中考数学重难点专题讲座 第四讲 一元二次方程与二次函数
- 格式:doc
- 大小:458.51 KB
- 文档页数:13
初三年级数学期中考试知识点二次函数与一元二次方程多积聚,可以添加自身修养性和素质,以及思想境界,思想和逻辑才干。
鉴于此,小编为大家预备了这篇初三年级数学期中考试知识点,欢迎阅读!特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a0)的图象外形相反,只是位置不同,它们的顶点坐标及对称轴如下表:当h0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位失掉,当h0时,那么向左平行移动|h|个单位失掉.当h0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以失掉y=a(x-h)^2+k的图象;当h0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可失掉y=a(x-h)^2+k的图象;当h0时,将抛物线向左平行移动|h|个单位,再向上移动k 个单位可失掉y=a(x-h)^2+k的图象;当h0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可失掉y=a(x-h)^2+k的图象;因此,研讨抛物线y=ax^2+bx+c(a0)的图象,经过配方,将普通式化为y=a(x-h)^2+k的方式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a0)的图象:当a0时,启齿向上,当a0时启齿向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a0),假定a0,当x-b/2a时,y随x 的增大而减小;当x-b/2a时,y随x的增大而增大.假定a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a0)的两根.这两点间的距离AB=|x-x|当△=0.图象与x轴只要一个交点;当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y当a0时,图象落在x轴的下方,x 为任何实数时,都有y0.5.抛物线y=ax^2+bx+c的最值:假设a0),那么当x=-b/2a 时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.欢迎大家去阅读由小编为大家提供的初三年级数学期中考试知识点大家好好去品味了吗?希望可以协助到大家,加油哦!。
数学初三年级二次函数与一元二次方程课件教案教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求1.经历探索二次函数与的关系的过程,培植学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论线性方程的根的情况,进一步方法论培养学生的数形紧密结合思想.3.通过学生共同观察和发表意见,培养大家的开展合作交流意识.(三)情感与价值观要求1.经历探索二次函数与乘法表的关系的投资过程过程,体验数学社会活动充满着探索与创造,感受数学的体会严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点1.体会方程与表达式之间紧密联系的联系.2.理解何时不等式解释有两个不等的实根,两个相等的实数和没有完全相同实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法.教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了紫菊一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为曲线图一元一次方程kx+b=0的解.。
∴.(关于Y轴对称的二次函数一次项系数一定为0)x∴.x∴抛物线的解析式为. x②∵,(判断大小直接做差)x∴(当且仅当时,等号成立). x x(3)由②知,当时,.x x∴、的图象都经过. (很重要,要对那个等号有敏锐的感觉)x x x∵对于的同一个值,,x x∴的图象必经过. x x又∵经过,x x∴. (巧妙的将表达式化成两点式,避免繁琐计算)x设.x x∵对于的同一个值,这三个函数所对应的函数值均成立,x x∴,x∴.x又根据、的图象可得,x x x∴.(a>0时,顶点纵坐标就是函数的最小值)x∴. x∴.x而.x只有,解得.xx∴抛物线的解析式为.x【例2】20__,门头沟,一模关于的一元二次方程.x x(1)当为何值时,方程有两个不相等的实数根;x(2)点是抛物线上的点,求抛物线的解析式;x x(3)在(2)的条件下,若点与点关于抛物线的对称轴对称,是否存在与抛物线只交于点的直线,若存在,请求出直线的解析式;若不存在,请说明理由.x x x【思路分析】第一问判别式依然要注意二次项系数不为零这一条件.第二问给点求解析式,比较简单.值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=k_+b以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=k_+b的形式并未包括斜率不存在即垂直于_轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.【解析】:(1)由题意得x解得x解得x当且时,方程有两个不相等的实数根.xx(2)由题意得x解得(舍) (始终牢记二次项系数不为0)xx(3)抛物线的对称轴是x由题意得 (关于对称轴对称的点的性质要掌握)x与抛物线有且只有一个交点 (这种情况考试中容易遗漏)xx 另设过点的直线()x x x把代入,得,x xx xx整理得x有且只有一个交点,x解得xx综上,与抛物线有且只有一个交点的直线的解析式有,xx x【例3】已知P()和Q(1,)是抛物线上的两点.x x x(1)求的值;x(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;x x(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值.x x x x x【思路分析】拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组,。
湘教版数学九年级下册1.4《二次函数与一元二次方程的联系和区别》说课稿一. 教材分析《二次函数与一元二次方程的联系和区别》是湘教版数学九年级下册1.4的内容。
本节课的主要内容是让学生了解二次函数与一元二次方程之间的联系和区别,掌握由二次函数求一元二次方程的方法,以及一元二次方程的解法。
教材通过实例引导学生探究二次函数与一元二次方程之间的关系,从而提高学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数的图象和性质,以及一元二次方程的基本概念和解法。
但学生对于二次函数与一元二次方程之间的联系和区别可能还不太清楚,需要通过实例和讲解让学生加深理解。
此外,学生可能对由二次函数求一元二次方程的方法还不够熟练,需要通过练习来提高。
三. 说教学目标1.知识与技能目标:使学生了解二次函数与一元二次方程之间的联系和区别,掌握由二次函数求一元二次方程的方法,以及一元二次方程的解法。
2.过程与方法目标:通过实例引导学生探究二次函数与一元二次方程之间的关系,提高学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:二次函数与一元二次方程之间的联系和区别,由二次函数求一元二次方程的方法,一元二次方程的解法。
2.教学难点:二次函数与一元二次方程之间的联系和区别的理解,由二次函数求一元二次方程的方法的运用。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,以及网络资源和学生自主学习平台。
六. 说教学过程1.导入:通过一个实际问题引入二次函数与一元二次方程的话题,激发学生的兴趣。
2.讲解:讲解二次函数与一元二次方程之间的联系和区别,通过实例引导学生探究。
3.练习:让学生通过练习由二次函数求一元二次方程的方法,巩固所学知识。
九年级数学二次函数与一元二次方程知识精讲珠海市第四中学(519015) 邱金龙二次函数和一元二次方程都是初中代数的重要内容,两者相结合的题目在近年中考中经常有出现,解决此类问题关键是搞清楚二次函数图象与一元二次方程的两根之间的关系。
一、二次函数图象与一元二次方程根的关系1、一元二次方程ax 2+bx +c =0(a ≠0) 的判别式为:△=b 2-4ac 。
二次函数的解析式为:y =ax 2+bx +c (a ≠0)(1)当△>0时,二次函数的图象与x 轴有两个交点;(2)当△=0时,二次函数的图象与x 轴有一个交点;(3)当△<0时,二次函数的图象与x 轴有无交点。
2、若一元二次方程ax 2+bx +c =0(a ≠0) 有两根为x 1、x 2,则二次函数:y =ax 2+bx+c (a ≠0)与x 轴的两个交点为A (x 1,0)、B (x 2,0),且两个交点之间的距离为: |AB|=| x 1-x 2|。
3、若一元二次方程ax 2+bx +c =0(a ≠0) 有两根为x 1、x 2,则二次函数:y =ax 2+bx+c (a ≠0)的对称轴为:x =221x x +。
二、考点例析1、用根的判别式判断二次函数图象与x 轴的交点例1、(2005温州市)若二次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =_________.(只要求写出一个)解:令y =0,得一元二次方程:x 2-4x +c =0,方程的判别式为:△ =(-4)2-4c =16-4c ,因为二次函数图象与x 轴没有交点,所以,有16-4c <0,解得:c >4,c 可取5、6、7……中的任一个,只写一个即可。
例2、(2005湖北荆州)若y 关于x 的函数()()2221y a x a x a =---+的图像与坐标轴有两个交点,则a 可取的值为 .解:令y =0,得一元二次方程:(a -2)x 2-(2a -1)x +a =0,方程的判别式为:△ =(2a -1)2-4(a -2)a =4a +1,因为二次函数图象与x 轴有两个交点,所以,有4a +1>0,解得:a >-41。
一元二次方程与二次函数的含参问题一,堂前测1.如果关于x 的方程(m+2)x 2-2(m+1)x+m=0有且只有一个实数根,那么关于x 的 方程(m+1)x 2-2mx+m-1=0的根为( )A. -1或-3B. 1或3C. -1或3D. 1或-3 2. 已知关于x 的方程2(12)2110k xk x --+-=有两个不相等的实数根,求k 的取值范围。
3. 当m 取何值时,关于x 的方程22210x mx m m ++--=有两个小于1的根?4. 已知函数y=x 2-x+4-2m 在-1≤x≤1时与x 轴有交点,求实数m 的取值范围。
5,已知关于x 的方程. 220 (0)kx x k k--=≠ (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值。
6已知关于 x 的方程x 2-(m+1)x+ =0 的两根是一矩形的两邻边长,当矩形的对角线长为 时,求m 的值7已知函数y= x 2-6x+m+4与x 轴有两个交点(x1,0),(x2,0),若x1,x2满足3x1=|x2|+2,求m 的值。
二,例题1,已知关于x 的一元二次方程x 2﹣(m +1)x + =0有实根。
(1)求m 的值(2)先作函数 的图像关于x 轴的对称图形,然后将所作图形向左平移3个单位,再向上平移2个单位,写出变化后的图像解析式。
(3)在(2)的条件下,第直线y=2x+n(n>m)与变化后的图像有公共点时,求n2-4n 的最大值和最小值。
2, 已知:关于x 的一元二次方程mx 2﹣(3m +1)x +2m +2=0 (m >1)。
(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x 1,x 2(其中x 1>x 2),若y 是关于m 的函数,且y =m x 2﹣2x 1,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m =2的左侧部分沿直线m =2翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当关于m 的函数y =2m +b 的图象与此图象有两个公共点时,求b 的取值范围。
中考数学频考点突破--二次函数与一元二次方程1.在平面直角坐标系xOy中,点A(0,2),抛物线y=mx2+4mx+5m的对称轴与x 轴交于点B.(1)求点B的坐标;(2)当m>0时,过A点作直线l平行于x轴,与抛物线交于C、D两点(C在D 左侧),C、D横坐标分别为x1、x2,且x2﹣x1=2,求抛物线的解析式;(3)若抛物线与线段AB恰只有一个公共点,则请结合函数图象,直接写出m的取值范围.2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.3.突如其来的新冠疫情影响了某厂经济效益,在复工复产对产品价格进行了调整,每件的售价比进价多8元,8件的进价相当于6件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件。
(1)该商品的售价和进价分别是多少元?(2)在进价不变的条件下,若每天所得的销售利润为2035元时,且销量尽可能大,该商品应涨价多少元?(3)在进价不变的条件下,商场的营销部在调控价格方面,提出了A,B两种营销方案:方案A:每件商品涨价不超过15元;方案B:每件商品的利润至少为26元.请比较哪种方案的利润更大,并说明理由.4.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y (件)与每件销售价x(元)的关系数据如下:x30323436y40363228与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?5.设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y)的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成心=2(x-h)2-2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x-m(m是常数),若函数y1的表达式还可以写成y1=2(x-m)(x-m-2)的形式,当函数y=y1-y2的图象经过点(x0,0)时,求x0-m的值.6.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)当销售价定为多少元时会获得最大利润?求出最大利润.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.8.已知二次函数y=x2−4x+3.(1)将二次函数表达式y=x2−4x+3化成y=a(x−ℎ)2+k的形式,并直接写出其项点坐标;(2)完成下列表格并在如图所示的直角坐标系内画出该函数的大致图像;x (01234)y=x2−4x+3…x时,y<0时,x的取值范围是.9.已知函数y=kx2+(k+1)x+1(k为实数).(1)当k=3时,求此函数图象与x轴的交点坐标;(2)判断此函数与x轴的交点个数,并说明理由.10.已知关于x的方程x2﹣(m+2)x+2m﹣1=0.(1)求证:此方程有两个不相等的实数根;(2)若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;(3)填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是.11.已知,正方形ABCD,A(0,−4),B(1,−4),C(1,−5),D(0,−5),抛物线y=x2+mx−2m−4( m为常数),顶点为M(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx−2m−4( m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45°时,求m的值.12.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求直线OA和二次函数的解析式;(2)当点P在直线OA的上方时,①当PC的长最大时,求点P的坐标;②当S△PCO=S△CDO时,求点P的坐标.13.某商店原来平均每天可销售某种水果100千克,每千克可盈利7元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利400元,则每千克应降价多少元?(3)每千克降价多少元时,每天的盈利最多?最多盈利多少元?14.在平面直角坐标系xOy中,二次函数y=mx2-(2m+1)x+m-5的图象与x轴有两个公共点.(1)求m的取值范围;(2)若m取满足条件的最小的整数,①写出这个二次函数的表达式;②当n≤x≤1时,函数值y的取值范围是-6≤y≤4-n,求n的值;③将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 +k,当x<2时,y随x的增大而减小,求k的取值范围.15.已知一元二次方程x2+x﹣2=0有两个不相等的实数根,即x1=1,x2=﹣2.(1)求二次函数y=x2+x﹣2与x轴的交点坐标;(2)若二次函数y=﹣x2+x+a与x轴有一个交点,求a的值.16.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?答案解析部分1.【答案】(1)解:∵抛物线y =mx 2+4mx+5m 的对称轴为直线x =﹣ 4m 2m=﹣2, ∴对称轴与x 轴交点B 的坐标为(﹣2,0);(2)解:由题意可知,C 、D 两点关于抛物线的对称轴对称,且C 在D 的左边, ∴x 1+x 22=﹣2, ∴x 1+x 2=﹣4,∵x 2﹣x 1=2,∴x 1=﹣3,x 2=﹣1,∵A (0,2),且过A 的直线l 平行于x 轴,∴C (﹣3,2),D (﹣1,2),将D 点代入抛物线,得m ﹣4m+5m =2,解,得m =1,∴抛物线的解析式为y =x 2+4x+5;(3)0<m < 25 或m = 12【知识点】待定系数法求二次函数解析式;二次函数图象与一元二次方程的综合应用【解析】【解答】解:(3)∵A (0,2),B (﹣2,0),∴线段AB 在x 轴上方,直线AB =x +2,函数y =mx 2+4mx +5m 中,△=(4m )2﹣4m •5m =﹣4m 2<0,∴抛物线与x 轴无交点,当m <0时,抛物线开口向下,顶点在x 轴下方,与线段AB 为交点,当m >0时,抛物线开口向上,顶点在x 轴上方,若抛物线与AB 有一个交点,有两种情况:①如图1,抛物线与AB 相切时,则mx 2+4mx +5m =x +2整理得,mx 2+(4m ﹣1)x +5m ﹣2=0,△=(4m ﹣1)2﹣4m (5m ﹣2)=0,解得m = 12 或m =﹣ 12(舍去), ②抛物线与y 轴的交点在O 、A 之间,即0<5m <2,解得0<m < 25, 综上所述,m 的取值范围是 0<m < 25 或m = 12.【分析】(1)利用对称轴公式求得对称轴,即可求得B 的坐标;(2)先根据对称轴求出x 1+x 2=﹣4,结合x 2﹣x 1=2,即可求出x1和x2的值,从而可求出C (﹣3,2),D (﹣1,2),然后用待定系数法求解即可;(3)当m<0时不合题意;当m >0,分两种情况讨论,结合图象即可求得.2.【答案】(1)解:∵函数图象与x 轴的两个交点坐标为(1,0)(3,0), ∴方程的两个根为x 1=1,x 2=3;(2)解:由图可知,不等式ax 2+bx+c >0的解集为1<x <3;(3)解:∵二次函数的顶点坐标为(2,2),∴若方程ax 2+bx+c =k 有两个不相等的实数根,则k 的取值范围为k <2.【知识点】二次函数与不等式(组)的综合应用;二次函数图象与一元二次方程的综合应用【解析】【分析】(1)根据函数图象,二次函数图象与x 轴的交点的横坐标即为方程的根;(2)根据函数图象写出x 轴上方部分的x 的取值范围即可;(3)能与函数图象有两个交点的所有k 值即为所求的范围.3.【答案】(1)解:该商品的售价x 元,进价为y 元,由题意得: {x =y +86x =8y解得 {x =32y =24故商品的售价32元,进价为24元。
中考数学重难点专题讲座第四讲 一元二次方程与二次函数【前言】前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。
第一部分 真题精讲【例1】2010,西城,一模已知:关于x 的方程23(1)230mx m x m --+-=.⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称.①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。
由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。
第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。
第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。
事实上这个一次函数2y 恰好是抛物线1y 的一条切线,只有一个公共点(1,0)。
根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。
于是通过代点,将3y 用只含a 的表达式表示出来,再利用132y y y ≥≥,构建两个不等式,最终分析出a 为何值时不等式取等号,于是可以得出结果.【解析】解:(1)分两种情况:当0m =时,原方程化为033=-x ,解得1x =, (不要遗漏)∴当0m =,原方程有实数根.当0≠m 时,原方程为关于x 的一元二次方程,∵()()()222[31]4236930m m m m m m =----=-+=-△≥.∴原方程有两个实数根. (如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了)综上所述,m 取任何实数时,方程总有实数根.(2)①∵关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称, ∴0)1(3=-m .(关于Y 轴对称的二次函数一次项系数一定为0)∴1=m .∴抛物线的解析式为121-=x y .②∵()()221212210y y x x x -=---=-≥,(判断大小直接做差)∴12y y ≥(当且仅当1x =时,等号成立).(3)由②知,当1x =时,120y y ==.∴1y 、2y 的图象都经过()1,0. (很重要,要对那个等号有敏锐的感觉)∵对于x 的同一个值,132y y y ≥≥,∴23y ax bx c =++的图象必经过()1,0.又∵23y ax bx c =++经过()5,0-,∴()()231545y a x x ax ax a =-+=+-. (巧妙的将表达式化成两点式,避免繁琐计算)设)22(54223---+=-=x a ax ax y y y )52()24(2a x a ax -+-+=.∵对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立,∴320y y -≥,图7∴2(42)(25)0y ax a x a =+-+-≥.又根据1y 、2y 的图象可得 0a >, ∴24(25)(42)04a a a y a---=最小≥.(a>0时,顶点纵坐标就是函数的最小值) ∴2(42)4(25)0a a a ---≤.∴2(31)0a -≤.而2(31)0a -≥.只有013=-a ,解得13a =. ∴抛物线的解析式为35343123-+=x x y .【例2】2010,门头沟,一模关于x 的一元二次方程22(1)2(2)10m x m x ---+=.(1)当m 为何值时,方程有两个不相等的实数根;(2)点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; (3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。
第二问给点求解析式,比较简单。
值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b 以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b 的形式并未包括斜率不存在即垂直于x 轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.【解析】:(1)由题意得[]22224(1)0m m ∆=---->() 解得54m <210m -≠ 解得1m ≠± 当54m <且1m ≠±时,方程有两个不相等的实数根. (2)由题意得212(2)11m m -+-+=-解得31m m =-=,(舍) (始终牢记二次项系数不为0) 28101y x x =++(3)抛物线的对称轴是58x = 由题意得114B ⎛⎫-- ⎪⎝⎭, (关于对称轴对称的点的性质要掌握) 14x =-与抛物线有且只有一个交点B (这种情况考试中容易遗漏) 另设过点B 的直线y kx b =+(0k ≠)把114B ⎛⎫-- ⎪⎝⎭,代入y kx b =+,得14k b -+=-,114b k =- 114y kx k =+-28101114y x x y kx k ⎧=++⎪⎨=+-⎪⎩ 整理得218(10)204x k x k +--+= 有且只有一个交点,21(10)48(2)04k k ∆=--⨯⨯-+= 解得6k =162y x =+ 综上,与抛物线有且只有一个交点B 的直线的解析式有14x =-,162y x =+【例3】已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点. (1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.【思路分析】 拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组, 十分麻烦,计算量大,浪费时间并且可能出错。
但是仔细看题,发现P,Q 纵坐标是一样的,说明他们关于抛物线的对称轴对称。
而抛物线只有一个未知系数,所以轻松写出对称轴求出b 。
第二问依然是判别式问题,比较简单。
第三问考平移,也是这类问题的一个热点,在其他区县的模拟题中也有类似的考察。
考生一定要把握平移后解析式发生的变化,即左加右减(单独的x),上加下减(表达式整体)然后求出结果。
【解析】(1)因为点P 、Q 在抛物线上且纵坐标相同,所以P 、Q 关于抛物线对称轴对称并且到对称轴距离相等. 所以,抛物线对称轴3142b x -+=-=,所以,4b =.(2)由(1)可知,关于x 的一元二次方程为2241x x ++=0.因为,△=b 2-4ac=16-8=8>0.所以,方程有两个不同的实数根,分别是11x==-+,21x ==--. (3)由(1)可知,抛物线2241y x x =++的图象向上平移k (k 是正整数)个单位后的解析式为2241y x x k =+++.若使抛物线2241y x x k =+++的图象与x 轴无交点,只需22410x x k +++= 无实数解即可.由24b ac =-=168(1)k -+=88k -<0,得1k >又k 是正整数,所以k 得最小值为2.【例4】2010,昌平,一模已知抛物线2442y ax ax a =-+-,其中a 是常数.(1)求抛物线的顶点坐标;(2)若25a >,且抛物线与x 轴交于整数点(坐标为整数的点),求此抛物线的解析式. 【思路分析】本题第一问较为简单,用直接求顶点的公式也可以算,但是如果巧妙的将a 提出来,里面就是一个关于X 的完全平方式,从而得到抛物线的顶点式,节省了时间.第二问则需要把握抛物线与X 轴交于整数点的判别式性质.这和一元二次方程有整数根是一样的.尤其注意利用题中所给25a >,合理变换以后代入判别式,求得整点的可能取值. (1)依题意,得0a ≠,∴2442y ax ax a =-+-()()224422 2.a x x a x =-+-=--∴抛物线的顶点坐标为(2,2)-(2)∵抛物线与x 轴交于整数点,∴24420ax ax a -+-=的根是整数.∴2x =± ∵0a >,∴2x =是整数. ∴2a是整数的完全平方数. ∵25a >, ∴25a <. (很多考生想不到这种变化而导致后面无从下手) ∴2a 取1,4, 当21a =时,2a =; 当24a =时,12a = . ∴a 的值为2或12. ∴抛物线的解析式为2286y x x =-+或2122y x x =-.【例5】2010,平谷,一模已知:关于x 的一元二次方程()()21210m x m x -+--=(m 为实数)(1)若方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,求证:无论m 取何值,抛物线()()2121y m x m x =-+--总过x 轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程()()21210m x m x -+--=有两个不相等的整数根,把抛物线()()2121y m x m x =-+--向右平移3个单位长度,求平移后的解析式.【思路分析】本题第一问比较简单,直接判别式≥0就可以了,依然不能遗漏的是m -1≠0。