层次分析法(AHP)法建模
- 格式:doc
- 大小:1.17 MB
- 文档页数:61
数学建模——层次分析法层次分析法(Analytic Hierarchy Process,AHP)是一种用于复杂决策和评估问题的定量方法,旨在帮助决策者在多个准则和选项之间进行权衡和选择。
该方法由美国学者Thomas L. Saaty于1970年代初提出,已经广泛应用于管理、工程、经济学、环境科学等领域。
方法步骤:1.建立层次结构:将复杂的决策问题分解为不同层次的因素和准则,形成层次结构。
层次结构包括目标层、准则层和选择层。
2.创建比较矩阵:对每个层次内的准则和选择进行两两比较,确定它们之间的相对重要性。
使用尺度来表示两者之间的相对优先级,通常是1到9之间的数值。
3.计算权重:通过计算比较矩阵的特征向量,得出每个准则和选择的权重。
特征向量反映了每个准则和选择对目标的贡献程度。
4.一致性检验:检查比较矩阵的一致性,确保所做的两两比较是合理的。
如果比较矩阵不够一致,需要进行调整。
5.计算综合得分:将每个选择的权重与其所属准则的权重相乘,得出每个选择的综合得分。
综合得分反映了每个选择在整体目标中的重要性。
6.做出决策:根据综合得分,确定最佳选择。
较高的综合得分通常意味着更优选。
示例:选择旅游目的地假设你想选择一个旅游目的地,考虑了三个因素:景色美丽度、文化体验和交通便利性。
你将这三个因素作为准则,然后列出了三个潜在的旅游目的地:A、B 和C。
步骤:1.建立层次结构:2.目标层:选择最佳旅游目的地3.准则层:景色美丽度、文化体验、交通便利性4.选择层:A、B、C5.创建比较矩阵:比较准则之间的相对重要性,如景色美丽度相对于文化体验的比较,以及文化体验相对于交通便利性的比较。
使用1到9的尺度,表明一个因素比另一个因素重要多少。
6.计算权重:计算每个准则和每个选择的权重,使用特征向量法。
7.一致性检验:检查比较矩阵的一致性。
如果一致性不够,可能需要重新考虑比较。
8.计算综合得分:将每个选择的权重与其所属准则的权重相乘,得出每个选择的综合得分。
层次分析法建模层次分析法(AHP)是一种用于多准则决策的定量分析方法,最早由美国学者托马斯·S·萨亚基提出,常用于解决复杂的决策问题。
AHP方法通过构建层次结构模型,并运用专家主观判断与数学计算相结合的方法,评估多个准则的重要性,并最终选择最佳方案。
AHP方法的优势在于,能够将主观因素与客观因素相结合,充分考虑决策者的主观意见,并且能够提供较为可靠的决策结果。
下面将介绍AHP 方法的建模过程。
首先,我们需要明确决策的目标是什么。
然后,将目标拆分成若干个层次,形成一个层次结构。
层次结构通常包括目标层、准则层和方案层。
目标层表示最终的决策目标,准则层表示实现目标所必须满足的准则,而方案层则表示可以选择的方案。
例如,假设我们要购买一辆新车,目标层为“购买一辆适合自己的车”,准则层可以包括“价格”、“品牌口碑”、“性能”等,方案层可以包括“A品牌的小型车”、“B品牌的中型车”等。
接下来,我们需要对每个层次的准则和方案进行两两比较,以确定其重要性。
比较的方法是两两比较矩阵。
对于准则层,我们可以将每个准则之间的重要性按照9点标度进行比较,其中1表示两个准则具有相同的重要性,9表示一个准则比另一个准则重要性高很多。
对于方案层,我们可以将每个方案与每个准则之间的重要性进行比较。
比较的结果可以用一个判断矩阵表示。
然后,我们需要计算每个层次的权重。
对于准则层,我们可以通过计算准则之间的重要性判断矩阵的特征向量来得到各准则的权重。
对于方案层,我们可以通过计算方案与准则之间的重要性判断矩阵的特征向量来得到各方案的权重。
最后,我们可以通过计算方案的综合得分来确定最佳方案。
综合得分可以通过将每个方案的权重与各准则的权重相乘并求和得到。
AHP方法的建模过程相对简单,但是需要决策者对各准则和方案之间的重要性进行准确评估。
因此,选择合适的专家和确保专家对决策问题有足够的了解是非常重要的。
总之,层次分析法是一种用于多准则决策的定量分析方法。
层次分析法建模层次分析法〔AHP -Analytic Hierachy process 〕---- 多目标决策方法70 年代由美国运筹学家T ·L ·Satty 提出的,是一种定性与定量分析相结合的多目标决策分析方法论。
吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标〔因素〕结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。
传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述〔自然现象、社会现象〕现象的规律。
根本内容:〔1〕多目标决策问题举例AHP 建模方法〔2〕AHP 建模方法根本步骤〔3〕AHP 建模方法根本算法〔3〕AHP 建模方法理论算法应用的假如干问题。
参考书: 1、姜启源,数学模型〔第二版,第9章;第三版,第8章〕,高等教育2、程理民等, 运筹学模型与方法教程,〔第10章〕,清华大学3、?运筹学?编写组,运筹学〔修订版〕,第11章,第7节,清华大学一、问题举例:A .大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择〞时,用人单位与毕业生都有各自的选择标准和要求。
就毕业生来说选择单位的标准和要求是多方面的,例如:① 能发挥自己的才干为国家作出较好奉献〔即工作岗位适合发挥专长〕; ② 工作收入较好〔待遇好〕;③ 生活环境好〔大城市、气候等工作条件等〕;④ 单位名声好〔声誉-Reputation 〕;⑤ 工作环境好〔人际关系和谐等〕⑥ 开展晋升〔promote, promotion 〕时机多〔如新单位或单位开展有后劲〕等。
问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?B.假期旅游地点选择 暑假有3个旅游胜地可供选择。
第八章 层次分析法层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。
§1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。
运用层次分析法建模,大体上可按下面四个步骤进行:(i )建立递阶层次结构模型;(ii )构造出各层次中的所有判断矩阵;(iii )层次单排序及一致性检验;(iv )层次总排序及一致性检验。
下面分别说明这四个步骤的实现过程。
1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。
在这个模型下,复杂问题被分解为元素的组成部分。
这些元素又按其属性及关系形成若干层次。
上一层次的元素作为准则对下一层次有关元素起支配作用。
这些层次可以分为三类:(i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。
每一层次中各元素所支配的元素一般不要超过9个。
这是因为支配的元素过多会给两两比较判断带来困难。
下面结合一个实例来说明递阶层次结构的建立。
例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。
层次分析法法建模
一、AHP简介
AHP(Analysis Hierarchy Process),即层次分析法,是一种从抽象的多个目标到具体决策的一种分析方法,它由美国系统工程师 Thomas Saaty 于1970年提出,它利用层次结构表示影响多元决策的各因素之间的相互关系,采用数学模型进行综合比较,把多样性、复杂性及无序综合化,转变成一个有序的决策过程。
二、AHP的基本原理
(1)设定目标待决策的层次结构,并建立多个分支,形成一棵决策树。
(2)比较每一对相邻层次因素,将它们的相互关系表示为一个矩阵大小。
(3)从矩阵大小求出矩阵的特征值及特征向量。
(4)根据特征值来判断比较矩阵的相似程度,选出最大特征值及其对应的特征向量。
(5)根据特征向量算出权值,从而确定决策问题的最优解。
三、AHP的应用
AHP方法提供了一种科学、系统的方法,它适用于复杂的决策问题,可以将复杂问题转化为可以解决的层次分析问题,实现有效的决策过程。
AHP方法可以用于企业管理、决策分析、公共安全、计算机技术、政府管理、商业投资、优化设计等。
层次分析法AHP法建模层次分析法(Analytic Hierarchy Process,AHP)是由美国运筹学家托马斯·L·赛蒙提斯(Thomas L. Saaty)于20世纪70年代提出的一种多属性决策方法。
AHP法通过构建一个层次结构,将复杂的决策问题分解为若干个层次,从而使决策问题具有可比较性和可量化性,通过量化的方法进行决策。
AHP法建模的步骤如下:1.构建层次结构:首先将决策问题分解为若干个层次,从上到下依次是目标层、准则层和方案层。
目标层是决策问题的最高层,准则层是目标层下的子目标,方案层是准则层下的具体方案。
2.确定判断矩阵:对于准则层和方案层,通过两两比较确定判断矩阵。
判断矩阵是一个n×n的矩阵,其中n是准则层或方案层的数量。
在两两比较中,使用1-9的尺度对两个元素之间的相对重要性进行评判,其中1表示两个元素的重要性相等,9表示一个元素比另一个元素重要性明显更大。
3.计算权重向量:通过求解判断矩阵的最大特征值和对应的特征向量,可以得到准则层和方案层的权重向量。
特征向量中的每个元素表示对应准则或方案的重要性权重。
4. 一致性检验:利用一致性指标判断判断矩阵的一致性。
一致性指标的计算涉及到随机一致性指数(Random Index,RI)和一致性比例(Consistency Ratio,CR),一致性通过对RI进行比较得到。
5.汇总判断矩阵:将判断矩阵的权重向量进行归一化,然后将准则层和方案层的权重向量进行组合,得到决策问题在各层次上的权重向量。
6.最终评价:利用各层次上的权重向量计算方案的综合得分,从而得到最佳方案。
层次分析法通过将复杂的决策问题分解为简单的子问题,将主观判断量化,避免了直接比较和抽象概念的评价,使决策问题更加精确和可行。
同时,通过一致性检验可以验证判断矩阵的可靠性和有效性,提高了决策结果的可信度。
AHP法广泛应用于各个领域,如工程管理、市场营销、投资决策等。
层次分析法建模层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。
吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。
传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、社会现象)现象的规律。
基本内容:(1)多目标决策问题举例AHP建模方法(2)AHP建模方法基本步骤(3)AHP建模方法基本算法(3)AHP建模方法理论算法应用的若干问题。
参考书:1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。
就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉-Reputation);⑤工作环境好(人际关系和谐等)⑥发展晋升(promote, promotion)机会多(如新单位或单位发展有后劲)等。
问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?工作选择贡献收入发展声誉工作环境生活环境可供选择的单位P1’P2 ‘----- P nB.假期旅游地点选择暑假有3个旅游胜地可供选择。
例如:1P :苏州杭州,2P 北戴河,3P 桂林,到底到哪个地方去旅游最好?要作出决策和选择。
为此,要把三个旅游地的特点,例如:①景色;②费用;③居住;④环境;⑤旅途条件等作一些比较——建立一个决策的准则,最后综合评判确定出一个可选择的最优方案。
目标层准则层方案层C .资源开发的综合判断7种金属可供开发,开发后对国家贡献可以通过两两比较得到,决定对哪种资源先开发,效用最用。
二、问题分析:例如旅游地选择问题:一般说来,此决策问题可按如下步骤进行: (S1)将决策解分解为三个层次,即:目标层:(选择旅游地) 准则层:(景色、费用、居住、饮食、旅途等5个准则)方案层:(有1P ,2P ,3P 三个选择地点)并用直线连接各层次。
(S2)互相比较各准则对目标的权重,各方案对每一个准则的权重。
这些权限重在人的思维过程中常是定性的。
例如:经济好,身体好的人:会将景色好作为第一选择;中老年人:会将居住、饮食好作为第一选择; 经济不好的人:会把费用低作为第一选择。
而层次分析方法则应给出确定权重的定量分析方法。
(S3)将方案后对准则层的权重,及准则后对目标层的权重进行综合。
(S4)最终得出方案层对目标层的权重,从而作出决策。
以上步骤和方法即是AHP 的决策分析方法。
三、确定各层次互相比较的方法——成对比较矩阵和权向量在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy 等人提出:一致矩阵法..... 即:1. 不把所有因素放在一起比较,而是两两相互比较2. 对此时採用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高准确度。
因素比较方法 —— 成对比较矩阵法:目的是,要比较某一层n 个因素n C C C , ,,21 对上一层因素O 的影响(例如:旅游决策解中,比较景色等5个准则在选择旅游地这个目标中的重要性)。
採用的方法是:每次取两个因素i C 和j C 比较其对目标因素O 的影响,并用ij a 表示,全部比较的结果用成对比较矩阵表示,即:)1( 1,0 ,)(=⋅=>=ij ij ijji ij nxn ij a a a a a a A 或 (1) 由于上述成对比较矩阵有特点: jiij ij ij a a a a A 1 ,0 , )(=>= 故可称A 为正互反矩阵:显然,由 jiij a a 1=,即:1=⋅ji ij a a ,故有:1=ji a 例如:在旅游决策问题中:2112=a =(费用)(景色)21C C 表示:⎩⎨⎧2O 1O 21的重要性为(费用)对目标的重要性为景色)对目标(C C故:),费用重要性为即景色重要性为21(2112=a14413==a = (居住条件)(景色)31C C 表示:⎩⎨⎧1O C 4O (31的重要性为(居住条件)对目标的重要性为景色)对目标C即:景色为4,居住为1。
17723==a =(居住条件)(费用)32C C 表示:⎩⎨⎧1O C 7O (32的重要性为(居住条件)对目标的重要性为费用)对目标C即:费用重要性为7,居住重要性为1。
因此有成对比较矩阵:⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=1135131112513131211714155337412121A ??问题:稍加分析就发现上述成对比较矩阵的问题: ① 即存在有各元素的不一致性,例如:既然:41114a ;22113313113212112==⇒===⇒==a a C C a C C a 所以应该有:188412131231213223======C C C C a a C C a而不应为矩阵A 中的1723=a②成对比较矩阵比较的次数要求太 ,因:n 个元素比较次数为:!2)1(2-=n n C n 次, 因此,问题是:如何改造成对比较矩阵,使由其能确定诸因素n C C , ,1 对上层因素O 的权重?对此Saoty 提出了:在成对比较出现不一致情况下,计算各因素n C C , ,1 对因素(上层因素)O 的权重方法,并确定了这种不一致的容许误差范围。
为此,先看成对比较矩阵的完全一致性——成对比较完全一致性四:一致性矩阵Def :设有正互反成对比较矩阵:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=============== 1 a , , 1 , , 1 1nn 221122222212211121121111n n n n n n j iij n n nn W W W W a W W a W W a W W a W W a W W a W W a W W a W W a A(4) 除满足:(i )正互反性:即)1 ( 10=⋅=>ji ij jiij ij a a a a a 或而且还满足:(ii )一致性:即n 2, 1,j i, ==⋅==ha ha a k a a a a j i kj i j i ij 则称满足上述条件的正互反对称矩阵A 为一致性矩阵,简称一致阵。
一致性矩阵(一致阵)性质:性质1:A 的秩 Rank(A)=1A 的唯一非0的特征根为n性质2:A 的任一列(行)向量都是对应特征根n 的特征向量:即有(特征向量、特征值):⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n n n W W W W W W W W W W WW W W W W W W A212221212111,则向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=321W W W W 满足:W n nW nW nW W W W W W W W W W W W W W W W W A n n n nn n n=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21212112111即: 0)(=-nI A启发与思考:既然一致矩阵有以上性质,即n 个元素W 1, W 2, W 3 , …W n 构成的向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=n W W W W21 是一致矩阵A 的特征向量,则可以把向量W 归一化后的向量ω,看成是诸元素W 1, W 2,W 3 , …W n目标的权向量,因此,可以用求A 的特征根和特征向量的办法,求出元素W 1, W 2, W 3 , …W n 相对于目标O 的劝向量。
解释:一致矩阵即:n 件物体n M M M , , ,21 ,它们重量分别为n W W W , , ,21 ,将他们两两比较重量,其比值构成一致矩阵,若用重量向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n W W W W21右乘A ,则 :()⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∑⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛称特征根法,求权向量的方法量权向量,此种用特征向为即对上层因素O的权重,,C ,,C C ,就表示诸因素=W=则归一化后的特征向量,=:重量向量 为特征根的特征向量为以的特征根为n 21 1W W W W ,121 i n W W W n n A 分析:若重量向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=n W W W W 21未知时,则可由决策者对物体n M M M , , ,21 之间两两相比关系,主观作出比值的判断,或用Delphi (调查法)来确定这些比值,使A 矩阵(不一定有一致性)为已知的,并记此主观判断作出的矩阵为(主观)判断矩阵A ,并且此A (不一致)在不一致的容许范围内,再依据:A 的特征根或和特征向量W 连续地依赖于矩阵的元素ij a ,即当ij a 离一致性的要求不太远时,A 的特征根i 和特征值(向量)W 与一致矩阵A 的特征根λ和特征向量W 也相差不大的道理:由特征向量W 求权向量W 的方法即为特征向量法,并由此引出一致性检查的方法。
问题:Remark以上讨论的用求特征根来求权向量W 的方法和思路,在理论上应解决以下问题: 1. 一致阵的性质1是说:一致阵的最大特征根为n (即必要条件),但用特征根来求特征向量时,应回答充分条件:即正互反矩阵是否存在正的最大特征根和正的特征向量?且如果正互反矩阵A 的最大特征根n =max λ时,A 是否为一致阵?2. 用主观判断矩阵A 的特征根λ和特征向量W 连续逼近一致阵A 的特征根λ和特征向量W时,即: 由λλ=→k kk lim得到:W W k k =∞→lim即: A A k k =∞→lim是否在理论上有依据。
3.一般情况下,主观判断矩阵A 在逼近于一致阵A 的过程中,用与A 接近的*A 来代替A ,即有A A ≈*,这种近似的替代一致性矩阵A 的作法,就导致了产生的偏差估计问题,即一致性检验问题,即要确定一种一致性检验判断指标,由此指标来确定在什么样的允许范围内,主观判断矩阵是可以接受的,否则,要 两两比较构造主观判断矩阵。