铁氧体移相器原理
- 格式:doc
- 大小:27.00 KB
- 文档页数:2
收稿日期:2007-04-05; 收修改稿日期:2007-05-29Ka 频段铁氧体双环移相器张元生 陈建荣(西安空间无线电技术研究所,西安710000) 摘 要 文章介绍了一种铁氧体矩形双环移相器。
通过数值计算得到尺寸原型,利用HFSS 仿真软件进行优化,工作频率在Ka 频段,采用多级匹配的方法实现了相对带宽为10%、带内最大损耗约1.26dB 、驻波小于1.41、受控差相移的抖动小于0.5°的高性能移相器。
关键词 矩形双环移相器 铁氧体 毫米波0 引言 随着相控阵雷达的发展,移相器得以广泛应用。
矩形环状铁氧体移相器因耐功率高、微波频段插损小而得到了迅速发展。
然而在毫米波段内,由于器件体积小、尺寸精度高,给设计加工带来一定限制。
文章采用两级混合匹配技术,经大量仿真计算,设计并加工了一个具有良好性能的双环铁氧体移相器。
移相器内使用的是具有矩形磁滞回线的旋磁铁氧体,让器件工作在剩磁状态,用脉冲磁场激励器件而不是固定恒磁场式的[1]。
这样能承受大功率而且不需要大量消耗“维持”功率,能够很方便地与数字计算机连在一起使用,且开关速度快。
1 双环非互易铁氧体移相器的构成 双环非互易铁氧体移相器(图1)是由两个相同铁氧体矩形环棒、中间夹以介质层组合而成的矩形波导结构。
尽管该结构使用了两个矩形环状铁氧体,但与射频磁场发生非互易作用的有效铁氧体区仍然是与介质带毗邻的两个垂直铁氧体壁。
因此,这种结构与单环移相器以同样方式工作。
由于其沿横方向传播的非均匀性,精确地求解其电磁场和传播特性是不可能的,通常用平行板模型或微扰理论进行求解,如图2所示[2]。
图1 双环移相器示意图 图2 双环等效的平行板结构模型 根据平行板模型建立的特征方程有两个解:β+和β-,分别对应于剩余磁通量相对于传输方向的972009年第1期 空间电子技术S PAC E ELEC TRON I C TECHNOLO GY顺时针和反时针方向。
铁氧体移相器和PIN管移相器的研究与设计目录第一章绪论 (1)1.1 研究背景与意义 (1)1.2 国内外发展现状 (2)1.3 本文主要研究内容及结构安排 (4)第二章铁氧体张量磁导率的理论分析与计算 (6)2.1 铁氧体的磁化曲线 (6)2.2 电子自旋与磁进动方程 (9)2.3 理想无耗情况下的张量磁导率 (12)2.4 外张量磁导率 (14)2.5 去磁态磁导率 (18)2.6阻尼情况下的磁导率 (22)2.7 本章小结 (25)第三章横向磁化铁氧体的电磁场计算与仿真分析 (26) 3.1 横向磁化无限大铁氧体的波动方程 (26)3.2 横向磁化下的互易双折射效应分析 (27)3.3 横向磁化单片铁氧体波导的相移特性分析 (29)3.4 横向磁化单片铁氧体波导的场移特性分析 (32)3.4.1 铁氧体片厚度对场分布的影响 (33)3.4.2 铁氧体片位置对场分布的影响 (34)3.4.3 同一位置不同传播方向的电场分布 (37)3.5 本章小结 (40)第四章 Ka波段背脊波导铁氧体移相器的分析设计 (41) 4.1 背脊波导铁氧体移相器结构分析 (41)4.2 背脊波导铁氧体移相器匹配方式的改进 (45)4.3 离散相移量背脊波导铁氧体移相器的设计与仿真 (51) 4.5 本章小结 (57)第五章 PIN二极管移相器特性分析 (58)5.1 PIN二极管的结构与工作原理 (58)5.2 PIN二极管的等效电路和主要技术指标 (59)5.3 PIN管移相器的移相原理 (62)5.3.1 加载线型移相器原理分析 (62)5.3.3 开关线型移相器分析 (65)5.4 本章小结 (66)第六章 PIN二极管移相器的建模与设计 (67)6.1 加载线型移相器的设计与仿真 (67)6.2 反射式移相器的建模与设计 (73)6.3 开关线型移相器的设计与仿真 (75)6.4 本章小结 (77)表目录表1.1 Ku波段四位线极化铁氧体移相器指标 (3)表1.2 Ku波段四位二极管移相器指标 (4)表1.3 Hittite M icrowave公司设计生产的六位二极管数字移相器指标 (4)表2.1 不同磁畴的张量磁导率 (19)表3.1 铁氧体片位置对差相移的影响, (31)表4.1 结构参数设置 (44)表4.2. 仿真环境设置 (44)表4.3 离散值移相器仿真结果 (54)表6.1 离散值移相器仿真结果 (77)图目录图 1.1 论文结构图 .......................................................................................................... 5图2.1 B-H 曲线 ............................................................................................................. 6图2.2 H μ?曲线图....................................................................................................... 7图2.3 磁滞曲线图.......................................................................................................... 8图2.4 电子自旋示意图................................................................................................. 9图2.5 磁进动示意图.................................................................................................... 10图2.6 μ、κ关于0ωω的函数曲线 ............................................................................... 14图2.7 典型形状样品 .................................................................................................... 17图2.8 部分磁化的铁氧体中磁畴分布........................................................................ 19图2.9 磁畴空间取向与畴面取向的坐标关系............................................................ 21图3.1 互易双折射效应示意图 .................................................................................... 29图3.2 单片铁氧体填充波导........................................................................................ 29图3.3 单片铁氧体波导仿真模型................................................................................ 31图3.4 磁场强度俯视图.............................................................................................. 32图3.5 横向电场Ey 沿宽边变化的曲线........................................................................ 33图3.6 不同铁氧体片厚度对应的横向电场分布曲线................................................ 33图3.8不同铁氧体片位置对应的横向电场分布曲线................................................. 35图3.10不同铁氧体片位置对应的横向电场分布曲线............................................... 36图3.11 不同铁氧体片位置对应的横向电场分布曲线.............................................. 37图3.14 位置为a 1=3mm 时不同传播方向电磁波的横向电场Ey ................................ 39图3.15 位置为a 1=4mm 时不同传播方向电磁波的横向电场Ey................................ 39图4.1 几种铁氧体波导结构...................................................................................... 42图4.2 背脊波导移相器结构图.................................................................................. 43图4.3 背脊波导移相器激励图.................................................................................. 44图4.4 未进行匹配的驻波系数.................................................................................... 45图4.5 未进行匹配的S 参数.......................................................................................... 45图4.6 长方体形状介质匹配示意图 . (45)图 4.7 长方体形状介质匹配的驻波系数 .................................................................... 46图4.8 长方体形状介质匹配的S 21参数....................................................................... 46图4.9 阶梯形状介质匹配示意图................................................................................ 46图4.10 阶梯形状介质匹配的驻波系数(47)21参图4.12 添加薄片形成三级阶梯匹配的示意图 (47)图4.13 添加2.0mm薄片后的驻波系数 (48)图4.14 添加2.0mm薄片后的S21参数 (48)图4.15 改变薄片尺寸示意图 (49)图4.16 不同长度薄片对应的驻波比 (49)图4.17 薄片为2.0mm时的差相移 (49)图4.18 第三级薄片改为梯形示意图 (50)图4.19 第三级薄片改为梯形后的驻波系数 (50)图4.20 第三级薄片改为梯形后的插损S21 (50)图4.21 改变第三级薄片高度示意图 (51)图4.22第三级薄片不同高度对应的驻波系数 (51)图4.23 180°移相器的差相移 (52)图4.24 180°移相器的驻波比 (52)图4.25 180°移相器的S21 (52)图4.26 90°移相器移相特性 (53)图4.27 90度移相器驻波比 (53)图4.28 90°移相器的S21 (54)图4.29 五级移相器单元的级联示意图 (54)图4.30 五级移相器单元的总体驻波比 (55)图4.31 五级移相器单元的S21 (55)图4.32 五级移相器五种相移状态 (56)图4.33五级移相器各级对应的相移量 (56)图4.34 移相误差百分比 (57)图5.1 半导体移相器的分类 (58)图5.2 PIN结内部载流子示意图 (59)图5.3 PIN管的等效电路图 (60)图5.4 PIN二极管精确模型 (60)图5.5 加载线移相器结构示意图 (63)图5.6 3dB耦合电桥 (65)图5.7 采用3dB耦合电桥结构的反射式移相器原理图 (65) 图5.8 开关线型移相器原理 (66)图6.1 利用ADS仿真的11.25度移相器电路图 (68)图6.2电压调节为+3V时11.25°移相器的S参数图 (68) 图6.4 利用ADS仿真的22.5度移相器电路图 (70)图6.5电压调节为+3V时的22.5°移相器的S参数图 (70) 图6.6电压调节为-3V时22.5°移相器的S参数图 (71)图6.7 45°移相器的ADS仿真电路 (72)图6.8 电压调节为+3V时45°移相器的S参数图 (73)图6.9 电压调节为-3V时45°移相器的S参数图 (73)图6.10 90°移相器的ADS仿真电路 (74)图6.11 电压调节为+3V时90°移相器的S参数图 (74)图6.12电压调节为-3V时90°移相器的S参数图 (75)图6.13 180°移相器的ADS仿真电路 (76)图6.14 电压调节为+3V时180°移相器的S参数图 (76)图6.15 电压调节为-3V时180°移相器的S参数图 (77)摘要移相器是相控阵雷达波束控制系统中的核心器件,用来控制天线单元发射信号的相位,其移相精度和开关时间直接决定了整个相控阵雷达的扫描精度和速率。
移相器的工作原理
移相器是一种用于光学成像的设备,它能够改变光线的相位,从而实现对焦和深度感知的功能。
在摄影和显微镜领域,移相器被广泛应用,它的工作原理是基于光的波动性和干涉现象的。
首先,我们来了解一下光的波动性。
光是一种电磁波,它具有波动性和粒子性。
在光学成像中,光的波动性起着决定性作用。
当光线通过不同介质或经过光学器件时,会发生折射、反射和干涉等现象,这些现象都与光的波动性密切相关。
移相器利用了光的波动性和干涉现象来实现对焦和深度感知。
它通常由两个或多个光学元件构成,其中包括透镜、衍射光栅等。
这些光学元件能够改变光线的相位,从而影响光的传播和成像。
在移相器的工作过程中,光线首先经过透镜聚焦,然后被衍射光栅或其他光学元件改变其相位。
通过调节衍射光栅的参数,如周期、方向等,可以实现对焦和深度感知的效果。
具体来说,当衍射光栅的参数发生变化时,光线的相位也会发生变化,从而影响成像的清晰度和深度信息。
除了衍射光栅,移相器还可以利用其他光学元件,如液晶透镜、声波透镜等,来实现对焦和深度感知的功能。
这些光学元件能够通
过电磁场、声波等外部信号来改变其光学特性,从而实现对焦和深
度感知的调节。
总的来说,移相器的工作原理是基于光的波动性和干涉现象的。
它利用光学元件改变光线的相位,从而实现对焦和深度感知的功能。
在摄影和显微镜领域,移相器的应用为成像技术带来了新的可能,
为人们观察微观世界和捕捉精彩瞬间提供了更多选择和便利。
希望
本文能够帮助读者更好地理解移相器的工作原理,进一步探索光学
成像技术的奥秘。
铁氧体移相器原理
铁氧体移相器原理
2) 铁氧体移相器
其基本原理是利用外加直流磁场改变波导内铁氧体的导磁系数, 因而改变电磁波的相速, 得到不同的相移量。
图7.25所示为常用的一种铁氧体移相器, 在矩形波导宽边中央有一条截面为环形的铁氧体环,环中央穿有一根磁化导线。
根据铁氧体的磁滞特性(见图
7.25(a)), 当磁化导线中通过足够大的脉冲电流时, 所产生的外加磁场也足够强(它与磁化电流强度成正比), 铁氧体磁化达到饱和, 脉冲结束后, 铁氧体内便会有一个剩磁感应(其强度为)。
当所加脉冲极性改变时, 剩磁感应的方向也相应改变(其强度为)。
这两个方向不同的剩磁感应对波导内传输的波来说,对应两个不同的导磁系数, 也就是两种不同极性的脉冲在该段铁氧体内对应有两个不同的相移量, 这对二进制数控很有利。
铁氧体产生的总的相移量为这两个相移量之差(称差相移)。
只要铁氧体环在每次磁化时都达到饱和, 其剩磁感应大小就保持不变, 这样,差相移的值便取决于铁氧体环的长度。
图 7.25 铁氧体移相器
(a) 铁氧体磁滞回线; (b) 相移器结构
这种移相器的特点是: 铁氧体环的两个不同数值的导磁系数分别由两个方向相反的剩磁感应来维持, 磁化导线中不必加维持电流, 因此所
需激励功率比其它铁氧体移相器小。
铁氧体移相器的主要优点是:承受功率较高,插入损耗较小,带宽较宽。
其缺点是:
所需激励功率比PIN管移相器大,开关时间比PIN管移相器长,较笨重。
移相器工作原理
移相器是一种改变信号的相位的设备,通常用于调整信号相位以实现相位调制、相位解调和相位变换等功能。
其主要工作原理如下:
1. 相位移动:移相器能够将输入信号的相位进行有限的移动。
这可以通过多种方式实现,其中一种常见的方法是采用电压控制的移动反馈电路。
通过调节输入的电压信号,移相器可以改变其输出信号的相位。
通常,移相器提供一个可以调节的控制电压,用于控制想要的相位移动量。
2. 相位调制:移相器可以将基频正弦信号的相位进行调制。
通过输入一个调制信号,其相位可以按照调制信号的波形进行相应的改变。
这可以实现一些常见的调制方式,如频移键控调制(FSK)、相移键控调制(PSK)等。
3. 相位解调:移相器也可以用于解调已经调制过的信号。
通过输入已经调制的信号,移相器可以将调制信号的相位转换为对应的幅度或频率变化,从而还原出原始信号。
4. 相位变换:移相器还可以将信号的相位进行非线性变换。
这可以通过使用电感元件、电容元件、晶体管等实现,使得输入信号的相位与输出信号的相位之间存在非线性关系。
这种相位变换可以用于频谱扩展、信号滤波等应用。
总的来说,移相器的主要工作原理是通过调节输入信号的相位,
实现相位移动、相位调制、相位解调和相位变换等功能。
这使得移相器在通信、调制解调、信号处理等领域有着广泛的应用。
2) 铁氧体移相器
其基本原理是利用外加直流磁场改变波导内铁氧体的导磁系数, 因而改变电磁波的相速, 得到不同的相移量。
图7.25所示为常用的一种铁氧体移相器, 在矩形波导宽边中央有一条截面为环形的铁氧体环,环中央穿有一根磁化导线。
根据铁氧体的磁滞特性(见图 7.25(a)), 当磁化导线中通过足够大的脉冲电流时, 所产生的外加磁场也足够强(它与磁化电流强度成正比), 铁氧体磁化达到饱和, 脉冲结束后, 铁氧体内便会有一个剩磁感应(其强度为)。
当所加脉冲极性改变时, 剩磁感应的方向也相应改变(其强度为)。
这两个方向不同的剩磁感应对波导内传输的波来说,对应两个不同的导磁系数, 也就是两种不同极性的脉冲在该段铁氧体内对应有两个不同的相移量, 这对二进制数控很有利。
铁氧体产生的总的相移量为这两个相移量之差(称差相移)。
只要铁氧体环在每次磁化时都达到饱和, 其剩磁感应大小就保持不变, 这样,差相移的值便取决于铁氧体环的长度。
图 7.25 铁氧体移相器
(a) 铁氧体磁滞回线; (b) 相移器结构
这种移相器的特点是: 铁氧体环的两个不同数值的导磁系数分别由两个方向相反的剩磁感应来维持, 磁化导线中不必加维持电流, 因此所需激励功率比其它铁氧体移相器小。
铁氧体移相器的主要优点是:承受功率较高,插入损耗较小,带宽较宽。
其缺点是:所需激励功率比PIN管移相器大,开关时间比PIN管移相器长,较笨重。