第3讲 函数的奇偶性与周期性专题
- 格式:pdf
- 大小:241.83 KB
- 文档页数:6
高考数学一轮总复习知识梳理:第三讲 函数的奇偶性与周期性知 识 梳 理知识点一 函数的奇偶性 偶函数 奇函数定义 如果对于函数f (x )的定义域内任意一个x 都有 f (-x )=f (x ) ,那么函数f (x )是偶函数 都有 f (-x )=-f (x ) ,那么函数f (x )是奇函数图象特征 关于 y 轴 对称关于 原点 对称 知识点二 函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有 f (x +T )=f (x ) ,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个 最小的正数 ,那么这个 最小正数 就叫做f (x )的最小正周期.归 纳 拓 展1.奇(偶)函数定义的等价形式(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f -xf x =1(f (x )≠0)⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f -xf x =-1(f (x )≠0)⇔f (x )为奇函数.2.若y =f (x )为奇函数,y =g (x )为奇函数,在公共定义域内(1)y =f (x )±g (x )为奇函数;(2)y =f (x )g (x )与y =f xg x 为偶函数;(3)y =f [g (x )]与y =g [f (x )]为奇函数.同理若y =f (x )与y =g (x )在公共定义域内均为偶函数,则y =f (x )±g (x ),y =f (x )g (x ),y =f xg x ,y =f [g (x )],y =g [f (x )]均为偶函数.若y =f (x )为奇函数,y =g (x )为偶函数,则在公共定义域内y =f (x )g (x )与y =f xg x 均为奇函数,y =f [g (x )]与y =g [f (x )]为偶函数.3.对f (x )的定义域内任一自变量的值x ,最小正周期为T(1)若f (x +a )=-f (x ),则T =2|a |;(2)若f (x +a )=1f x ,则T =2|a |;(3)若f (x +a )=f (x +b ),则T =|a -b |.4.函数图象的对称关系(1)若函数f (x )满足关系f (a +x )=f (b -x ),则f (x )的图象关于直线x =a +b 2对称;(2)若函数f (x )满足关系f (a +x )=-f (b -x ),则f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称.5.一些重要类型的奇偶函数(1)函数f (x )=a x +a -x 为偶函数,函数f (x )=a x -a -x为奇函数; (2)函数f (x )=a x -a -x a x +a -x =a 2x -1a 2x +1为奇函数;(3)函数f (x )=log a b -xb +x 为奇函数;(4)函数f (x )=log a (x +x 2+1)为奇函数.双 基 自 测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(-2,2]是偶函数.( × )(2)若函数f (x )是奇函数,则必有f (0)=0.( × )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.( √ )(4)若函数y =f (x +b )是奇函数,则函数y =f (x )的图象关于点(b,0)中心对称.( √ )(5)2π是函数f (x )=sin x ,x ∈(0,+∞)的一个周期.( × )(6)周期为T 的奇函数f (x ),一定有f ⎝ ⎛⎭⎪⎫T 2=0.( × )[解析] (6)举反例.函数f (x )=tan x ,T =π,f (T )=f (π)=0,f ⎝ ⎛⎭⎪⎫T 2=f ⎝ ⎛⎭⎪⎫π2无意义,所以f ⎝ ⎛⎭⎪⎫T 2=0不对.题组二 走进教材2.(多选题)(必修1P 85T2改编)给出下列函数,其中是奇函数的为( BC )A .f (x )=x 4B .f (x )=x 5C .f (x )=x +1xD .f (x )=1x 2[解析] 对于f (x )=x 4,f (x )的定义域为R ,由f (-x )=(-x )4=x 4=f (x ),可知f (x )=x 4是偶函数,同理可知f (x )=x 5,f (x )=x +1x 是奇函数,f (x )=1x 2是偶函数. 3.(必修1P 85T3改编)若函数y =f (x )(x ∈(a ,b ))为奇函数,则a +b = 0 .4.(必修1P 85T1改编)若函数y =f (x )(x ∈R )是奇函数,则下列坐标表示的点一定在函数y =f (x )图象上的是( B )A .(a ,-f (a ))B .(-a ,-f (a ))C .(-a ,-f (-a ))D .(a ,f (-a ))[解析] ∵函数y =f (x )为奇函数,∴f (-a )=-f (a ).即点(-a ,-f (a ))一定在函数y =f (x )的图象上.5. (必修1P 87T12改编)设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为_(-2,0)∪(2,5]__.[解析] 由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].6.(必修1P 87T11改编)定义在R 上的奇函数f (x )以2为周期,则f (1)+f (2)+f (3)的值是( A )A .0B .1C .2D .3[解析] 根据函数的周期性和奇偶性得到f (3)=f (-1)=-f (1)、f (2)=f (0)=0,从而可求f (1)+f (2)+f (3).因为函数以2为周期,所以f (3)=f (-1),f (2)=f (0),因为函数是定义在R 上的奇函数,所以f (-1)=-f (1),f (0)=0,所以f (1)+f (2)+f (3)=f (1)+f (0)-f (1)=0,故选A.7.(必修1P 86T3改编)已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-3)= -7 .[解析] 因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,故f (x )=2x-1(x ≥0),则f (-3)=-f (3)=-(23-1)=-7.题组三 走向高考8.(2023·新课标Ⅱ,4,5分)若f (x )=(x +a )·ln 2x -12x +1为偶函数,则a =( B )A .-1B .0 C.12 D .1 [解析] f (-x )=(-x +a )ln -2x -1-2x +1=(-x +a )ln 2x +12x -1=(x -a )ln 2x -12x +1,∵f (x )为偶函数,∴f (x )=f (-x ),∴x +a =x -a ,∴a =0.9.(2021·全国乙,4)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( B )A. f ()x -1-1B . f ()x -1+1 C. f ()x +1-1 D . f ()x +1+1[解析] 思路一:将函数f (x )的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f (x )的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.解法一:f (x )=-1+2x +1,其图象的对称中心为(-1,-1),将y =f (x )的图象沿x 轴向右平移1个单位,再沿y 轴向上平移1个单位可得函数f (x -1)+1的图象,关于(0,0)对称,所以函数f (x -1)+1是奇函数,故选B.解法二:选项A ,f (x -1)-1=2x -2,此函数为非奇非偶函数;选项B ,f (x -1)+1=2x ,此函数为奇函数;选项C ,f (x +1)-1=-2x -2x +2,此函数为非奇非偶函数;选项D ,f (x +1)+1=2x +2,此函数为非奇非偶函数,故选B.。
高中数学提升专题第三讲:函数的奇偶性和周期性一、知识储备1.函数的奇偶性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.【知识拓展】1.如果一个奇函数f (x )在原点处有定义,即f (0)有意义,那么一定有f (0)=0.2.如果函数f (x )是偶函数,那么f (x )=f (|x |).3.对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a ;(2)若f (x +a )=1f (x ),则T =2a . 4.对称性的三个常用结论(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称;(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称;(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.二、知识导学题型一 判断函数的奇偶性例1 判断下列函数的奇偶性:(1)f (x )=x 3-x ;(2)f (x )=(x +1)1-x 1+x ; (3)f (x )=⎩⎪⎨⎪⎧ x 2+x , x <0,-x 2+x , x >0.例2(1)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )的奇偶性是( )A .F (x )是奇函数,G (x )是奇函数B .F (x )是偶函数,G (x )是奇函数C .F (x )是偶函数,G (x )是偶函数D .F (x )是奇函数,G (x )是偶函数题型二 函数的周期性例2 (1)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 017)=________.(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.题型三 函数性质的综合应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( )A .-3B .-1C .1D .3(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.例4 (1)(2015·石家庄一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A .(-1,4) B .(-2,0)C .(-1,0)D .(-1,2)(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性.3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用.[失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域的奇偶性.三、练出高分1.下列函数中,既是偶函数又在区间(1,2)上单调递增的是( )A .y =log 2|x |B .y =cos 2xC .y =2x -2-x 2D .y =log 22-x 2+x2.已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12等于( ) A .-1 B .0 C .1 D .23.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)等于( )A .-2B .2C .-98D .984.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( ) A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________.7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52=________. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).11.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.。
分层精练)数周期性转化求值即可.【详解】因为()()110f x f x -++=,所以()()110f f -+=,且()()21log 111f =+=,则()11f -=-,又可得()()20f x f x ++=,()()240f x f x +++=,故()()4f x f x +=,所以函数()f x 是周期4T =的周期函数,()()()47412111f f f =⨯-=-=-.故选:D .4.(2023·内蒙古赤峰·统考模拟预测)函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =()A .0B .1-C .2D .1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则()()157f f =,根据已知得出(7)(3)1f f =-=-,即可得出答案.【详解】 函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,()()()4f x f x f x ∴+=-=-,()()()()4484f x f x f x f x ∴++=+=-+=,则函数()y f x =是周期为8的周期函数,则()()()151587f f f =-=,令3x =-,则(43)(3)1f f +=-=-,(15)1f ∴=-,故选:B.5.(2023上·山东烟台·高一校考期末)函数e x y =-与e x y -=的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】C【分析】画出函数图像即可判断.【详解】根据如下图像即可判断出函数图像关于原点对称.故选:C10,10由上图知:增区间为[2,1),[0,1)--,减区间为零点为2,0,2x =-共3个;最大值为1,最小值为(2)由题设()7.5(80.5)(0.5)f f f =-=-=(3)令[]21,22[1,1]1n n x x n ∈⇒-∈--+且,且存在常数若()()20h x t h x t -⋅+=有8个不同的实数解,令则20n tn t -+=有两个不等的实数根2Δ400t t t ⎧=->⎪>⎪。
数学知识点:函数的奇偶性与周期性一、考纲目标1.结合具体函数,了解函数奇偶性的含义;2.运用函数图像,理解和研究函数的奇偶性;3.了解函数的奇偶性、最小正周期的含义,会判断、应用简单函数的周期性;二、知识梳理(一)函数的奇偶性1.定义:如果对于函数 f (x)的定义域内的任意一个x,都有f(x)=f(-x)(f(-x)=f(x)),那么这个函数就是偶(奇)函数;2.性质及一些结论:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称;(3)为偶函数(4)若奇函数的定义域包含,则因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;(5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;(6)断函数的奇偶性有时可以用定义的等价形式:,(7)设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇(8)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(二)函数的周期性1.定义:若T为非零常数,对于定义域内的任一x,使恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期2.简单理解:一般所说的周期是指函数的最小正周期,周期函数的定义域一定是无限集,但是我们可能只研究定义域的某个子集三、考点逐个突破1.奇偶性辨析例1.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是A.1 B.2 C.3 D.4分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误奇函数的图象关于原点对称,但不一定经过原点,因此②不正确若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零例2.判断下列函数的奇偶性:(1)f(x)=|x|(x2+1);(2)f(x)=x+1 x ;(3)f(x)=x-2+2-x;(4)f(x)=1-x2+x2-1;(5)f(x)=(x-1)1+x1-x.解析 (1)此函数的定义域为R.∵f(-x)=|-x|[(-x)2+1]=|x|(x2+1)=f(x),∴f(-x)=f (x),即f(x)是偶函数.(2)此函数的定义域为x>0,由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(3)此函数的定义域为{2},由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(4)此函数的定义域为{1,- 1},且f(x)=0,可知图像既关于原点对称,又关于y 轴对称,故此函数既是奇函数又是偶函数.(5)定义域:⎩⎨⎧1-x≠01+x1-x ≥0⇒-1≤x<1是关于原点不对称区间,故此函数为非奇非偶函数. 2.奇偶性的应用 例3.已知函数对一切,都有,(1)求证:是奇函数;(2)若,用表示解:(1)显然的定义域是,它关于原点对称.在中,令,得,令,得,∴,∴,即, ∴是奇函数(2)由,及是奇函数,得例4.(1)已知是上的奇函数,且当时,,则的解析式为(2)已知是偶函数,,当时,为增函数,若,且,则 ()例5设为实数,函数,(1)讨论的奇偶性; (2)求 的最小值解:(1)当时,,此时为偶函数;当时,,,∴此时函数既不是奇函数也不是偶函数(2)①当时,函数,若,则函数在上单调递减,∴函数在上的最小值为;若,函数在上的最小值为,且②当时,函数,若,则函数在上的最小值为,且;若,则函数在上单调递增,∴函数在上的最小值综上,当时,函数的最小值是,当时,函数的最小值是,当,函数的最小值是3.函数周期性的应用例6.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 011).解 (1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,∴f(-x)=-f(x)=-2x -x 2, ∴f(x)=x 2+2x.又当x ∈[2,4]时,x -4∈[-2,0], ∴f(x -4)=(x -4)2+2(x -4). 又f(x)是周期为4的周期函数,∴f(x)=f(x -4)=(x -4)2+2(x -4)=x 2-6x +8. 从而求得x ∈[2,4]时,f(x)=x 2-6x +8. (3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1. 又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0. ∴f(0)+f(1)+f(2)+…+f(2 011)=0. 4.单调性与奇偶性的交叉应用例7.已知定义域为R 的函数f(x)=-2x +b2x +1+a 是奇函数.①求a 、b 的值;②若对任意的t ∈R ,不等式f(t 2-2t)+f(2t 2-k)<0恒成立,求k 的取值范围. 解:①∵f(x)是定义在R 上的奇函数,∴f(0)=0, 即b -1a +2=0,∴b =1,∴f(x)=1-2x a +2x +1, 又由f(1)=-f(-1)知1-2a +4=-1-12a +1,解得a =2.②由①知f(x)=1-2x 2+2x +1=-12+12x +1,易知f(x)在(-∞,+∞)上为减函数.又∵f(x)是奇函数,从而不等式f(t 2-2t)+f(2t 2-k)<0等价于f(t 2-2t)<-f(2t 2-k)=f(k -2t 2),∵f(x)为减函数,∴由上式得t 2-2t>k -2t 2,即对任意的t ∈R 恒有:3t 2-2t -k>0,从而Δ=4+12k<0,∴k<-13.一、选择题1.(2012·高考陕西卷)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |解析:选D.由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知当x >0时此函数为增函数,又该函数为奇函数,故选D.2.已知y =f (x +1)是偶函数,则函数y =f (x )的图象的对称轴是( ) A .x =1 B .x =-1C .x =12D .x =-12解析:选A.∵y =f (x +1)是偶函数,∴f (1+x )=f (1-x ),故f (x )关于直线x =1对称.3.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1 D .-2 解析:选B.f (a )=a 3+sin a +1,①f (-a )=(-a )3+sin(-a )+1=-a 3-sin a +1,② ①+②得f (a )+f (-a )=2, ∴f (-a )=2-f (a )=2-2=0.4.函数f (x )=1-21+2x(x ∈R )( )A .既不是奇函数又不是偶函数B .既是奇函数又是偶函数C .是偶函数但不是奇函数D .是奇函数但不是偶函数解析:选D.∵f (x )=1-21+2x =2x -12x +1,∴f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ).又其定义域为R ,∴f (x )是奇函数.5.定义在R 上的偶函数y =f (x )满足f (x +2)=f (x ),且当x ∈(0,1]时单调递增,则( )A .f ⎝ ⎛⎭⎪⎫13<f (-5)<f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5)C .f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫13<f (-5)D .f (-5)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52解析:选B.∵f (x +2)=f (x ),∴f (x )是以2为周期的函数,又f (x )是偶函数,∴f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12+2=f ⎝ ⎛⎭⎪⎫12,f (-5)=f (5)=f (4+1)=f (1), ∵函数f (x )在(0,1]上单调递增,∴f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫12<f (1),即f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5).二、填空题6.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________.解析:因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x+a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.答案:-17.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -18.(2013·大连质检)设f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且f (x +3)·f (x )=-1,f (-4)=2,则f (2014)=________.解析:由已知f (x +3)=-1f x,∴f (x +6)=-1f x +3=f (x ),∴f (x )的周期为6.∴f (2014)=f (335×6+4)=f (4)=-f (-4)=-2. 答案:-2 三、解答题9.判断下列函数的奇偶性: (1)f (x )=x 2-1+1-x 2; (2)f (x )=⎩⎨⎧x 2-2x +3 x >0,0 x =0,-x 2-2x -3x <0.解:(1)f (x )的定义域为{-1,1},关于原点对称. 又f (-1)=f (1)=0.∴f (-1)=f (1)且f (-1)=-f (1), ∴f (x )既是奇函数又是偶函数. (2)①当x =0时,-x =0,f (x )=f (0)=0,f (-x )=f (0)=0, ∴f (-x )=-f (x ). ②当x >0时,-x <0,∴f (-x )=-(-x )2-2(-x )-3 =-(x 2-2x +3)=-f (x ). ③当x <0时,-x >0,∴f (-x )=(-x )2-2(-x )+3 =-(-x 2-2x -3)=-f (x ).由①②③可知,当x ∈R 时,都有f (-x )=-f (x ), ∴f (x )为奇函数.10.已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f (1-m )+f (1-m 2)<0的实数m 的取值范围.解:∵f (x )的定义域为[-2,2],∴有⎩⎨⎧-2≤1-m ≤2-2≤1-m 2≤2,解得-1≤m ≤3.①又f (x )为奇函数,且在[-2,0]上递减, ∴在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 即-2<m <1.②综合①②可知,-1≤m <1.一、选择题1.(2012·高考天津卷)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos 2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈R D .y =x 3+1,x ∈R解析:选B.由函数是偶函数可以排除C 和D ,又函数在区间(1,2)内为增函数,而此时y =log 2|x |=log 2x 为增函数,所以选择B.2.(2011·高考山东卷)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 解析:选B.令f (x )=x 3-x =0, 即x (x +1)(x -1)=0, 所以x =0,1,-1,因为0≤x <2,所以此时函数的零点有两个,即与x 轴的交点个数为2. 因为f (x )是R 上最小正周期为2的周期函数, 所以2≤x <4,4≤x <6上也分别有两个零点, 由f (6)=f (4)=f (2)=f (0)=0, 知x =6也是函数的零点,所以函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为7. 二、填空题3.若f (x )=12x -1+a 是奇函数,则a =________.解析:∵f (x )为奇函数,∴f (-x )=-f (x ),即12-x -1+a =-12x -1-a ,得:2a =1,a =12.答案:124.(2013·长春质检)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定:其中正确命题的序号为________.①f (4)=0;②f (x )是以4为周期的函数; ③f (x )的图象关于x =1对称; ④f (x )的图象关于x =2对称. 解析:∵f (x +2)=-f (x ),∴f (x )=-f (x +2)=-(-f (x +2+2))=f (x +4), 即f (x )的周期为4,②正确.∵f (x )为奇函数,∴f (4)=f (0)=0,即①正确. 又∵f (x +2)=-f (x )=f (-x ),∴f (x )的图象关于x =1对称,∴③正确, 又∵f (1)=-f (3),当f (1)≠0时,显然f (x )的图象不关于x =2对称,∴④错误.答案:①②③ 三、解答题5.已知函数f (x )=x 2+|x -a |+1,a ∈R . (1)试判断f (x )的奇偶性;(2)若-12≤a ≤12,求f (x )的最小值.解:(1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ), 此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x )既不是奇函数,也不是偶函数.(2)当x ≤a 时,f (x )=x 2-x +a +1=⎝⎛⎭⎪⎫x -122+a +34,∵a ≤12,故函数f (x )在(-∞,a ]上单调递减,从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1.当x ≥a 时,函数f (x )=x 2+x -a +1=⎝⎛⎭⎪⎫x +122-a +34,∵a≥-12,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上得,当-12≤a≤12时,函数f(x)的最小值为a2+1.。
第3讲 函数的奇偶性与周期性一、选择题1.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ).A .3B .1C .-1D .-3 解析 由f (-0)=-f (0),即f (0)=0.则b =-1,f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D2.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ). A .-1 B .0 C .1 D .2 解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎢⎡⎦⎥⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x 是一个满足条件的函数,所以f (6)=sin 3π=0,故选B. 答案 B3.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式一定成立的是( ).A .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝ ⎛⎭⎪⎫sin π6<f ⎝ ⎛⎭⎪⎫cos π6D .f (cos 2)>f (sin 2)解析 当x ∈[-1,1]时,x +4∈[3,5],由f (x )=f (x +2)=f (x +4)=2-|x +4-4|=2-|x |,显然当x ∈[-1,0]时,f (x )为增函数;当x ∈[0,1]时,f (x )为减函数,cos 2π3=-12,sin 2π3=32>12,又f⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫32,所以f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3. 答案 A4.已知函数f (x )=⎩⎨⎧1-2-x,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x -1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x =-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数. 答案 C5.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x-1,则f (-5.5)的值为( )A .2B .-1C .-12 D .1解析 f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D6.设函数D (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数解析 显然D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误. 答案 C 二、填空题7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 由题意知,函数f (x )=x 2-|x +a |为偶函数,则f (1)=f (-1),∴1-|1+a |=1-|-1+a |,∴a =0. 答案 08.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.解析 因为y =f (x )+x 2是奇函数,且x =1时,y =2,所以当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. 答案 -19.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示,则使函数值y <0的x 的取值集合为________.解析 由原函数是奇函数,所以y =f (x )在[-5,5]上的图象关于坐标原点对称,由y =f (x )在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).答案 (-2,0)∪(2,5)10. 设f (x )是偶函数,且当x >0时是单调函数,则满足f (2x )=f ⎝⎛⎭⎪⎫x +1x +4的所有x 之和为________.解析 ∵f (x )是偶函数,f (2x )=f ⎝⎛⎭⎪⎫x +1x +4, ∴f (|2x |)=f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x +1x +4, 又∵f (x )在(0,+∞)上为单调函数, ∴|2x |=⎪⎪⎪⎪⎪⎪x +1x +4, 即2x =x +1x +4或2x =-x +1x +4, 整理得2x 2+7x -1=0或2x 2+9x +1=0,设方程2x 2+7x -1=0的两根为x 1,x 2,方程2x 2+9x +1=0的两根为x 3,x 4.则(x1+x2)+(x3+x4)=-72+⎝⎛⎭⎪⎫-92=-8.答案-8三、解答题11.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解(1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y =1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.12.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.13.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.解析(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3) ∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f(2013)=f(2 012)+f(2 013)=f(0)+f(1)=1.14.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=12x,求使f(x)=-12在[0,2 014]上的所有x的个数.(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)解当0≤x≤1时,f(x)=12x,设-1≤x≤0,则0≤-x≤1,∴f(-x)=12(-x)=-12x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-12x,即f(x)=12x.故f(x)=12x(-1≤x≤1).又设1<x<3,则-1<x-2<1,∴f(x-2)=12(x-2).又∵f(x)是以4为周期的周期函数∴f(x-2)=f(x+2)=-f(x),∴-f(x)=12(x-2),∴f (x )=-12(x -2)(1<x <3). ∴f (x )=⎩⎪⎨⎪⎧12x ,-1≤x ≤1,-12(x -2),1<x <3.由f (x )=-12,解得x =-1. ∵f (x )是以4为周期的周期函数, ∴f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2 014,则14≤n ≤2 0154. 又∵n ∈Z ,∴1≤n ≤503(n ∈Z ), ∴在[0,2 014]上共有503个x 使f (x )=-12.。
第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).5.设f (x )是定义在R 上周期为2的奇函数,当0≤x ≤1时,f (x )=x 2-x ,则f ⎝⎛⎭⎫-52=( ) A .-14B .-12C.14D.12解析:选C 因为f (x )是定义在R 上周期为2的奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12.又当0≤x ≤1时,f (x )=x 2-x ,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-12=-14,则f ⎝⎛⎭⎫-52=14. 6.(2019·益阳、湘潭调研)定义在R 上的函数f (x ),满足f (x +5)=f (x ),当x ∈(-3,0]时,f (x )=-x -1,当x ∈(0,2]时,f (x )=log 2x ,则f (1)+f (2)+f (3)+…+f (2 019)的值等于( )A .403B .405C .806D .809解析:选B 定义在R 上的函数f (x ),满足f (x +5)=f (x ),即函数f (x )的周期为5.又当x ∈(0,2]时,f (x )=log 2x ,所以f (1)=log 21=0,f (2)=log 22=1.当x ∈(-3,0]时,f (x )=-x -1,所以f (3)=f (-2)=1,f (4)=f (-1)=0,f (5)=f (0)=-1.故f (1)+f (2)+f (3)+…+f (2 019)=403×[f (1)+f (2)+f (3)+f (4)+f (5)]+f (2 016)+f (2 017)+f (2 018)+f (2 019)=403×1+f (1)+f (2)+f (3)+f (4)=403+0+1+1+0=405.7.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2的值为________. 解析:由已知可得f ⎝⎛⎭⎫1e 2=ln 1e2=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2). 又因为f (x )是偶函数,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2)=f (2)=ln 2. 答案:ln 28.(2019·惠州调研)已知函数f (x )=x +1x -1,f (a )=2,则f (-a )=________.解析:法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x 为奇函数,故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2. 所以f (a )+f (-a )=-2,故f (-a )=-4. 法二:由已知得f (a )=a +1a-1=2,即a +1a =3,所以f (-a )=-a -1a -1=-⎝⎛⎭⎫a +1a -1=-3-1=-4. 答案:-49.(2019·陕西一测)若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax,x ∈[-4,-1]的值域为________.解析:由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即⎣⎡⎦⎤-2,-12. 答案:⎣⎡⎦⎤-2,-12 10.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是____________.解析:当x >0时,lg x >0,所以x >1, 当x <0时,由奇函数的对称性得-1<x <0, 故填(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)11.f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式. 解:当x <0时,-x >0,则f (-x )=-2(-x )2+3(-x )+1=-2x 2-3x +1. 由于f (x )是奇函数,故f (x )=-f (-x ), 所以当x <0时,f (x )=2x 2+3x -1. 因为f (x )为R 上的奇函数,故f (0)=0.综上可得f (x )的解析式为f (x )=⎩⎪⎨⎪⎧-2x 2+3x +1,x >0,0,x =0,2x 2+3x -1,x <0.12.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x 成立. (1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值. 解:(1)证明:由f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x ,且f (-x )=-f (x ),知f (3+x )=f ⎣⎡⎦⎤32+⎝⎛⎭⎫32+x =-f ⎣⎡⎦⎤32-⎝⎛⎭⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函数,且T =3是其一个周期. (2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.B 级1.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9解析:选B 因为f (x )是最小正周期为2的周期函数,且0≤x <2时,f (x )=x 3-x =x (x -1)(x +1),所以当0≤x <2时,f (x )=0有两个根,即x 1=0,x 2=1.由周期函数的性质知,当2≤x <4时,f (x )=0有两个根,即x 3=2,x 4=3;当4≤x ≤6时,f (x )=0有三个根,即x 5=4,x 6=5,x 7=6,故f (x )的图象在区间[0,6]上与x 轴的交点个数为7.2.(2019·洛阳统考)若函数f (x )=ln(e x +1)+ax 为偶函数,则实数a =________. 解析:法一:(定义法)∵函数f (x )=ln(e x +1)+ax 为偶函数,∴f (-x )=f (x ), 即ln(e -x +1)-ax =ln(e x +1)+ax ,∴2ax =ln(e -x+1)-ln(e x+1)=ln e -x +1e x +1=ln 1e x =-x ,∴2a =-1,解得a =-12.法二:(特殊值法)由题意知函数f (x )的定义域为R ,由f (x )为偶函数得f (-1)=f (1), ∴ln(e -1+1)-a =ln(e 1+1)+a ,∴2a =ln(e -1+1)-ln(e 1+1)=ln e -1+1e +1=ln 1e =-1,∴a =-12.答案:-123.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].。
第三讲 函数的奇偶性与周期性
考点分析:
1.判断函数的奇偶性.
2.利用函数奇偶性、周期性求函数值及求参数值.
3.考查函数的单调性与奇偶性的综合应用.
复习指导:
复习时应结合具体实例和函数的图象,理解函数的奇偶性、周期性的概念,明确它们在研究函数中的作用和功能.重点解决综合利用函数的性质解决有关问题.
知识梳理:、
1、奇、偶函数的概念
一般地,如果对于函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.
一般地,如果对于函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
奇函数的图象关于原点对称;偶函数的图象关于y轴对称.
2.奇、偶函数的性质
(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.
(2)在公共定义域内
①两个奇函数的和(差)是奇函数,两个奇函数的积(商)是偶函数;
②两个偶函数的和(差)、积(商)都是偶函数;
③一个奇函数,一个偶函数的积(商)是奇函数.一个奇函数,偶函数的和(差)是非奇非偶函数
▲奇奇=奇,奇×奇=偶,偶偶=偶,偶×偶=偶,奇×偶=奇.3.周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
关于周期函数的常用结论:
1、若对于函数f(x)定义域内的任意一个x都有:
(1),则函数f(x)必为周期函数,2|a|是它的一个周期;
(2),则函数f(x)必为周期函数,2|a|是它的一个周期;
2、如果T是函数y=f(x)的周期,则
(1)kT(k∈Z,k≠0)也是函数y=f(x)的周期,即f(x+kT)=f(x);
(2)若已知区间[m,n](m<n)上的图象,则可画出区间[m+kT,n+kT](k∈Z,k≠0)上的图象.
3、若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y =f(x)的图象关于直线x=a对称.
四、例题讲解
(一)函数奇偶性的判定
1、利用定义判断函数奇偶性的一般步骤
,
(1)首先确定函数的定义域,看它是否关于原点对称。
若不对称,则既不是奇函数又不是偶函数。
(2)若定义域关于原点对称,再判定f(-x)与f(x)之间的关系
①若f(-x)=-f(x)(或f(-x) +f(x)=0),则为奇函数;
②若f(-x)=f(x)(或 f(-x) -f(x)=0),则f(x)为偶函数;
③若f(-x)=-f(x)且f(-x)=f(x),则f(x)既是奇函数又是偶函数;
④若f(-x) ≠f(x)且f(-x)≠- f(x),则f(x)既不是奇函数也不是偶函数。
<2>图象法:
<3>性质法:
例1、讨论的奇偶性
解:(1)函数定义域为R,
,
∴f(x)为偶函数;
(另解)先化简:
,显然
为偶函数;从这可以看出,化简后再解决要容易得多。
练习1、判断函数的奇偶性
2、分段函数的奇偶性
分段函数奇偶性的判定步骤
(1)分析定义域是否关于原点对称;
(2)对x的值进行分段讨论,寻求f(X)与f(-X)在各段上的关系;(3)综合(2)在定义域内f(X)与f(-X)的关系,从而判断f(X)的奇偶性。
注:奇偶性是函数的一个整体性质,不能说函数在定义域的某一段上是奇函数或偶函数。
例2、已知函数试判断的奇偶性
确定定义域判断每一段上与的关系判断整个定义域上与的关系结论。
解答:由题设可知函数的定义域关于原点对称。
当时,
练习2、判断函数
的奇偶性
3、抽象函数的奇偶性
(1)判断(或证明)抽象函数的奇偶性的步骤
(2)利用函数奇偶性的定义,找准方向(想办法出现f(x),f(-x));(3)巧妙赋值,合理、灵活变形配凑;
(4)找出f(X)与f(-X)关系,得出结论。
例3、已知函数f(x)对一切x、y∈R,都有f(x+y)=f(x)+f(y),
(1)判断函数f(x)的奇偶性;
(2)若f(-3)=a,用a表示f(12).
分析:判断函数奇偶性的一般思路是利用定义,看f(-x)与f(x)的关系,进而得出函数的奇偶性;解决本题的关键是在f(x+y)=f(x)+f(y)中如何出现f(-x);用a表示f(12)实际上是如何用f(-3)表示f(12),解决该问题的关键是寻找f(12)与f(-3)的关系.
解答:
例4、已知函数f(x)对任意的实数x满足:且当x∈[-1,1]时,
f(x)=x2.
求f(2012)
【解析】(1)∵对任意x∈R,都有
∴f(x)是以2为周期的函数,
∴f(2 012)=f(2×1 006+0)=f(0)=02=0.
例5、已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,
(1)求证:f(x)是周期函数;
(2)当x∈[1,2]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.
(1)只需证明f(x+T)=f(x),即可说明f(x)为周期函数;
(2)由f(x)在[0,1]上的解析式及f(x)图象关于x=1对称求得f(x)在[1,2]上的解析式;
(3)由周期性求和的值.
(1)证明:函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.
(2)解 当x∈[1,2]时,2-x∈[0,1],
又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3)解 ∵f(0)=0,f(1)=1,f(2)=0,
f(3)=f(-1)=-f(1)=-1
又f(x)是以4为周期的周期函数.
∴f(0)+f(1)+f(2)+…+f(2013)
=f(2 012)+f(2 013)=f(0)+f(1)=1.
练习4、设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2 013).
【解析】(1)∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x).
∴f(x)是周期为4的周期函数.
(2)当x∈[-2,0]时,-x∈[0,2],由已知得
f(-x)=2(-x)-(-x)2=-2x-x2,
又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2,
∴f(x)=x2+2x.
又当x∈[2,4]时,x-4∈[-2,0],
∴f(x-4)=(x-4)2+2(x-4).
又f(x)是周期为4的周期函数,
∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.
从而求得x∈[2,4]时,f(x)=x2-6x+8.
(3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1.
又f(x)是周期为4的周期函数,
∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)
=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0.
∴f(0)+f(1)+f(2)+…+f(2 013)=f(0)+f(1)=0+1=1.
练习5、已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( ).
A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25)
C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11)
[尝试解答]
由函数f(x)是奇函数且f(x)在[0,2]上是增函数可以推知,f(x)在[-2,2]上递
增,又f(x-4)=-f(x)⇒f(x-8)=-f(x-4)=f(x),故函数f(x)以8为周期,f(-25)=f(-1),f(11)=f(3)=-f(3-4)=f(1),f(80)=f(0),故f(-25)<f(80)<f(11).故选D.
答案 D。