、逻辑等值。
7.3 逻辑推理:演绎推理、归纳推理、反证法。
八、代数结构8.1 群的概念:封闭性、结合律、单位元、逆元。
8.2 环和域的概念:加法群、乘法群、环、域。
8.3 群的作用:对称性、编码理论、密码学。
九、关系与函数9.1 关系的定义:关系、有序对、自反性、对称性、传递性。
9.2 等价关系与序关系:等价类、序关系、偏序集。
9.3 函数的性质:单射、满射、双射、复合函数。