变电设备专业巡检实施细则—紫外成像检测要求概要
- 格式:doc
- 大小:3.56 MB
- 文档页数:15
电气设备紫外成像检测技术在变电设备带电检测中的应用摘要:为保证电力系统的安全,需加强电力系统中变电设备的安全检测。
将电气设备紫外成像检测技术应用于变电设备的带电检测中,可判断故障的塑性、故障类型、故障程度等,发现变电设备运行中存在的缺陷,在变电设备带电检测中具有重要应用价值。
本文对电气设备紫外成像检测技术在变电设备带电检测中的应用以及影响因素进行了研究分析。
关键词:变电设备;电气设备;紫外成像检测技术;故障检测;1概述变电设备在电力系统中具有极其重要的作用,其安全运行是电力系统输供电安全的保障。
在科学技术不断发展的过程中,紫外成像检测技术得到成熟发展,并在电气设备检测中得到广泛应用,将其应用于变电设备检测中,可明确判断出变电设备故障发生部位、故障程度等,具有良好的应用效果和推广应用价值。
本文对电气设备紫外成像检测技术在变电设备带电检测中的应用以及影响因素进行了研究分析。
2 电气设备紫外成像检测技术为保证电气设备的安全运行,带电检测技术的应用成为电力行业发展的趋势。
紫外、红外成像检测技术已被广泛应用于对带电设备的电晕放电、变电设备表面局部放电等特性的检测中[1]。
电力系统中高压导体表面粗糙、终端锐角区域处理不良、高压套管以及导线终端绝缘部分处理不良等问题,以及高压导线断股、破损等现象,将导致电气设备在过程中因电场集中,而产生放电现象,或由于电场强度不同而发生电晕、电弧等现象。
在该放电过程中,空气中的电子将接收和释放能量,在此过程中将释放出波长为10~400nm的紫外线。
太阳光中波长小于280nm的紫外线易被大气中的臭氧吸收,形成了太阳光照射盲区,并会通过大气传播波长范围315~400nm的紫外线。
电气设备高压放电产生的紫外线波长为280~400nm,同时也有一部分的波长为230~280nm,使用紫外成像检测技术对该部分紫外线进行探测,并将其作为电气设备放电的判断依据[2]。
图1给出了紫外成像检测技术的成像原理图,变电设备带电检测中,接受变电设备放电时电子产生的紫外线信号,经过处理后,与可见光影像产生重叠,并在紫外成像检测设备的显示器上进行显示,从而可确定变电设备的电晕部位、电晕强度等,为变电设备运行状态评估测试提供依据。
紫外成像技术在变电站一次设备检修中的应用紫外成像技术在电力设备检修中发挥着越来越重要的作用,尤其是在变电站一次设备的检修中,其应用已经成为了一种必不可少的手段。
紫外成像技术可以帮助工作人员及时发现设备的隐患,提高设备的可靠性和安全性,同时也大大提高了工作效率,降低了检修成本。
本文将重点介绍紫外成像技术在变电站一次设备检修中的应用,以及其优势和未来发展趋势。
1. 紫外成像技术原理紫外成像技术是一种利用红外相机和紫外灯进行成像的技术。
红外相机能够接收到设备发出的热量辐射信号,将其转换成可见的图像,从而找出设备的热点和异常现象。
而紫外灯则能够照亮设备表面,使得红外相机能够更加清晰地观察到设备表面的情况。
通过这种方式,工作人员可以及时地发现设备的异常情况,从而采取相应的维修措施。
(1)发现设备的热点。
变电站一次设备在运行时会产生一定的热量,如果设备存在过热现象,就会产生热点。
通过紫外成像技术,工作人员可以及时地发现设备的热点,从而判断出设备的运行状态是否正常。
(2)检测设备的绝缘状态。
紫外成像技术可以通过观察设备表面的热情况,判断出设备的绝缘状态是否良好。
如果设备表面存在局部过热的情况,就可能意味着设备的绝缘状况出现了问题。
(3)检测设备的接触状态。
紫外成像技术还可以观察设备的接触状态,发现设备的连接点是否松动或者存在异常情况。
这对于设备的可靠性和安全性都具有重要意义。
3. 紫外成像技术在一次设备检修中的优势(1)高效。
紫外成像技术可以快速地对设备进行成像,并将成像结果显示在屏幕上,工作人员可以迅速判断设备是否存在异常情况,从而快速采取相应的维修措施。
(2)非接触式检测。
紫外成像技术可以在不需要接触设备的情况下进行检测,减少了对设备的干扰和风险,也减少了对设备的磨损。
(3)全方位检测。
通过紫外成像技术,工作人员可以对设备的表面进行全方位的观察,发现设备的热点、绝缘状态和接触状态等问题,提高了检修的全面性和准确性。
工艺与技术♦G o n g y i yu Jishu紫外成像技术在变电设备带电检测中的应用姜磊(国家电网内蒙古东部电力有限公司检修分公司,内蒙古通辽028001)摘要:为了保证电力系统安全运行,必须加强对变电设备的安全检测。
现对紫外成像检测原理进行详细介绍,并分析其优势和影响 因素,以期促进紫外成像 在变电 带电检测中进一广应用。
关键词:紫外成像;变电 ;带电检测;应用0引言在电力建设中变电设备发挥着重要作用,变电设备的安全 运行是电网、电力系统输供电安全的保障。
在科学 不断发展的 中,紫外成像 ,并在变电 带电检测中得到了应用, 明确地判断出变电 故障发生部位、故障 等。
因此,在变电 中,紫外成像 有 :要的应用意义。
1紫外成像检测原理经济的快速发展,与电力有着密不可分的关系。
近几年 来,我国电网建设规模不断扩大,为经济的发展提供了电力 保障。
随着用电需求的不 ,电力系统的规模还在不扩大,各种电气得到了广泛的应用,且数量在不断。
为了保证电力系统的安全运行,带电检测运行设备成为电 力行业发展 中一种必然趋势。
随着科学 的发展,紫外、红外成像检测 逐渐 ,并在电气 测中得到了广 用。
在 电带电 测中 用 外 像 ,测 电晕放电和局部放电等情况,绝缘[1]。
对电力系统中电气设备的运行现状进行分析可知,高压导 体表面粗糙、锐角区域处理不良及高压套管、导线终端绝缘部 分处理不良等,均影响着变电 的有效运行。
此外,出现高压导线断股、破损等现象的电气 ,在 行过程中,会因为电场集中 放电现象,根据电场 的不同, 电晕、闪电弧。
在电气 放电 中,空气中的电子不断接收和释放能量,当电子释放能量时,就 出紫外线,紫外线的波长为40〜40nm。
在太阳光中也有紫外线,而波长小于280 nm的紫外线会气中的臭 收,于是就形成了 区,因此,气的紫外线波长范围一般在315〜400 nm。
而空气中的氮 气电离 的紫外线波长通常为280〜400 nm,只有一小部分波长低于280 nm。
紫外成像技术在变电设备带电检测中的应用创新摘要在时代不断发展下,多数电力企业在变电设备带电检测工作中对紫外成像技术进行了应用,本文对紫外成像技术原理进行说明,之后对其在变电设备带电检测中的具体应用进行阐述。
关键词紫外成像技术;变电设备带电检测;应用;研究在科学技术不断发展下紫外成像技术在各行业中均有所应用,在电力企业中同样如此,下面笔者对紫外成像技术在变电设备带电检测中的应用进行分析,希望为工作人员实际检测工作提供一定的参考建议。
1 紫外成像技术原理分析紫外成像技术主要使用相应的紫外成像检测设备严格按照紫外成像原理实现电气设备带电检測的目标,其能够对电气设备放电过程产生的紫外信号进行接收和分析,在分析后会形成紫外图像,将紫外图像和可见光图像进行重叠处理后会清晰地呈现在显示器上,检测人员对其进行进一步分析便可得知电气设备放电位置和强度,进而掌握其运行情况,为后期检修工作提供更多的依据和支持。
通常情况下紫外成像技术有活动模式和集成模式两种,使用前者时检测人员可以及时、准确地对变电设备的放电情况进行观察,同时能够对一个与特定区域内紫外线光子总量的比例进行准确显示,为检测人员后期定量分析工作提供了可靠的数据;后者可以对某段时间某个区域内的紫外线光子显示内容进行及时保存,之后使用FIFO方法完成动态平均值更新工作,检测人员可以对变电设备放电的具体情况进行了解和掌握,在分析后能够尽快采取措施进行处理,进而提升变电设备运行效果[1]。
2 紫外成像技术在变电设备带电检测中的运用分析(1)对紫外成像技术在导线外伤探测中的具体应用进行分析。
变电设备安装过程中在内外界因素影响下会出现不同程度的故障问题,为了有效解决上述问题电力企业可以对紫外成像技术进行合理应用,使用此技术可以对变电设备是否存在放电或者高压的情况进行检测,能够在第一时间对以上两种情况进行分析,在分析后会立即采取相应措施进行处理。
(2)对紫外成像技术在变电设备污染检测中的具体应用进行分析。
紫外成像技术在 500kV 变电站设备带电检测中的应用摘要:紫外成像技术能够更加快捷、直观、灵敏的检测高压设备放电情况,在变电站带电检测中的应用有着很多优势,已经能够实现白天检测,检测效率高,速度快,在实际应用中和红外成像技术相互配合,能够显著增强设备故障点的检测能力,提高变电运行稳定性。
关键词:紫外成像技术;变电站;带电检测一、紫外成像检测技术原理高压设备由于局部尖端、毛刺、污秽等造成局部场强畸变增大而对空气发生电离形成电晕,空气电离过程中会向外界发射大量的紫外线。
紫外成像检测技术就是利用特制的光学传感系统捕捉空气电离过程中产生的紫外线,经过处理后与可见光产生的图像一同成像于显示器上,从而达到显示和定位高压设备局部电晕位置和放电强度的目的。
紫外线的波长范围是40~400nm,太阳光线中也会含有紫外线。
由于这些光线在穿过地球臭氧层过程中波长小于300nm的紫外线基本上被吸收,实际到达地球的紫外线波长在300nm以上,这个波段范围即“日盲区”。
为克服太阳光中紫外线的影响,现场应用的紫外成像检测仪器检测的波长范围为280~300nm。
首先利用紫外光束分离器将输入的光线分成两部分,一部分形成可见光影像,另一部分经过紫外线太阳镜过滤后保留其紫外部分,并经过放大器处理后在电荷耦合元件(charge coupled device,CCD)板上得到清晰度高的紫外图像,最后通过特殊的影像工艺将紫外光影成像仪和可见光影像叠加在一起,形成复合影像。
紫外成像仪采用双通道图像融合技术,将紫外光与可见光叠加,即可精确定位电晕的故障区域,又可显示放电强度。
二、紫外成像技术高压设备电离放电,不同的电场强度下,产生的电晕、闪络以及电弧有所差别,电离过程中,空气中电气获得能量并将其释放,电子释放能量就会产生声波和光波,同时生成臭氧、紫外线以及硝酸。
紫外成像技术就应用了这一特点,使用紫外仪器接受放电过程产生的紫外信号,处理后将其和可见光叠加,就能够准确判断其电晕强度和位置,用作判断设备状态的依据。
紫外检测标准紫外检测是一种常见的分析检测方法,广泛应用于化工、医药、环境监测等领域。
紫外检测通过测定物质在紫外光下的吸收情况,来分析物质的成分和浓度。
在进行紫外检测时,需要严格遵循一定的标准,以确保检测结果的准确性和可靠性。
首先,紫外检测的仪器设备需要符合国家标准和行业规范。
仪器设备的选型、安装、调试和维护都需要按照相关标准进行,以保证仪器设备的稳定性和精准度。
同时,操作人员也需要接受专业的培训和考核,确保其具备操作仪器设备的能力和技术水平。
其次,样品的准备和处理也是紫外检测中非常重要的环节。
在进行样品准备时,需要注意避免污染和氧化,保证样品的纯度和稳定性。
对于液体样品,需要进行适当的稀释和溶解,以确保样品浓度适宜,不会超出仪器检测范围。
在样品处理过程中,还需要注意避免光照和高温,避免对样品造成影响。
紫外检测的测定条件也需要按照标准进行严格控制。
包括波长范围的选择、光程的确定、温度和湿度的控制等。
这些条件的选择和控制,直接影响着检测结果的准确性和可比性。
因此,在进行紫外检测时,需要根据样品的特性和检测的目的,选择合适的测定条件,并进行严格的控制和调节。
最后,对于紫外检测结果的分析和判定,也需要遵循相应的标准和规范。
对于吸收峰的识别和定量分析,需要按照相关的计算方法和公式进行,以确保结果的准确性和可靠性。
同时,还需要对检测过程中的各种影响因素进行评估和校正,以排除干扰和误差,得到真实可靠的检测结果。
总之,紫外检测作为一种重要的分析检测方法,在进行检测时需要严格遵循相关的标准和规范,从仪器设备、样品处理、测定条件到结果分析,都需要进行严格控制和操作。
只有这样,才能得到准确可靠的检测结果,为相关领域的生产和研究提供有力的支持。
紫外放电检测成像仪1本标准规定了紫外放电检测成像仪的参数、性能要求、功能要求、试验方法、检测规则等。
本标准适用于紫外放电检测成像仪。
2下列文件中的条款通过本标准的应用而成为本标准的条款。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本 (包括所有的修改单) 适用于本文件。
GB/T 2423.2-2008 电工电子产品环境试验第 2 部分:试验方法试验 A: 高温GB/T 2423.1-2008 电工电子产品环境试验第 2 部分:试验方法试验 A: 低温GB/T 2423.10-2008 电工电子产品环境试验第 2 部分:试验方法试验 A:振动 (正弦)GB 4208-2008 外壳防护等级GB 4943-2001 信息技术设备的 01 安全GB/T 13962--1992 光学仪器术语GB/T 18268-2010 测量、控制和实验室用电设备电磁兼容性要求Array3参考 GB/T 13962-1992 确立的下列术语和定义适用于本标准3.1 紫外放电检测成像仪 Ultraviolet discharge detection imager适用于对带电设备电晕放电检测,通过紫外成像光学系统,紫外探测器及电子处理系统,将 240-280nm 紫外光转换成可见图像,实现过滤 280nm 以上入射光实现对日光屏蔽。
3.2 光子数 Photon Number表征电晕放电强度的主要测到的光子数量:是紫外放电检测成像仪在一定增益下单位时间内观。
3.3 增益 Amplification紫外放电检测成像仪像增强器电压。
3.4 电晕放电形态 Form Of Corona Discharge带电设备表面的电晕放电表现出连续稳定和间歇性放电两种形态。
3.5 视场 Field Of View紫外放电检测成像仪可以观测到的空间范围在水平和垂直方向的最大张角,单位为度(°)。
44.14.1.1 外观主机及其各种配件的壳体不应出现明显的划伤、四陷、变形、脱漆。
紫外成像技术在变电站一次设备检修中的应用随着科技的不断进步,新型的检测技术也在不断涌现。
紫外成像技术是近年来广受关注的一种新型检测技术,它在变电站一次设备检修中的应用也备受关注。
紫外成像技术通过捕捉物体散发的紫外辐射,可以实现无接触、无损伤的检测,广泛应用于电器设备的缺陷检测、热态监测、局部放电检测等领域。
在变电站一次设备检修中,紫外成像技术可以快速、准确地检测设备的缺陷,提高了设备的安全性和稳定性,为变电站的正常运行提供了保障。
1. 高效快捷:传统的设备检修往往需要停机维护,影响变电站的正常运行。
而使用紫外成像技术,可以在设备运行状态下进行检测,大大缩短了检修时间,提高了检修效率。
2. 高精度:紫外成像技术可以实现高精度的热态监测,可以发现设备的热点、异常热量等问题,提前预警设备的故障,确保变电站设备的安全运行。
3. 无接触、无损伤:传统的检测方法往往需要对设备进行接触式检测,容易造成设备的损坏。
而使用紫外成像技术,可以实现无接触、无损伤的检测,对设备没有任何伤害。
4. 全方位监测:紫外成像技术可以全天候、全方位监测设备的状态,可以实现对设备的全面检测,发现设备的各种问题,提高了设备的可靠性和稳定性。
1. 设备缺陷检测:紫外成像技术可以快速、准确地检测设备表面的缺陷,如裂纹、破损、漏电等问题,及时发现设备的隐患,做出相应的维修和保养,确保设备的安全运行。
2. 热态监测:紫外成像技术可以实时监测设备的热态,通过捕捉设备散发的紫外辐射,分析设备的热量分布,发现设备的异常热量,预警设备的故障,及时采取措施,避免设备的损坏。
某变电站采用紫外成像技术对变压器进行了一次设备检修。
通过紫外成像技术,发现了变压器表面存在局部放电现象,热量分布不均匀的问题。
及时对变压器进行了维修处理,避免了变压器的损坏,确保了设备的正常运行。
通过紫外成像技术,还发现了变压器的温度过高的情况,预警了设备的故障,及时采取了措施,保障了变压器的安全运行。
紫外成像技术在变电设备带电检测中的应用谢永卫摘要:为了保证电力系统安全运行,必须加强对变电设备的安全检测。
现对紫外成像检测原理进行详细介绍,并分析其影响因素,以期促进紫外成像技术在变电设备带电检测中进一步推广应用。
关键词:紫外成像;变电设备;带电检测;应用紫外成像检测技术在这些年来得到了全面的发展,作为一项新的应用技术,通过对电力设备放电过程产生大量紫外线原理的应用,准确评估电力设备绝缘状态,有助于及时检查设备现有的放电缺陷。
这种技术与其他方法相比,具备简单方便、准确安全的优势,并且应用过程中也不会对其他的设备正常运行产生影响,因此有着巨大的发展前景。
1紫外成像检测原理经济的快速发展,与电力有着密不可分的关系。
近几年来,我国电网建设规模不断扩大,为经济的发展提供了电力保障。
为了保证电力系统的安全运行,带电检测运行设备成为电力行业发展过程中一种必然趋势。
随着科学技术的发展,紫外、红外成像检测技术逐渐成熟,并在电气设备检测中得到了广泛应用。
在变电设备带电检测中应用紫外成像技术,可以通过检测设备电晕放电和局部放电等情况,来判断设备绝缘性能。
对电力系统中电气设备的运行现状进行分析可知,高压导体表面粗糙、锐角区域处理不良及高压套管、导线终端绝缘部分处理不良等,均影响着变电设备的有效运行。
此外,出现高压导线断股、破损等现象的电气设备,在其运行过程中,会因为电场集中产生放电现象,根据电场强度的不同,会产生电晕、闪络或电弧。
在电气设备放电过程中,空气中的电子不断接收和释放能量,当电子释放能量时,就会辐射出紫外线,紫外线的波长为40~400nm。
在太阳光中也有紫外线,而波长小于280nm的紫外线会被大气中的臭氧吸收,于是就形成了太阳盲区,因此,通过大气的紫外线波长范围一般在315~400nm之间。
而空气中的氮气电离时产生的紫外线波长通常为280~400nm,只有一小部分波长低于280nm。
综合以上2点,使用紫外成像技术对电气设备进行带电探测,如能检测到波长低于280nm的紫外线,即可将其作为电气设备放电的判断依据。