数三线性代数必考知识点
- 格式:doc
- 大小:25.50 KB
- 文档页数:9
线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 .................................................................. 2-02、主对角线............................................................................ 2-03、转置行列式.......................................................................... 2-04、行列式的性质........................................................................ 3-05、计算行列式.......................................................................... 3-06、矩阵中未写出的元素 .................................................................. 4-07、几类特殊的方阵...................................................................... 4-08、矩阵的运算规则...................................................................... 4-09、矩阵多项式.......................................................................... 6-10、对称矩阵............................................................................ 6-11、矩阵的分块.......................................................................... 6-12、矩阵的初等变换...................................................................... 6-13、矩阵等价............................................................................ 6-14、初等矩阵............................................................................ 7-15、行阶梯形矩阵与行最简形矩阵......................................................... 7-16、逆矩阵 ............................................................................. 7-17、充分性与必要性的证明题 .............................................................. 8-18、伴随矩阵............................................................................ 8-19、矩阵的标准形:........................................................................ 9-20、矩阵的秩:........................................................................... 9-21、矩阵的秩的一些定理、推论............................................................. 9-22、线性方程组概念..................................................................... 10-23、齐次线性方程组与非齐次线性方程组(不含向量) .......................................... 10-24、行向量、列向量、零向量、负向量的概念................................................ 11-25、线性方程组的向量形式 ............................................................... 11-26、线性相关与线性无关的概念......................................................... 12-27、向量个数大于向量维数的向量组必然线性相关 ........................................... 12-28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. 12-29、线性表示与线性组合的概念......................................................... 12-30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题........................... 12-31、线性相关(无关)与线性表示的3个定理................................................ 12-32、最大线性无关组与向量组的秩.......................................................... 12-33、线性方程组解的结构…………………………………………………………………………………………12-01、余子式与代数余子式(1)设三阶行列式, 则①元素an,ai,au的余子式分别为:对Mi的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个行列式即元素au的余子式Mi。
线性代数必考知识点一、行列式1、逆序数一个排列n i i i i ,,,321若有类似21i i 时,我们称21i i 组成一个逆序。
一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i 2、行列式性质(1) 行列式行列互换,其值不变,即T A A(2) 行列式两行或两列互换,其值反号。
(3) 行列式某行或某列乘以k 等于行列式乘以k 。
(4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。
(5) 行列式两行或两列对应成比例,则行列式为零。
(6) 行列式某行或某列元素为零,则行列式为零。
(7) 上、下三角行列式其值为主对角线上元素乘积。
(8) 行列式值等于对应矩阵所有特征值的乘积,即n A 21 (9) 齐次线性方程组0 Ax 有非零解n A r A )(0 3、行列式行列展开定理(1) 余子式ij j i ij A M )1( (2) 代数余子式ij j i ij M A )1( 4、三阶行列式展开公式332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a 二、矩阵1、矩阵运算(1) 矩阵加减法即是将对应元素进行加减。
(2) 矩阵乘法是将对应行与对应列元素相乘再相加。
(3) 矩阵除法是乘以逆矩阵。
(4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。
(5) n 阶方阵一般可以有1*,,, A A A A T 四大基本矩阵运算 2、矩阵的行列式(1) A k kA A A n T , (2) A B B A BA AB 3、矩阵转置(1) T T T T T T T T T T A B AB kA kA B A B A A A )(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A4、伴随矩阵(1) *1*****11*2****1*)(,)(,)()(,)(,,A k kA A B AB A A A AA E A A A AA A A A n n(2) 1)(0)(1)(1)()()(*** n A r A r n A r A r nA r n A r5、逆矩阵 (1) 1111*111111*1)(,1)(,,)(,,1A B AB A AA A A A A E A A AA A A A (2) 分块矩阵的逆矩阵① 111A O A O OB OB (主对角分块)② 111O A O B B O AO(副对角分块) ③ 11111A C A A CB O B OB(拉普拉斯)④ 11111A O A O C B B CA B(拉普拉斯) 6、矩阵初等变换(1) 交换矩阵两行或两列 (2) 矩阵某行或某列乘以k(3) 矩阵某行或某列乘以k 并加到另一行或列 (4) 矩阵初等变换的实质是矩阵与初等矩阵相乘 ① 矩阵初等行变换=矩阵左乘初等矩阵 ② 矩阵初等列变换=矩阵右乘初等矩阵 7、矩阵其他考点(1) 行列矩阵相乘: 为行矩阵),,(21n a a a , 为列矩阵),,(21n b b b , 则 1)()()()())(()( k k(2) 矩阵n A 的求法:若A 可对角化,则有 AP P 1,于是1 P P A n n (3) 若n B r m A r )(,)(,则有m A r B A r )()(且n B r B A r )()(三、向量1、向量运算: k k k )(),()(,2、线性表示对于向量组s ,,21和向量 ,若存在一组数s k k k ,,21使得s s k k k 2211 (1) 若s s k k k 2211有唯一解,则 能由向量组s ,,21唯一线性表示。
大学数学易考知识点线性代数与概率论大学数学易考知识点:线性代数与概率论线性代数是大学数学中非常重要且基础的一门学科,它涉及到向量空间、矩阵、行列式、线性方程组等内容。
概率论则是研究随机事件发生的概率及其规律性的数学学科。
在大学数学考试中,线性代数与概率论是比较易于考察且知识点较为独立的部分。
本文将介绍大学数学考试中线性代数与概率论的一些常见易考知识点。
一、线性代数1. 向量空间与线性变换向量空间是线性代数的核心概念之一,在考试中常涉及到向量空间的基本性质、子空间、线性组合、线性相关性、线性无关性等内容。
此外,线性变换也是考察的重点,包括线性变换的定义、性质、矩阵表示及其相关定理等。
2. 矩阵与行列式矩阵是线性代数的重要工具,考试中经常涉及到矩阵的基本运算、特殊矩阵、矩阵的秩与逆等知识点。
行列式也是考试的常见题型,包括行列式的定义、性质、展开及其应用等内容。
3. 线性方程组与解空间线性方程组是线性代数的基本问题之一,考试中常涉及到线性方程组的求解、解的结构、解的个数等知识点。
此外,解空间也是考查的重点,包括零空间、列空间、行空间等相关概念及其性质。
4. 特征值与特征向量特征值与特征向量是线性代数中重要的概念,考试中常涉及到特征值与特征向量的定义、性质、求解、对角化等知识点。
矩阵的对角化定理也是考查的重点,需掌握其条件与应用。
二、概率论1. 随机变量与概率分布随机变量是概率论的基础,考试中常涉及到随机变量的定义、分类、概率分布、期望、方差等知识点。
常见的离散型随机变量包括二项分布、泊松分布等;常见的连续型随机变量包括均匀分布、正态分布等。
2. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要定理,考试中常涉及到大数定律的弱/强收敛形式、伯努利大数定律、切比雪夫大数定律等;中心极限定理的常见形式包括林德伯格-列维中心极限定理、中心极限定理的矩形式等。
3. 随机过程与马尔可夫链随机过程是概率论的重要内容,考试中常涉及到随机过程的定义、分类、马尔可夫性质等知识点。
考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。
在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。
在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。
1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。
向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。
2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。
3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。
矩阵可以用于表示线性变换、解线性方程组等。
常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。
4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。
行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。
5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。
相似的矩阵有着相同的特征值和特征向量。
对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。
6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。
线性变换可以进行合成、求逆等操作。
7. 内积空间:内积空间是一个带有内积运算的向量空间。
内积运算满足对称性、线性性、正定性等性质。
内积空间可以用来定义向量的长度、夹角、正交性等概念。
8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。
特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。
9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。
线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。
下面我们就来详细梳理一下线性代数中的重点知识。
一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。
计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。
其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。
行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。
行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。
二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。
矩阵的运算有加、减、乘、数乘。
矩阵乘法需要注意其规则,不满足交换律。
逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。
求逆矩阵的方法有伴随矩阵法和初等变换法。
矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。
三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。
判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。
极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。
向量组的秩等于其极大线性无关组所含向量的个数。
四、线性方程组线性方程组是线性代数的重点应用之一。
齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。
非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。
求解线性方程组可以使用高斯消元法。
五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。
求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。
线性代数必考知识点1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于阶行列式,恒有:,其中为阶主子式;7. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2. 对于阶矩阵:无条件恒成立;3.4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8. 关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10. 线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;( 例14)4. ;( 例15)5. 维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;向量组能由向量组线性表示,则;向量组能由向量组线性表示有解;向量组能由向量组等价8. 方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9. 对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10. 若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12. 设向量组可由向量组线性表示为:()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. ①、对矩阵,存在,、的列向量线性无关;②、对矩阵,存在,、的行向量线性无关;线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16. 若为的一个解,为的一个基础解系,则线性无关;5、相似矩阵和二次型1. 正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:;;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6. 为对称阵,则为二次型矩阵;7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。
数三线性代数考试大纲一、线性空间与线性变换1. 线性空间的定义与性质- 向量空间的公理化定义- 子空间的概念与性质- 线性空间的维数和基2. 线性映射与线性变换- 线性映射的定义- 线性变换的矩阵表示- 线性变换的核与像3. 线性空间的直和与直积- 直和的定义与性质- 直积的定义与应用4. 线性空间的同构与同态- 同构映射的定义与性质- 同态映射的概念二、矩阵理论1. 矩阵的基本概念- 矩阵的表示与运算- 矩阵的转置与共轭2. 矩阵的秩与行列式- 矩阵秩的定义与性质- 行列式的概念与计算方法3. 矩阵的逆与伪逆- 可逆矩阵的条件- 伪逆矩阵的定义与性质4. 特殊矩阵与矩阵分解- 对角矩阵、单位矩阵、零矩阵 - 矩阵的三角分解- 矩阵的奇异值分解三、线性方程组1. 线性方程组的解法- 高斯消元法- 矩阵形式的线性方程组解法2. 线性方程组的解的结构- 唯一解、无穷多解、无解的条件 - 齐次线性方程组的解空间3. 线性方程组的几何解释- 方程组的解集与线性变换的像四、特征值与特征向量1. 特征值与特征向量的定义- 特征值问题的提出- 特征向量的性质2. 特征多项式与特征空间- 特征多项式的计算- 特征空间的概念3. 矩阵的对角化- 对角化的条件- 对角化的应用五、二次型与正定性1. 二次型的定义与性质- 二次型的表示- 二次型的秩2. 正定二次型- 正定性的定义与判别- 正定矩阵的性质3. 惯性定理与正定矩阵的判定 - 惯性定理的内容- 正定矩阵的判定方法六、向量空间的内积与范数1. 内积空间的定义与性质- 内积的定义- 内积空间的正交性2. 范数与度量空间- 范数的定义- 度量空间的概念3. 范数的性质与应用- 范数的性质- 范数在优化问题中的应用七、线性代数的应用1. 在物理学中的应用- 力学系统中的线性代数- 量子力学中的线性代数2. 在工程学中的应用- 控制理论中的线性代数- 信号处理中的线性代数3. 在计算机科学中的应用- 图像处理中的线性代数- 机器学习中的线性代数本考试大纲旨在为学生提供一个全面的线性代数知识体系,帮助学生掌握线性代数的基本概念、理论及其应用。