4-1电阻应变片构造及工作原理
- 格式:ppt
- 大小:4.73 MB
- 文档页数:44
简述电阻应变片的原理电阻应变片是一种利用材料电阻随应变而变化的敏感元件,可以将应变的物理量转化为电阻的变化,从而实现对应变量的测量。
在电子设备、机械设备、测控仪表和信息处理系统中广泛应用。
电阻应变片的工作原理是基于材料电阻随应变的变化而产生的电阻效应。
材料的电阻变化可以通过以下两种效应来实现:伽德纳效应和洛朗兹效应。
首先,伽德纳效应是指材料电阻随应变而发生的线性变化。
当材料受到力的作用发生应变时,材料内部的载流子受到应变的约束,导致载流子的迁移受阻,电阻增加。
这个效应被描述为电阻率与应变成正比的线性关系。
其次,洛朗兹效应是指材料电阻随应变发生的非线性变化。
它是由于电阻是由电子迁移和晶格振动共同决定的,当材料受到应变时,晶格的扭曲导致电子迁移的路径和速度发生变化,从而导致电阻发生非线性变化。
洛朗兹效应在较大应变下更为明显。
基于以上效应,电阻应变片的工作原理可以概括为以下几个步骤:1. 材料选择:选择具有应变灵敏性的材料作为电阻应变片的工作材料。
常用的材料有铜镍合金、硅碳合金、钢等。
这些材料具有较高的应变敏感系数和较低的温度系数。
2. 加工形状:将选定的材料加工成薄片或网格状结构,以增加电阻应变片的敏感度。
常见的几何形状有方形、圆形和网格状。
3. 连接电路:将电阻应变片与电子电路连接,形成测量电路。
连接电路时需要注意电阻应变片的敏感方向和形状。
4. 测量电路:选择合适的测量电路进行测量,典型的测量电路有电桥电路和放大电路。
在电阻应变片被外力作用引起应变时,它的电阻值发生变化。
这个变化可以通过电桥电路来检测和测量。
当电桥电路中的电阻应变片受到应变时,它的电阻值改变,导致电流通过电桥电路的各个分支出现变化,引起平衡状态的破坏。
通过测量电桥的输出信号,就可以获得电阻应变片的应变量。
另一种常用的测量方法是放大电路。
放大电路通过放大电阻应变片的电阻变化信号,然后进行处理和测量。
它可以实现更高分辨率和灵敏度的测量。
简述应变片的原理及应用1. 什么是应变片?应变片(Strain gauge)是一种常用于测量应变(strain)的传感器。
应变片通常由细长的金属箔片构成,含有一个或多个电阻片。
当载荷施加在应变片上时,金属箔片会发生应变,从而改变电阻的大小。
通过测量电阻的变化,可以间接测量应变的大小。
2. 应变片的工作原理应变片是通过电阻效应来测量应变的。
当细长金属箔片受到应变时,金属箔片会发生微小的形变,从而改变金属箔片内部电阻的大小。
根据电阻与电流之间的关系(欧姆定律),我们可以测量出电阻的变化来间接测量应变的大小。
应变片与电桥电路结合使用,通过测量电桥电路的电阻变化,可以得到应变的准确值。
3. 应变片的应用领域3.1 结构应变测量应变片广泛应用于结构工程领域,用于测量结构体受力状态下的应变情况。
例如,应变片可以安装在桥梁、建筑物、飞机机翼等结构上,通过测量结构的应变变化,可以了解结构所承受的力的大小和方向。
这对于结构的设计与性能评估非常重要。
3.2 材料力学实验在材料力学实验中,应变片被广泛应用于测量材料的应变情况。
通过在材料上安装应变片,可以测量不同位置的应变值,从而了解材料的机械性能。
材料力学实验中常常使用多个应变片来获得更精确的测量结果。
3.3 液压机械在液压机械中,应变片用于测量液压缸的应变情况。
通过测量应变片的应变变化,可以了解液压缸所承受的力的大小,从而判断液压缸的工作状态。
这对于液压机械的安全性和性能评估具有重要意义。
3.4 地震监测应变片也被应用于地震监测领域,用于测量地震过程中土壤和岩石的应变情况。
通过测量应变片的应变变化,可以了解地震震源与监测点之间的位移和应变关系,从而研究地震的发生机制和动力学特征。
4. 应变片的优势4.1 高精度应变片可以提供高精度的应变测量结果。
由于金属箔片的微小形变能够准确地改变电阻的大小,因此应变片可以测量非常小的应变量。
4.2 可靠性应变片具有良好的机械性能和耐腐蚀性能,在不同环境和复杂工况下仍然能够提供准确可靠的测量结果。
电阻应变测量原理及方法目录电阻应变测量原理及方法 (4)1. 概述 (4)2. 电阻应变片的工作原理、构造和分类62.1电阻应变片的工作原理 (6)2.2电阻应变片的构造 (8)2.3电阻应变片的分类 (10)3. 电阻应变片的工作特性及标定 (15)3.1电阻应变片的工作特性 (15)3.2电阻应变片工作特性的标定 (23)4. 电阻应变片的选择、安装和防护 (29)4.1电阻应变片的选择 (29)4.2电阻应变片的安装 (31)4.3电阻应变片的防护 (34)5. 电阻应变片的测量电路 (34)5.1直流电桥 (35)5.2电桥的平衡 (40)5.3测量电桥的基本特性 (42)5.4测量电桥的连接与测量灵敏度.. 436. 电阻应变仪 (53)6.1静态电阻应变仪 (54)6.2测量通道的切换 (57)6.3公共补偿接线方法 (61)7. 应变-应力换算关系 (63)7.1单向应力状态 (64)7.2已知主应力方向的二向应力状态 (64)7.3未知主应力方向的二向应力状态 (65)8. 测量电桥的应用 (67)8.1拉压应变的测定 (68)8.2弯曲应变的测定 (72)8.3弯曲切应力的测定 (74)8.4扭转切应力的测定 (76)8.5内力分量的测定 (77)电阻应变测量原理及方法1. 概述电阻应变测量方法是实验应力分析方法中应用最为广泛的一种方法。
该方法是用应变敏感元件——电阻应变片测量构件的表面应变,再根据应变—应力关系得到构件表面的应力状态,从而对构件进行应力分析。
电阻应变片(简称应变片)测量应变的大致过程如下:将应变片粘贴或安装在被测构件表面,然后接入测量电路(电桥或电位计式线路),图1 用电阻应变片测量应变的过程随着构件受力变形,应变片的敏感栅也随之变形,致使其电阻值发生变化,此电阻值的变化与构件表面应变成比例,测量电路输出应变片电阻变化产生的信号,经放大电路放大后,由指示仪表或记录仪器指示或记录。
应变片的工作原理
应变片是一种用于测量物体表面应变的传感器,它可以将物体
受到的应变转换为电信号,从而实现对物体应变的测量和监测。
应
变片的工作原理基于材料的电阻变化和应变之间的关系,通过测量
电阻值的变化来确定物体受到的应变量。
应变片的工作原理可以分为以下几个步骤:
1. 材料特性:应变片通常由导电材料制成,如金属薄膜或碳纳
米管等。
这些材料具有特定的电阻特性,当受到外力作用时,材料
会产生应变,导致电阻值发生变化。
2. 安装固定:应变片被安装在需要测量应变的物体表面上,通
常使用胶水或粘合剂将其固定在物体表面。
当物体受到外力作用时,应变片会随之产生应变,从而改变其电阻值。
3. 电路连接:应变片的两端连接到测量电路中,通常是一个电
桥电路。
电桥电路通过对比应变片的电阻值和参考电阻值来测量应
变片的电阻变化,从而确定物体受到的应变量。
4. 电信号输出:测量电路会将测得的电阻值转换为电信号输出,通常是模拟电压信号或数字信号。
这些信号可以用于实时监测物体
的应变情况,也可以通过数据处理和分析得到物体的应变分布图和
应变变化趋势。
应变片的工作原理基于材料的电阻特性和应变之间的关系,通
过测量电阻值的变化来确定物体受到的应变量。
它具有灵敏度高、
响应速度快、精度高等优点,因此被广泛应用于工程结构、材料测试、医疗设备、航空航天等领域的应变测量和监测中。
希望通过本
文对应变片的工作原理进行介绍,能够让读者对其原理有更深入的
理解。
电阻丝应变片的结构电阻丝应变片,也称为电阻应变片,是一种用于测量应变的电子元件。
其核心部分是一根或一组敏感的电阻丝,当这些电阻丝受到外力作用时,其电阻值会发生变化。
通过测量这种电阻的变化,可以推导出所受的外力或应变。
这种元件广泛应用于各种测量和控制系统,如压力传感器、加速度计和称重系统等。
一、电阻丝应变片的构造电阻丝应变片主要由基底、敏感栅、引线和保护层组成。
1. 基底:基底是应变片的基础,它支撑和固定敏感栅和引线。
基底通常由绝缘材料制成,如玻璃纤维增强环氧树脂或聚酰亚胺。
2. 敏感栅:敏感栅是应变片的核心部分,通常由金属合金(如镍铬或铜镍合金)制成。
这些合金具有较高的电阻系数和良好的温度稳定性。
敏感栅的形状和尺寸对测量的灵敏度和精度有很大的影响。
3. 引线:引线用于将敏感栅连接到测量仪器上。
它们通常由镀银铜线或不锈钢线制成,具有足够的强度和良好的导电性。
4. 保护层:保护层覆盖在敏感栅和引线上,以保护它们不受机械损伤、化学腐蚀和环境的影响。
保护层通常由环氧树脂、硅橡胶或陶瓷等材料制成。
二、工作原理当电阻丝受到外力作用时,其长度和横截面积会发生变化,从而导致电阻值的变化。
根据应变效应,电阻值的变化与应变成正比,可以表示为:ΔR/R = kε,其中ΔR是电阻的变化量,R是原始电阻值,k是应变常数,ε是应变。
通过测量电阻的变化量,可以推导出应变的值。
三、应用由于其高灵敏度和稳定性,电阻丝应变片广泛应用于各种工程领域,如航空航天、汽车、土木工程和生物医学等。
在航空航天领域,它们被用于测量飞机的气动载荷和发动机推力;在汽车工业中,它们被用于测量发动机性能和车辆动态稳定性;在土木工程中,它们被用于监测结构健康状况和地震工程;在生物医学领域,它们被用于监测生理参数和医疗器械的性能。
应变片工作原理应变片是一种常见的传感器,用于测量物体在力或压力作用下的应变情况。
它具有简单、灵敏、可靠等特点,在工程领域得到广泛应用。
下面将详细介绍应变片的工作原理。
一、应变片的结构和材料应变片通常由金属箔片制成,常见的材料有金属铜、铬镍合金等。
它的结构一般呈网格状或螺旋状,有时也会采用细线或导电胶片等形式。
应变片的尺寸和形状可以根据实际需要进行设计和制造。
二、应变片的工作原理应变片的工作原理基于金属的电阻随应变发生变化的特性。
当物体受到力或压力作用时,应变片会发生形变,导致其内部电阻发生变化。
根据应变片的电阻与应变之间的线性关系,可以通过测量电阻值的变化来确定物体所受力或压力的大小。
三、应变片的电桥测量原理为了提高应变片的灵敏度和准确度,通常将多个应变片组合成电桥进行测量。
电桥是由四个电阻组成的电路,其中两个电阻是固定的,另外两个电阻是应变片。
当物体受到力或压力作用时,应变片的电阻发生变化,导致电桥不平衡,产生电桥输出信号。
通过测量电桥输出信号的大小和方向,可以确定物体所受力或压力的大小和方向。
四、应变片的灵敏度和精度应变片的灵敏度和精度是衡量其性能的重要指标。
灵敏度是指应变片电阻变化与应变之间的关系,通常用单位应变引起的电阻变化来表示。
精度是指应变片测量结果与实际值之间的偏差,通常用百分比或小数表示。
为提高应变片的灵敏度和精度,需要注意以下几点:1.选择合适的应变片材料和结构,使其具有较大的应变灵敏度。
2.正确安装应变片,使其与被测物体紧密接触,避免应变传递的损失。
3.使用合适的电桥电路和测量仪器,提高测量的准确度和稳定性。
4.进行校准和调试,确保应变片的测量结果与实际值相符。
五、应变片的应用领域应变片具有广泛的应用领域,常见的应用包括:1.结构应变测量:用于测量建筑、桥梁、航天器等结构的应变情况,评估其安全性和可靠性。
2.力学实验:用于测量材料的应力-应变关系、材料的弹性模量等力学性能参数。