对偶理论
- 格式:pdf
- 大小:99.39 KB
- 文档页数:11
对偶理论知识点总结一、一般理解对偶理论是运筹学和数学中的一个重要理论,主要研究优化问题的对偶性质和利用对偶问题来解决原始问题的方法。
优化问题是现实世界中的一种普遍问题,它的目标是在一定的约束条件下找到最优解。
而对偶理论则是研究优化问题的一个重要角度,它告诉我们,对于每一个原始问题都存在一个对偶问题,通过对偶问题我们可以获得原始问题的一些重要信息,比如最优解的下界。
二、对偶问题的定义在深入了解对偶理论之前,我们首先需要了解什么是对偶问题。
对于一个原始优化问题:\[ \begin{cases} inf \ c^T x \\ Ax=b \\ x\geq0 \end{cases}\]它的对偶问题可以定义为:\[ \begin{cases} sup \ b^T y \\ A^Ty+c=y \\ y\geq0 \end{cases}\]其中,\(c,x\)是原始问题的目标函数和解向量,\(A,b\)是原始问题的约束条件,对偶问题的目标函数和解向量分别为\(b,y\)。
原始问题和对偶问题之间存在着一种对偶关系,通过对偶问题我们可以获得原始问题的一些重要信息。
三、对偶性质对偶理论的一个重要性质就是对偶性质,它告诉我们原始问题和对偶问题之间存在着一种非常紧密的联系。
具体来讲,对偶性质包括弱对偶性和强对偶性两个方面。
1. 弱对偶性:对于任意一个优化问题,其对偶问题的目标函数值不会超过原始问题的目标函数值,即对于原始问题的任意可行解x和对偶问题的任意可行解y,有\[c^Tx\geqb^Ty\]2. 强对偶性:若原始问题和对偶问题均存在最优解,则它们的目标函数值相等,即\[inf \c^Tx=sup \ b^Ty\]这两个对偶性质告诉我们,对偶问题的解可以为原始问题的最优解提供一个下界,并且在某些情况下,对偶问题的解可以等于原始问题的最优解。
四、对偶问题的应用对偶理论不仅仅是一种理论概念,更是一种实际问题求解的工具。
在实际问题中,我们经常可以通过对偶问题来求解原始问题,或者通过对偶问题的解来获得原始问题的解。
对偶理论几个性质的证明
图论的对偶理论指在图论的内容中针对一个特殊的图G建立的另一个
图G*,它们之间的关系满足交换律,即G与G*互为对偶,可以发现的特
性包括:
一、Konig定理:
它是有关其中一种有向图的带宽是否可容的定理,即一个可容的有向
图其最大匹配数等于最大独立集的最小覆盖数。
它的对偶理论表明,一个
图G的最大匹配是邻接矩阵A的最小非零向量的数量加上图G的最小独立
集的数量。
其中,A是G的一个邻接矩阵,反映了图G的一种表示。
证明:
假设G是可容的有向图,则G具有非负的顶点覆盖数V和边覆盖数E,满足V≤E。
而G*是G的对偶图,具有最大匹配数m和最小独立集数f。
我们假设,图G的边覆盖数E等于G*的最小独立集数f,可以说明图
G的顶点覆盖数V等于G*的最大匹配数m。
因此,可以将等式node(V) = edge(E)和node(V) = match(m)结合起
来得到:
edge(E) = match(m)
与Konig定理的含义相同,即:G的最大匹配数等于G*的最小独立集数。
另外,根据等式,我们可以得出:
G具有V顶点和E边的最大匹配数=G*具有f点和m边的最小独立集
数
结论:一个可容的有向图其最大匹配数等于最小独立集的最小覆盖数。
二、Hall定理:
Hall定理指出:若图G有顶点集V和边集E,则G具有最大匹配 M 且,V,<=,M,时,必有一个完全匹配。