1-10基尔霍夫定律
- 格式:ppt
- 大小:572.00 KB
- 文档页数:33
电路基本定律基尔霍夫定律
基尔霍夫定律是电路中电压和电流所遵循的基本规律,是分析和计算较为复杂电路的基础,1845年由德国物理学家G.R.基尔霍夫提出。
基尔霍夫(电路)定律包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
基尔霍夫(电路)定律既可以用于直流电路的分析,也可以用于交流电路的分析,还可以用于含有电子元件的非线性电路的分析。
基尔霍夫定律建立在电荷守恒定律、欧姆定律及电压环路定理的基础之上,在稳恒电流条件下严格成立。
当基尔霍夫第一、第二方程组联合使用时,可正确迅速地计算出电路中各支路的电流值。
由于似稳电流(低频交流电) 具有的电磁波长远大于电路的尺度,所以它在电路中每一瞬间的电流与电压均能在足够好的程度上满足基尔霍夫定律。
因此,基尔霍夫定律的应用范围亦可扩展到交流电路之中。
简述基尔霍夫电压定律、基尔霍夫电流定律所谓电路中的基尔霍夫定律,就是把一个复杂电路简化成基本的串联、并联电路后,用公式表示出来。
它可以用来分析电路中各个元件的作用、各个元件之间的连接关系和电流的流向等。
只要掌握了这个规律,学习其他内容也就变得轻松多了。
第一节:电路分析基本方法。
1、基尔霍夫定律首先需要说明两个基本假设,它们被称为是“集总”假设,又叫做是“电路”的最大功率传输原理,简称:“电路的最大功率传输定理”。
“集总”假设可以理解为任何闭合回路,不管开路与否,均能将电荷从某处送到另外的地方。
“电路”的最大功率传输定理指出:对于任意给定的R、 S、 T,只要电路的电压、电流都满足: rC=UI;S=Ic,则该电路可以获得最大的功率输出。
简单的说,即使R、 S、T发生变化,只要电路的电流不变,在任意时刻,电路的电压仍然等于电路两端的电压和,而电路的功率不变。
例如:,若电路中开关接通,且闭合电路的负载阻抗很小(与R 无关),则此时电路中的电压仍然等于电路两端的电压和,而电路的功率将不会减少。
因为当r为定值时,根据欧姆定律,功率P=I*r*t,所以,对于任意的R、 S、 T,电路的功率始终不变。
例如:,若电路中开关断开,则电路中的电压等于零,根据电压与电流的关系,由于没有负载阻抗,此时电路中的电流就是零。
因此,对于任意的R、 S、 T,电路的电压不再是电路两端的电压和,而是电路中的电压。
例如:,若电路中开关闭合,则电路中的电流等于零,根据电压与电流的关系,由于电流是按照电压的变化而变化,所以此时电路中的电流也是零。
因此,对于任意的R、 S、 T,电路的电流也不再是电路两端的电流和,而是电路中的电流。
电源通过不同的途径送入电路,就会产生电压或者电流的波动,因此,根据基尔霍夫电压定律,电路中的电压和电流之间存在着相互制约的关系,即电压之间相互抑制,电流之间相互抵消。
2、基尔霍夫电流定律。
第二节:电路中的其他物理量在实际的电路中还会遇到另外的一些物理量,例如电流的流动方向和电流的大小。
电路基础-电压源和电流源-受控源-基尔霍夫定律————————————————————————————————作者:————————————————————————————————日期:2第一章电路模型和基尔霍夫定律3讲授板书1、掌握电压源、电流源的概念、用法及特性;2、熟悉受控源的用法;3、掌握基尔霍夫定律的应用。
1、电压源、电流源用法及特性2、基尔霍夫定律的应用受控源的概念及用法1. 组织教学 5分钟3. 讲授新课70分钟1)电压源及电流源25 2)受控源15 3)基尔霍夫定律302. 复习旧课5分钟电路元件特性4.巩固新课5分钟5.布置作业5分钟34一、学时:2二、班级:06电气工程(本)/06数控技术(本)三、教学内容:[讲授新课]:第一章电路模型和电路定律(电压源和电流源的概念及特点受控源的概念及分类基尔霍夫定律)§1-8电源元件(independent source)1. 理想电压源1)定义:其两端电压总能保持定值或一定的时间函数,且电压值与流过它的电流i 无关的元件叫理想电压源。
2)电路符号3)理想电压源的电压、电流关系(1)电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关。
(2)通过电压源的电流由电源及外电路共同决定。
伏安关系曲线如下图示:实际电流源可由稳流电子设备产生,如晶体管的集电极电流与负载无关;光电池在一定光线照射下光电池被激发产生一定值的电流等。
4)电压源的功率在电压、电流的非关联参考方向下;P = us i56物理意义:电流(正电荷 )由低电位向高电位移动,外力克服电场力作功电源发出功率。
例1-3图示电路,当电阻R 在0~∞之间变化时,求电流的变化范围和电压源发出的功率的变化。
解:(1)当电阻为R 时,流经电压源的电流为: 电源发出的功率为:表明当电阻由小变大,电流则由大变小,电源发出的功率也由大变小。
(2)当,则(3)当,则由此例可以看出:理想电压源的电流随外部电路变化。
2.1.2 基尔霍夫电压定律基尔霍夫电压定律(Kirchhoff's voltage law,KVL)用来确定回路中各段电压的关系.基尔霍夫电压定律指出:任一瞬时,如果从回路中任意一点出发,以顺时针方向或逆时针方向沿回路循环一周,则在这个方向上的电压降之和等于电压升之和,即任一瞬时,沿任一回路循环方向,回路中各段电压的代数和恒等于零:∑U = 0一个电路如果选定了参考点,那么回到原来的出发点时,该点的电位不会发生变化,这是电路中任意一点的瞬时电位具有[单值性]的结果.以图2-4所示的回路(即为图2-1所示电路的一个回路)为例,图中电源电动势、电流和各段电压的参考方向均已标出。
按照虚线所示方向循环一同,根据电压的参考方向可列出U1+U4=U2+U3或改写为U1-U2-U3+U4=0即∑U=0(2-3)就是说:在任一瞬时,沿任一回路循环方向(顺时针方向或逆时针方向),回路中各段电压的代数和恒等于零。
电压的升降如果与绕行方向一致,则电压取正号;如果与绕行方向相反,则电压取负号。
电压的升降一般与所设的电流的参考方向取关联参考方向。
图2-4所示的回路是由电源电动势和电阻构成的,上式可改写为E1-E2-R1I1+R2I2=0或E1-E2=R1I1-R2I2即∑E=∑(RI)这是基尔霍夫电压定律在电阻电路中的另一种表达式,即在任一回路循环方向上,回路中电动势的代数和等于电阻上电压降的代数和。
其中,凡是电动势的参考方向与所选回路循环方向相反者,取正号,一致者则取负号。
KVL不仅适用于闭合电路,也适用于是开口电路;图2-5所示电路不是闭合电路,但在a,b开口端存在电压Uab,可假设一个闭合电路,若顺时针方向绕行,则KVL方程为Uab-U2-U1=0即Uab=U1+U2说明a,b两端开口电路的电压等于a,b两端另一支路各段电压之和,这反映了两点间电压与所选择路径无关应该指出,图2-4所举的是直流电阻电路,但是基尔霍夫两个定律具有普遍性,它们适用于由各种不同元件所构成的电路。
基尔霍夫定律和叠加原理的验证————————————————————————————————作者:————————————————————————————————日期:实验三、四基尔霍夫定律和叠加原理的验证13级电子一班第1组杜博文 13348026董佳羽 13348025一、实验目的1。
基尔霍夫定律的验证:验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解.2。
叠加原理的验证:(1)验证线性电路中叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解.(2)进一步掌握仪器仪表的使用方法.二、原理说明1.基尔霍夫定律:基尔霍夫定律是电路的基本定律.它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0.(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0.基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的.测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。
即对电路中的任意一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0.运用上述定律时必须注意电流的正方向,此方向可预先任意设定。
2.叠加原理:(1)叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和.(2)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍.三、实验设备1.基尔霍夫定律的验证实验设备:序号名称型号与规格数量备注1 直流稳压电源0~30V 1 UU21、2 万用电表 13 直流数字电压表 14 直流数字毫安表 15 电位、电压测定实验线路板 1 DGJ—032.叠加原理的验证实验设备:序号名称型号与规格数量备注1 直流稳压电源0~30V 1 UU21、2 直流数字电压表 13 直流数字毫安表 14 叠加原理实验线路板 1 DGJ—03四、实验内容1.基尔霍夫定律的验证实验:按图2-1接线,(1)实验前先任意假定三条支路电流的参考方向及三个闭合回路的绕行方向。
实验一 基尔霍夫定律的验证实验一.实验目的1. 通过实验验证基尔霍夫电流、电压定律,加深对定律的理解,巩固所学知识。
2. 掌握workbench 软件在电路分析仿真中的基本操作。
3. 掌握workbench 软件中基本虚拟仪器的使用方法。
二.实验原理1.基尔霍夫电流定律,简写为KCL ,可文字表述为:对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电流的代数和为零。
即对于节点1,有:321i i i =+ 2.基尔霍夫电压定律,简写为KVL 对于任一集总电路的任一回路,在任一时刻,沿着该回路的所有支路电压降的代数和为零。
三.实验过程1.根据电路图在workbench 软件中做出电路模型(如下图所示)。
2.开关打开,开始显示并记录有关数据(如下图中所示)。
3.根据实验结果分析。
图1中:对于节点1,流进的电流 1.999A 等于流出的电流之和(1.500A+499.9mA ),因而验证了KCL 定律的正确性。
图 2 中:回路1:6V+3V+2V=11V 恰好等于电源电压11V ;回路2:6V+5V=11V 恰好等于电源电压11V ;回路3:3V+2V-5v=0V3个回路各自满足KVL 定律,因为验证了它的正确性。
四.实验电路图图11ii图2:五.实验心得通过本次实验,我对电路实验有了初步的了解,体会到了电路的神奇与奥妙。
进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实验数据,经计算实验结果均在误差范围内,说明该实验做的成功。
也深刻地理解了基尔霍夫电压和电流定律,巩固了课堂中所学的知识。
对于KCL,KVL的原理以及它们的运用有了更深入的认识。
我认为这两个实验的实验原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个实验不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。
由于这是电路分析的第一次实验,难免遇到了不少问题:(1)workbench软件在电路分析仿真中的基本使用方法?(2)workbench软件中基本虚拟仪器的使用方法?(3)电流,电压的方向如何确定?(4)连线总是练完一条,另一条不见了。
简述基尔霍夫电压定律基尔霍夫电压定律是电动势和电势之间的关系的重要定律,又称基尔霍夫电位定律,是电学中最重要的定律之一。
它由德国物理学家Gustav Robert Kirchhoff在1845年首先提出,因此也被称为Kirchhoff电压定律。
它是在电路中描述电势(即电压)和电动势(即电流)之间关系的定律。
可以概括为“电路中电势的总和等于零”,也就是说,一个任意的电路中,其任意节点的电压总和等于零。
基尔霍夫电压定律的正确表达式可以写作:$$sum V = 0$$其中V代表电压。
基尔霍夫电压定律的主要思想是,当电路中的电流流过一个元件时,元件的电势会发生变化,这其实是电力学中的一种反作用。
简单的说,这个反作用就是电路中电压的变化,而基尔霍夫电压定律就是在描述这个反作用过程的定律。
基尔霍夫电压定律可以分为两个等量,称作基尔霍夫定律的半定律。
霍尔定律的一半是“支路定律”,它可以概括为:在电路的支路上,电势的总和为零。
另一半是“环路定律”,它可以概括为:在电路的一个环路中,电势的总和为零。
例如,在一个电路中,有一个电阻器R1和一个电容器C1,电压源V1和V2分别通过R1和C1,此时可以得到下面的等式:$$V_1 + V_R + V_C = 0$$其中,$V_1$表示电压源V1,$V_R$表示通过R1的电压,$V_C$表示通过C1的电压。
另外,如果在电路中有多个电阻器和电容器,那么得到的式子会变得非常复杂,但是基尔霍夫电压定律提供了一个解决方案,它可以将复杂的计算分解为多个支路和环路,然后将其统一解决。
基尔霍夫电压定律提供了一个统一、合理的思路,它可以让步骤变得通俗易懂,从而节省计算时间,减少计算错误。
基尔霍夫电压定律不仅在电子工程中有着广泛的应用,在机电一体化、控制系统设计的领域,它也扮演着重要的角色。
例如,它可以被用来计算电路的稳态响应,以及电路的行为特性等。
因此,在紧凑的电路系统中,基尔霍夫电压定律可以用来帮助设计和分析电路,从而实现更复杂、更高效率的设计。
名词解释基尔霍夫电流定律基尔霍夫电流定律,又称基尔霍夫定律,是描述电路中电流的重要定律,是电路的基础原理之一。
根据它,一个电路中的电流在任意一定点总是相等,不受其他因素的影响。
它是1827年德国物理学家阿尔弗雷德基尔霍夫发明的,最初是以一个模型等效串联电阻网络,研究变压器中晶体管电流的分布规律,从而给出了这一定律。
基尔霍夫电流定律的表达式为:对任意一点,流进该点的电流等于流出该点的电流,即I_in=I_out。
也可以这样表达,即电流穿过每一点的总和都为零,即ΣI_in=ΣI_out=0。
基尔霍夫定律的本质是一种物理现象:电流在电路中是不会发生消失的,电路中的每个部分的电流和总电流的和都会相等,所以电路中的电流在任何一定点都是相等的。
这就是古典电动力学中的守恒定律,即“等式”:电量守恒(电荷守恒)。
为了更好地说明基尔霍夫定律,下面给出一个例子:比如,在一个静止的电路中,由电池供电,电池的正极和负极通过两个电阻R_1和R_2相连,成为一个串联电路。
此时电流I形成一个闭环,路径上的每一点的电流是一样的,即从电池负极流向R_1,再流向R_2,最后流回电池正极,从而满足基尔霍夫定律。
基尔霍夫定律是电子技术学科中重要的定律之一,是分析和设计电路的重要基础。
我们用基尔霍夫定律来解决电路中直流电路中的基本问题,包括电流和电压的分析和设计问题。
此外,基尔霍夫定律也可以用于分析交流电路、放大电路、变压器和其他复杂的电路,使这些电路更加正确、可靠、高效,因此基尔霍夫定律在电子技术学科的研究和应用中具有重要的意义。
一般而言,基尔霍夫定律的实施不是一件特别困难的事情。
只要掌握了它,就可以在设计电路时正确理解电流的数量和方向,从而正确、有效地进行设计。
总之,基尔霍夫电流定律是电子技术学科中一项基础且重要的定律,它对理解电路和设计电路都有重大意义。
在实际工作中,我们对这一定律的深刻理解,恰好体现了处理电路问题的基本能力,也缩短了解决这类问题的时间。