MATLAB跟轨迹分析
- 格式:ppt
- 大小:367.00 KB
- 文档页数:34
利用MATLAB进行根轨迹分析根轨迹分析是一种用于研究系统稳定性和动态特性的方法,通过研究系统的传递函数来绘制系统极点随参数变化的轨迹。
MATLAB提供了强大的工具和函数来进行根轨迹分析。
根轨迹是由系统的极点随参数变化所形成的轨迹,它可以反映系统的稳定性、阻尼比、上升时间、超调量等动态性能指标。
根轨迹的绘制通常包括以下步骤:1.定义系统传递函数:首先,需要根据具体的控制系统问题定义系统的传递函数。
传递函数是描述输入与输出间关系的数学模型,通常用分子多项式和分母多项式的比值来表示。
2. 极点位置确定:根据系统传递函数的分母多项式,可以求解系统的极点位置。
MATLAB提供了roots函数来计算多项式的根。
3. 绘制根轨迹:通过参数变化,将系统的极点位置代入传递函数的分子多项式中,可以计算得出系统的零点。
然后,使用MATLAB的plot函数将所有极点和零点绘制在复平面上。
4.判断稳定性:通过观察根轨迹的形状,可以判断系统的稳定性。
如果所有极点都位于左半平面,系统是稳定的。
如果存在极点位于右半平面,系统是不稳定的。
5.分析动态特性:根轨迹的形状可以提供许多关于系统动态特性的信息。
例如,阻尼比可以通过根轨迹上极点到原点的距离和纵坐标之比来估计;超调量可以通过根轨迹的形状和最大振幅来估计。
MATLAB提供了许多用于根轨迹分析的函数和工具箱,包括rlocus函数、nyquist函数和bode函数等。
这些函数可以方便地绘制根轨迹、Nyquist图和Bode图,从而帮助工程师分析系统稳定性以及设计和调整控制器。
根轨迹分析在控制系统设计和调优中具有重要作用。
通过根轨迹的绘制和分析,工程师可以深入了解控制系统的动态特性,并根据需要调整系统参数来达到设计要求。
同时,根轨迹分析也是控制系统教学和研究中常用的方法和工具。
总之,MATLAB是进行根轨迹分析的强大工具,通过绘制根轨迹和分析根轨迹的形状和特性,可以帮助工程师深入了解控制系统的稳定性和动态特性,从而有效地设计和调整控制器。
实验二 利用MATLAB 进行根轨迹分析一 实验目的1 掌握利用MA TLAB 绘制控制系统根轨迹图形等方法。
2 掌握利用绘制的根轨迹图形进行线性系统分析的方法二 实验内容1 初步掌握MA TLAB 根轨迹绘制以及分析中的基本命令;2 绘制系统的根轨迹图并进行性能分析三 实验步骤1 初步掌握MA TLAB 根轨迹绘制中的基本命令;可利用pzmap 函数绘制连续系统的零、极点图,也可以利用tf2zp 函数求出系统的零、极点。
如考虑函数432543232546()34276s s s s G s s s s s s ++++=+++++ 的零、极点及增益,并绘制其零、极点图。
执行如下程序:num=[3 2 5 4 6];den=[1 3 4 2 7 2];[Z,P,K]=tf2zp(num,den)pzmap(num,den)Title(‘Pole-Zore Map ’)或者num=[3 2 5 4 6];den=[1 3 4 2 7 2];sys1=tf(num,den)pzmap(sys1)Title(‘Pole-Zore Map ’)绘制结果如下:2 绘制系统的根轨迹考虑如下开环传递函数*2()()(3)(22)K G s H s s s s s =+++ 试绘制根轨迹执行如下命令:num=[0 0 0 0 1];den=[1 5 8 6 0];rlocus(num,den)grid绘制结果如下:四 作业1 设单位反馈系统的开环传递函数为(0.011)(0.021)K s s s ++,要求:(1)画出根轨迹;(2)从图中确定系统的临界稳定开环增益c K ;(3)从图中确定与系统临界阻尼比相应的开环增益K 。
2 设单位负反馈系统的开环传递函数(4)()(2)K s G s s s +=+,试绘制根轨迹图,并从图中找出系统具有最小阻尼比时的闭环极点和对应的增益K 。
基于MATLAB 的根轨迹分析一.实验目的:1.学习利用MATLAB 的语言绘制控制系统根轨迹的方法。
2.学习利用根轨迹分析系统的稳定性及动态特性。
二.实验内容:1.应用MATLAB 语句画出控制系统的根轨迹。
2.求出系统稳定时,增益k 的范围。
3.分析系统开环零点和极点对系统稳定性的影响。
三.实验步骤1.给定某系统的开环传递函数G(s)H(s)=k/s(s*s+4s+16),用MATLAB 与语言绘出该系统的根轨迹。
程序如下:num=[1];den=[1,4,16,0];G=tf(num,den)G1=zpk(G)Z=tzero(G)P=pole(G)pzmap(num,den);title('pole-zero Map')rlocus(num,den)根轨迹如图-12-10-8-6-4-2024-10-8-6-4-20246810Root LocusReal Axis I m a g i n a r y A x i s结论:由上图可知增益k 的取值范围:0<k<642.将系统的开环传递函数改为:G(s)H(s)=k/s(s*s+4s+5),绘出该系统根轨迹图,观察增加了开环零点后根轨迹图的变化情况。
程序如下:num=[1,1];den=[1,4,5,0];G=tf(num,den)G1=zpk(G)Z=tzero(G)P=pole(G)pzmap(num,den);title('pole-zero Map')rlocus(num,den)根轨迹如图-2.5-2-1.5-1-0.50-5-4-3-2-1012345Root LocusReal Axis I m a g i n a r y A x i s结论:增加了开环零点后根轨迹的变化3.将系统的开环传递函数改为:G(s)H(s)=k/s(s-1)(s*s+4s+5),绘出该系统的根轨迹图,观察增加了开环零点后根轨迹的变化情况。
参数根轨迹的matlab绘制原理参数根轨迹是控制系统分析和设计中非常重要的概念,可以帮助我们分析控制系统的稳定性和动态响应特性。
在Matlab中,可以通过一些简单的指令实现参数根轨迹的绘制,从而更好地理解控制系统的行为。
本文将简要介绍参数根轨迹的概念和Matlab中绘制参数根轨迹的原理,以及具体的绘制方法。
一、什么是参数根轨迹?我们知道,在控制系统中,控制器的传递函数通常是由若干个参数构成的,例如比例控制器的传递函数为$K_p$,积分控制器的传递函数为$\frac{K_i}{s}$等。
参数根轨迹是指控制器参数变化时,系统极点和极点轨迹的变化关系。
在某些情况下,通过控制器参数的设计和调节,我们可以使得系统的极点轨迹穿过我们所期望的点(通常是一条直线),从而使系统的性能和稳定性得到改善。
参数根轨迹的绘制是一种基于控制理论的分析方法,它可以用来分析控制系统的动态响应特性,包括稳态误差、阻尼比、过渡过程时间等。
参数根轨迹的概念适用于各种类型的控制系统,包括比例控制、积分控制、微分控制、比例积分控制、比例微分控制等。
二、参数根轨迹的Matlab绘制原理Matlab提供了许多用于控制系统分析和设计的工具箱,包括控制系统工具箱、优化工具箱等。
在控制系统工具箱中,可以使用“rlocus”指令绘制参数根轨迹。
rlocus指令的使用形式为:```rlocus(num,den,k)```num和den是控制器的分子和分母系数向量,k是控制器参数的范围,通常选择在0到一个较大的数之间。
对于一个比例控制器,可以使用以下代码绘制参数根轨迹:```num=[1];den=[1 10];k=0:0.1:10;rlocus(num,den,k)```这个代码将绘制一个比例控制器$G(s)=k$的参数根轨迹,其中控制器的分母为$s+10$。
在绘制出来的图像中,可以看到参数$k$的变化对系统极点轨迹的影响。
通常我们会选择一个合适的$k$值,使得系统极点轨迹经过我们期望的稳定位置。
matlab中根轨迹M a t l a b中的根轨迹是一种用于分析和设计控制系统的有力工具。
根轨迹图能够帮助我们直观地了解系统的稳定性、动态特性和控制参数对系统性能的影响。
在本文中,我们将一步一步地回答关于M a t l a b中根轨迹的一些常见问题。
1.什么是根轨迹?根轨迹是指系统传递函数零极点在复平面上随参数变化时所形成的轨迹。
这些轨迹是系统的特征线,可以帮助我们分析和预测系统的动态行为。
根轨迹图通常以虚轴为对称轴,用于研究连续时间域系统的稳定性和相应的频率响应。
2.如何在M a t l a b中绘制根轨迹?在M a t l a b中,绘制根轨迹有多种方法,其中最常用的是使用"r l o c u s"函数。
这个函数的基本语法为r l o c u s(s y s)或r l o c u s(s y s K)或r l o c u s(s y s,K),其中s y s是控制系统的传递函数,K是增益。
通过改变K的值,可以生成不同增益对应的根轨迹图。
3.如何选择适当的增益K?选择适当的增益K是非常重要的,因为它直接决定了系统的稳定性和性能。
通常情况下,我们可以通过观察根轨迹来判断系统是否稳定,并选择合适的增益K。
当系统的根轨迹趋近于虚线的无穷远处时,该系统是稳定的。
此时,我们可以选择一个适当的增益K,以实现所需的动态性能。
4.如何分析根轨迹图?根轨迹图提供了丰富的信息,可以帮助我们分析系统的动态行为。
首先,我们可以根据根轨迹的形状判断系统的稳定性。
如果所有的根轨迹都位于左半平面,则系统是稳定的;如果有根轨迹位于右半平面,则系统是不稳定的。
其次,我们还可以通过根轨迹图估计系统的动态特性,如振荡频率、过渡时间和超调量。
振荡频率可以通过根轨迹的旋转速度和半径来估计,而过渡时间和超调量可以通过根轨迹到达虚线和实轴的位置来估计。
此外,根轨迹图还可以帮助我们选择合适的控制器增益。
根据根轨迹的位置,我们可以调整增益的大小,以达到所需的系统性能。