第5章 汽车的操纵稳定性[1]综述
- 格式:ppt
- 大小:1.81 MB
- 文档页数:3
第5章 汽车的操纵稳定性学习目标通过本章的学习,应掌握汽车行驶的纵向和横向稳定性条件;掌握车辆坐标系的有关术语,了解影响侧偏特性的因素,掌握轮胎回正力矩与侧偏特性的关系;熟练掌握汽车的稳态转向特性及其影响因素;了解汽车转向轮的振动和操纵稳定性的道路试验内容。
汽车在其行驶过程中,会碰到各种复杂的情况,有时沿直线行驶,有时沿曲线行驶。
在出现意外情况时,驾驶员还要作出紧急的转向操作,以求避免事故。
此外,汽车还要经受来自地面不平、坡道、大风等各种外部因素的干扰。
一辆操纵性能良好的汽车必须具备以下的能力:(1)根据道路、地形和交通情况的限制,汽车能够正确地遵循驾驶员通过操纵机构所给定的方向行驶的能力——汽车的操纵性。
(2)汽车在行驶过程中具有抵抗力图改变其行驶方向的各种干扰,并保持稳定行驶的能力——汽车的稳定性。
操纵性和稳定性有紧密的关系:操纵性差,导致汽车侧滑、倾覆,汽车的稳定性就破坏了。
如稳定性差,则会失去操纵性,因此,通常将两者统称为汽车的操纵稳定性。
汽车的操纵稳定性,是汽车的主要使用性能之一,随着汽车平均速度的提高,操纵稳定性显得越来越重要。
它不仅影响着汽车的行驶安全,而且与运输生产率与驾驶员的疲劳强度有关。
节汽车行驶的纵向和横向稳定性 5.1.1 汽车行驶的纵向稳定性汽车在纵向坡道上行驶,例如等速上坡,随着道路坡度增大,前轮的地面法向反作用力不断减小。
当道路坡度大到一定程度时,前轮的地面法向反作用力为零。
在这样的坡度下,汽车将失去操纵性,并可能产生纵向翻倒。
汽车上坡时,坡度阻力随坡度的增大而增加,在坡度大到一定程度时,为克服坡度阻力所需的驱动力超过附着力时,驱动轮将滑转。
这两种情况均使汽车的行驶稳定性遭到破坏。
图 汽车上坡时的受力图图为汽车上坡时的受力图,如汽车在硬路面上以较低的速度上坡,空气阻力w F 可以忽略不计,由于剩余驱动力用于等速爬坡,即汽车的加速阻力0=j F ,加速阻力矩0=j M ,而车轮的滚动阻力矩f M 的数值相对来说比较小,可不计入。
汽车操纵稳定性概述汽车的操纵稳定性是指车辆在加速、刹车、转弯等操作时,保持良好的稳定性和可控性的能力。
这一特性对驾驶员来说非常重要,因为它直接关系到行车的安全和舒适性。
汽车的操纵稳定性受到多个因素的影响,包括悬挂系统、制动系统、转向系统等。
本文将从这些方面对汽车操纵稳定性进行概述。
首先,悬挂系统对汽车的操纵稳定性起到了关键作用。
悬挂系统主要由弹簧、减振器和稳定杆等组成。
弹簧和减振器能够减缓车辆在通过不平路面时产生的颠簸感,提高悬挂系统的工作效率。
稳定杆可以减少车辆转向时的侧倾,提高车辆的稳定性。
因此,一个良好的悬挂系统对车辆的操纵稳定性起到了至关重要的作用。
其次,制动系统对操纵稳定性也有很大的影响。
制动系统主要由刹车盘、刹车片和刹车油等构成。
当驾驶员需要紧急刹车时,一个良好的制动系统可以迅速减速并能够保持车辆的稳定性。
如果制动系统工作不正常,可能会导致车辆在刹车时出现抱死现象,从而失去了对车辆的控制。
在操纵稳定性方面,转向系统也起到了重要的作用。
转向系统主要由转向机构、转向齿轮和转向轴等构成。
一个良好的转向系统可以提供准确而稳定的转向操作,驾驶员可以更容易地控制车辆的前进方向。
在紧急转弯时,一个稳定的转向系统可以避免车辆失控或侧翻的风险。
此外,轮胎也对汽车的操纵稳定性起到了至关重要的作用。
好的轮胎可以提供良好的抓地力和操控性能,这对车辆的操纵稳定性起到了重要作用。
如果轮胎的磨损过度或者胎压不正确,都可能导致车辆在行驶过程中失去稳定性。
除了这些因素之外,车辆的重心位置也会对操纵稳定性产生影响。
低重心的车辆相对于高重心的车辆在行驶中更加稳定。
因此,现代的汽车设计会尽量将重心降低,以提高车辆的操纵稳定性。
总结起来,汽车的操纵稳定性是一个复杂的系统工程,受到多个因素的影响。
悬挂系统、制动系统、转向系统以及轮胎等都对汽车的操纵稳定性起到了至关重要的作用。
为了提高操纵稳定性,驾驶员应该保持良好的驾驶技巧,同时定期检查和维护车辆的关键部件,以确保其正常工作。
第5章汽车的操纵稳定性学习目标通过本章的学习,应掌握汽车行驶的纵向和横向稳定性条件;掌握车辆坐标系的有关术语,了解影响侧偏特性的因素,掌握轮胎回正力矩与侧偏特性的关系;熟练掌握汽车的稳态转向特性及其影响因素;了解汽车转向轮的振动和操纵稳定性的道路试验内容。
汽车在其行驶过程中,会碰到各种复杂的情况,有时沿直线行驶,有时沿曲线行驶。
在出现意外情况时,驾驶员还要作出紧急的转向操作,以求避免事故。
此外,汽车还要经受来自地面不平、坡道、大风等各种外部因素的干扰。
一辆操纵性能良好的汽车必须具备以下的能力:(1)根据道路、地形和交通情况的限制,汽车能够正确地遵循驾驶员通过操纵机构所给定的方向行驶的能力——汽车的操纵性。
(2)汽车在行驶过程中具有抵抗力图改变其行驶方向的各种干扰,并保持稳定行驶的能力——汽车的稳定性。
操纵性和稳定性有紧密的关系:操纵性差,导致汽车侧滑、倾覆,汽车的稳定性就破坏了。
如稳定性差,则会失去操纵性,因此,通常将两者统称为汽车的操纵稳定性。
汽车的操纵稳定性,是汽车的主要使用性能之一,随着汽车平均速度的提高,操纵稳定性显得越来越重要。
它不仅影响着汽车的行驶安全,而且与运输生产率与驾驶员的疲劳强度有关。
5.1节汽车行驶的纵向和横向稳定性5.1.1 汽车行驶的纵向稳定性汽车在纵向坡道上行驶,例如等速上坡,随着道路坡度增大,前轮的地面法向反作用力不断减小。
当道路坡度大到一定程度时,前轮的地面法向反作用力为零。
在这样的坡度下,汽车将失去操纵性,并可能产生纵向翻倒。
汽车上坡时,坡度阻力随坡度的增大而增加,在坡度大到一定程度时,为克服坡度阻力所需的驱动力超过附着力时,驱动轮将滑转。
这两种情况均使汽车的行驶稳定性遭到破坏。
图5.1 汽车上坡时的受力图F可图5.1为汽车上坡时的受力图,如汽车在硬路面上以较低的速度上坡,空气阻力w以忽略不计,由于剩余驱动力用于等速爬坡,即汽车的加速阻力0=j F ,加速阻力矩0=j M ,而车轮的滚动阻力矩f M 的数值相对来说比较小,可不计入。
第5章汽车的操纵稳定性学习目标通过本章的学习,应掌握汽车行驶的纵向和横向稳定性条件;掌握车辆坐标系的有关术语,了解影响侧偏特性的因素,掌握轮胎回正力矩与侧偏特性的关系;熟练掌握汽车的稳态转向特性及其影响因素;了解汽车转向轮的振动和操纵稳定性的道路试验内容。
汽车在其行驶过程中,会碰到各种复杂的情况,有时沿直线行驶,有时沿曲线行驶。
在出现意外情况时,驾驶员还要作出紧急的转向操作,以求避免事故。
此外,汽车还要经受来自地面不平、坡道、大风等各种外部因素的干扰。
一辆操纵性能良好的汽车必须具备以下的能力:(1)根据道路、地形和交通情况的限制,汽车能够正确地遵循驾驶员通过操纵机构所给定的方向行驶的能力——汽车的操纵性。
(2)汽车在行驶过程中具有抵抗力图改变其行驶方向的各种干扰,并保持稳定行驶的能力——汽车的稳定性。
操纵性和稳定性有紧密的关系:操纵性差,导致汽车侧滑、倾覆,汽车的稳定性就破坏了。
如稳定性差,则会失去操纵性,因此,通常将两者统称为汽车的操纵稳定性。
汽车的操纵稳定性,是汽车的主要使用性能之一,随着汽车平均速度的提高,操纵稳定性显得越来越重要。
它不仅影响着汽车的行驶安全,而且与运输生产率与驾驶员的疲劳强度有关。
5.1节汽车行驶的纵向和横向稳定性5.1.1 汽车行驶的纵向稳定性汽车在纵向坡道上行驶,例如等速上坡,随着道路坡度增大,前轮的地面法向反作用力不断减小。
当道路坡度大到一定程度时,前轮的地面法向反作用力为零。
在这样的坡度下,汽车将失去操纵性,并可能产生纵向翻倒。
汽车上坡时,坡度阻力随坡度的增大而增加,在坡度大到一定程度时,为克服坡度阻力所需的驱动力超过附着力时,驱动轮将滑转。
这两种情况均使汽车的行驶稳定性遭到破坏。
图5.1 汽车上坡时的受力图图5.1为汽车上坡时的受力图,如汽车在硬路面上以较低的速度上坡,空气阻力可以忽略不计,由于剩余驱动力用于等速爬坡,即汽车的加速阻力,加速阻力矩,而车轮的滚动阻力矩的数值相对来说比较小,可不计入。
汽车操作稳定性范文首先,悬挂系统对于车辆的稳定性起着关键作用。
一个稳定的悬挂系统可以提供更好的路面接触,减少车辆的倾斜和侧滑现象。
常见的悬挂系统有独立悬挂和梁式悬挂两种。
独立悬挂可以使车轮更好地适应路面变化,保持较好的路面抓地力,从而提高车辆的稳定性。
而梁式悬挂由于刚性较强,相对稳定性较差。
其次,转向系统对于车辆的操控性和稳定性同样非常重要。
一个良好的转向系统应该具备良好的回馈性、精准度和灵敏度。
在紧急情况下,驾驶者可以准确地控制车辆的转向,避免事故的发生。
刹车系统是保证车辆安全的关键部件之一,对于车辆的操控和稳定性起着至关重要的作用。
一个优秀的刹车系统应该具备良好的刹车感觉、响应速度和制动力量。
驾驶者可以通过控制刹车系统来保持车辆的稳定性和安全性。
车身结构也对车辆的稳定性产生较大的影响。
一个结构合理的车身可以提供较好的刚性和稳定性。
在面对弯道、急转弯等行驶情况时,一个稳定的车身结构可以减少动力侧滑和倾斜,提高车辆的操控性和稳定性。
此外,轮胎的选择和状况也对车辆的操控性和稳定性起着至关重要的作用。
轮胎是车辆与路面之间唯一的接触面,对车辆的抓地力和操控性具有重要的影响。
驾驶者应选择适合路况和自身需求的轮胎,并保持良好的轮胎状况,例如适时更换磨损严重的轮胎以确保车辆的操控性和稳定性。
为提高汽车的操作稳定性,制造商在设计和制造过程中也应该加强相应的措施。
首先,通过模拟计算和试验等方法来优化汽车的悬挂系统、转向系统和刹车系统等关键部件。
其次,应该合理设计车身结构,提高车身刚性。
此外,还可以通过各种控制系统来提高汽车的操控性,例如电子稳定控制系统(ESC)、主动安全系统等。
这些系统可以通过感知驾驶环境和车辆状态,准确预测潜在的危险并及时采取相应的控制措施,提高车辆的稳定性和安全性能。
总之,汽车操作稳定性是衡量一辆汽车性能的重要指标,影响着驾驶者的操控感受和行驶安全。
通过优化车辆的悬挂系统、转向系统、刹车系统、车身结构和轮胎等关键因素,以及加强制造商在设计和制造过程中的技术和措施,可以提高汽车的操作稳定性,为驾驶者提供更好的操控性和安全性能。