-初1数学期中考试试题
- 格式:docx
- 大小:16.57 KB
- 文档页数:10
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 22. 已知一个数的平方是25,那么这个数可能是()A. 5B. -5C. 5或-5D. 无法确定3. 在下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形4. 下列代数式中,正确的是()A. 3a + 2b = 5a + bB. 2(a + b) = 2a + 2bC. (a + b)^2 = a^2 + b^2D. a^2 - b^2 = (a + b)(a - b)5. 一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是()A. 13厘米B. 26厘米C. 33厘米D. 40厘米6. 一个正方形的对角线长是10厘米,那么这个正方形的面积是()A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米7. 下列分数中,最简分数是()A. $\frac{4}{6}$B. $\frac{8}{12}$C. $\frac{3}{4}$D. $\frac{5}{10}$8. 已知一个数的5倍加上3等于13,那么这个数是()A. 2B. 3C. 4D. 59. 下列方程中,正确的是()A. 2x + 3 = 5x + 1B. 3x - 2 = 2x + 4C. 4x + 5 = 3x - 2D. 5x + 2 = 4x + 310. 下列函数中,自变量的取值范围是全体实数的是()A. y = x^2 + 2x + 1B. y = $\sqrt{x}$C. y = $\frac{1}{x}$D. y = $\log_2(x)$二、填空题(每题3分,共30分)11. -2的平方根是________,$\frac{1}{3}$的倒数是________。
12. 等腰三角形的底边长是8厘米,腰长是6厘米,那么这个三角形的面积是________平方厘米。
初一数学期中考试复习题带答案一、选择题1. 已知一个数的平方是36,这个数是:A. 6B. -6C. 6 或 -6D. 无法确定答案:C2. 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是:A. 0B. 1C. -1D. 无法确定答案:A3. 下列哪个数是无理数?A. 2.5B. πC. 0.33333(无限循环)D. 1/3答案:B4. 一个数的立方是-8,这个数是:A. 2B. -2C. 8D. -8答案:B5. 以下哪个表达式的结果是一个整数?A. √9B. √0.16C. √1/4D. √1/9答案:D二、填空题1. 一个数的相反数是-5,这个数是______。
答案:52. 如果一个数的绝对值是5,则这个数可以是______或______。
答案:5 或 -53. 一个数的平方根是4,那么这个数的立方根是______。
答案:84. 一个数的立方是27,这个数的平方是______。
答案:95. 一个数的绝对值是它本身,那么这个数是______或______。
答案:非负数或 0三、计算题1. 计算以下表达式的值:- (-3)^2- (-2)^3- √25- √(-4)^2答案:- (-3)^2 = 9- (-2)^3 = -8- √25 = 5- √(-4)^2 = 42. 求下列各数的绝对值:- |-8|- |5|- |-(-5)|答案:- |-8| = 8- |5| = 5- |-(-5)| = 5四、解答题1. 已知一个数的平方是16,求这个数的立方。
答案:如果一个数的平方是16,那么这个数可以是4或-4。
因此,这个数的立方可以是:- 4^3 = 64- (-4)^3 = -642. 一个数的立方根是2,求这个数的平方根。
答案:如果一个数的立方根是2,那么这个数是2^3 = 8。
因此,这个数的平方根是√8。
五、证明题1. 证明:如果一个数的绝对值是它本身,那么这个数是非负数。
2024—2025学年高一上学期期中考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合3{|5}A x x =<,{3,1,0,2,3}B =--,则A B = ( )A. {1,0}- B. {2,3} C. {1,0,2}- D. {3,1,0}--【答案】D 【解析】【分析】求出集合{A x x =,再利用交集运算即可求解.【详解】由题意可得集合{A x x =,因为12<<,且{3,1,0,2,3}B =--,则{}3,1,0A B ⋂=--,故D 正确.故选:D.2. 下列命题中正确的是( )A. 若0a b >>,则22a b > B. 若a b <,则22ac bc <C. 若a b <,则11a b> D. 若a b >,则ac bc>【答案】A 【解析】【分析】根据不等式的性质判断A ;举反例判断BCD.【详解】对于选项A :若0a b >>,由不等式性质可得22a b >,故A 正确;的对于选项BD :例如0c =,可得220ac bc ==,0ac bc ==,故BD 错误;对于选项C :利用1,1a b =-=,可得111,1a b =-=,即11a b<,故C 错误;故选:A.3. 已知命题2:,230p x ax x ∀∈++>R 为真命题,则实数a 的取值范围是( )A. 1|02a a ⎧⎫<≤⎨⎬⎩⎭ B. 1|03a a ⎧⎫<<⎨⎬⎩⎭ C. 1|3a a ⎧⎫≥⎨⎬⎩⎭ D. 1|3a a ⎧⎫>⎨⎬⎩⎭【答案】D 【解析】【分析】问题转化为不等式2230ax x ++>的解集为R ,根据一元二次不等式解集的形式求参数的值.【详解】因为命题2:,230p x ax x ∀∈++>R 为真命题,所以不等式2230ax x ++>的解集为R .所以:若0a =,则不等式2230ax x ++>可化为230x +>⇒32x >-,不等式解集不是R ;若0a ≠,则根据一元二次不等式解集的形式可知:20Δ2120a a >⎧⎨=-<⎩⇒13a >.综上可知:13a >故选:D4. 已知函数()235,1,28,1,x x f x x x +≤⎧=⎨-+>⎩则()()2f f 的值为( )A. 4 B. 5 C. 8 D. 0【答案】B 【解析】【分析】根据分段函数的解析式求得正确答案.【详解】因为f (x )=3x +5,x ≤1,−2x 2+8,x >1,所以()222280f =-⨯+=,所以()()()203055ff f ==⨯+=.故选:B5. 下列函数中,既是奇函数又在区间()0,∞+上单调递增的是( )A. ()1f x x=B. ()exf x =C. ()2f x x = D. ()1f x x x=-【答案】D 【解析】【分析】由常见函数的函数图像即可判断奇偶性和在区间()0,∞+上的单调性,即可得出结论.【详解】函数()1f x x=是奇函数,在区间()0,∞+上单调递减,故A 不符合题意;函数()e xf x =是非奇非偶函数,在区间()0,∞+上单调递增,故B 不符合题意;函数()2f x x =是偶函数,在区间()0,∞+上单调递增,故C 不符合题意;函数()1f x x x=-的定义域为()(),00,-∞+∞ ,且满足()()1f x x f x x -=-+=-,又函数y x =和1y x =-均在区间()0,∞+上单调递增,所以函数()1f x x x =-在区间()0,∞+上单调递增,即函数()1f x x x=-既是奇函数,又在区间()0,∞+上单调递增,符合题意.故选:D.6. 已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x ≤时,()22x af x =+,则()1f =( )A. 2 B. 4C. 2-D. 4-【答案】A 【解析】【分析】利用题意结合奇函数的定义判断()f x 是奇函数,再利用奇函数的性质求解即可.【详解】因为定义在R 上的函数()f x 满足()()0f x f x -+=,所以()f x 是奇函数,且()00f =,故0202a+=,解得2a =-,故当0x ≤时,()222x f x =-+,由奇函数性质得()()11f f =--,而()121222f --=-+=-,故()()112f f =--=,故A 正确.故选:A7. 已知2345a ⎛⎫= ⎪⎝⎭,3423b ⎛⎫= ⎪⎝⎭,5349c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A. a b c >>B. b a c >>C. a c b >>D. c a b>>【答案】A 【解析】【分析】根据幂函数、指数函数的单调性判定大小即可.【详解】易知3362555422933c ⎡⎤⎛⎫⎛⎫⎛⎫===⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,又23xy ⎛⎫= ⎪⎝⎭定义域上单调递减,36145<<,所以23b c >>,易知()230y xx =>单调递增,432543>>,则223334422533a b ⎛⎫⎛⎫⎛⎫=>>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,综上a b c >>.故选:A8. 函数()1,4,11x x f x x x x ⎧+≤⎪=⎨+>⎪-⎩的值域为( )A. [)5,5,4⎛⎤-∞+∞ ⎥⎝⎦B. 5,54⎡⎤⎢⎥⎣⎦C. [)3,4,4⎛⎤-∞+∞ ⎥⎝⎦ D. 3,44⎡⎤⎢⎥⎣⎦【答案】A 【解析】【分析】由分段函数解析式,利用换元法可求得1x ≤时函数()f x 的值域为5,4⎛⎤-∞ ⎥⎝⎦,再由基本不等式可求得当1x >时,函数()f x 的值域为[)5,+∞,即可得出结论.【详解】根据题意当1x ≤时,()f x x =t =,可得[)0,t ∈+∞,所以21x t =-,因此可得()2215124f t t t t ⎛⎫=-++=--+ ⎪⎝⎭;由二次函数性质可得当12t =,即34x =时,()1f x x x =≤取得最大值54,此时()1f x x x =+≤的值域为5,4⎛⎤-∞ ⎥⎝⎦;当1x >时,()44111511f x x x x x =+=-++≥+=--,当且仅当411x x -=-,即3x =时,等号成立;此时()4,11f x x x x =+≥-的最小值为5,因此()4,11f x x x x =+≥-的值域为[)5,+∞;综上可得,函数()f x 的值域为[)5,5,4⎛⎤-∞+∞ ⎥⎝⎦.故选:A【点睛】关键点点睛:本题关键在于利用分段函数()f x 的解析式,由各段的函数性质利用换元法和基本不等式即可求得函数值域.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法正确的有( )A. “1a >”是“11a<”的充分不必要条件B. 命题“21,1x x ∀<<”的否定是“1x ∃≥,21x ≥”C. 若a b >,则22a b c c >D. 若0a >,0b >,且41a b +=,则11a b+的最小值为9【答案】ACD 【解析】【分析】根据充分和必要条件,全称量词命题的否定、不等式、基本不等式等知识对选项进行分析,从而确定正确答案.【详解】选项A ,若1a >,则11a <;若11a<,则a 有可能是负数,此时1a >不成立,故“1a >”是“11a<”的充分不必要条件,正确,符合题意;选项B ,命题“1x ∀<,21x <”的否定是“21,1x x ∃<≥”,错误,不符合题意;选项C ,若a b >,则22a b c c>,正确,符合题意;选项D ,若0a >,0b >,且41a b +=,则()1111441459b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当4b a a b =,即13a =,16b =时,取等号,故11a b+的最小值为9,正确,符合题意.故选:ACD10. 已知()f x 是定义在R 上的奇函数,且当0x ≥时,()22f x x x =-,则下列结论正确的是( )A. ()f x 的单调递增区间为(),1∞--和()1,+∞B. ()0f x =有3个根C. ()0xf x <的解集为()()2,00,2-⋃D. 当0x <时,()22f x x x=-+【答案】ABC 【解析】【分析】先求得0x <时()f x 的解析式判断选项D ;求得()f x 的单调递增区间判断选项A ;求得()0f x =的根的个数判断选项B ;求得()0xf x <的解集判断选项C.【详解】由()f x 是定义在R 上的奇函数知,对任意x ∈R ,()()f x f x -=-.当0x <时,0x ->,又当0x ≥时,()22f x x x =-,所以()()()()2222f x f x x x x x ⎡⎤=--=----=--⎣⎦,故D 错误.由上可知()222,0,2,0,x x x f x x x x ⎧-≥=⎨--<⎩又抛物线22y x x =-的对称轴为直线1x =,开口向上,抛物线22yx x =--的对称轴为直线1x =-,开口向下,结合二次函数的性质知()f x 的单调递增区间为(),1∞--和()1,+∞,故A 正确.由()0f x =可得2020x x x ≥⎧⎨-=⎩或220x x x <⎧⎨--=⎩解之得,0x =或2x =或2x =-,故B 正确.由()0xf x <,可得2020x x x <⎧⎨-->⎩或220x x x >⎧⎨-<⎩解得20x -<<或02x <<,故C 正确.故选:ABC11. 已知函数2,0()2,0x x x f x x ⎧≥=⎨<⎩,则下列判断错误的是( )A. ()f x 是奇函数B. ()f x 的图像与直线1y =有两个交点C. ()f x 的值域是[0,)+∞D. ()f x 在区间(,0)-∞上是减函数【答案】AB 【解析】【分析】根据分段函数的解析式及基本初等函数的图象与性质逐一分析即可.【详解】如图所示,作出函数图象,显然图象不关于原点中心对称,故A 不正确;函数图象与直线1y =有一个交点,故B 错误;函数的值域为[0,)+∞,且在区间(,0)-∞上是减函数,即C 、D 正确;故选:AB三、填空题:本题共3小题,每小题5分,共15分.12. 能说明“关于x 的不等式220x ax a -+>在R 上恒成立”为假命题的实数a 的一个取值为_________.【答案】0(答案不唯一)【解析】【分析】将关于x 的不等式220x ax a -+>在R 上恒成立问题转化为0∆<,从而得到a 的取值范围,命题为假命题时a 的取值范围是真命题时的补集,即可得a 的取值.【详解】若不等式220x ax a -+>在R 上恒成立,则()2420a a ∆=--⨯<,解得08a <<,所以该命题为假命题时实数a 的取值范围是08a a ≤≥或,.所以实数a 一个取值为0.故答案为:0(答案不唯一,只要满足“0a ≤或8a ≥”即可).13. 已知函数()21,02,6,2,x x f x x x ⎧-≤<=⎨-≥⎩则不等式()12f x x >的解集为______.【答案】()1,4【解析】【分析】在同一直角坐标系中,作出函数y =f (x )及12y x =的图象,即可求得不等式()12f x x >的解集.【详解】在同一直角坐标系中,作出函数y =f (x )及12y x =的图象如下:由图可知不等式()12f x x >的解集为(1,4).故答案为:(1,4)14. 已知正数,x y 满足328x y -=,则3x y+的最小值为______.【答案】9【解析】【分析】先根据指数运算求出33x y =+,代入3x y+中,再利用基本不等式可得最小值.【详解】33282x y y -==,可得33x y =+,又0,0x y >>,所以3333239x y y y +=++≥⨯+=,的当且仅当1y y=,即1y =时取得最小值.故答案为:9四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 设全集R U =,集合{}15A x x =≤≤,集合{}122B x a x a =--≤≤-.(1)若4a =,求A B ,()U A B ⋂ð;(2)若B A ⊆,求实数a 的取值范围.【答案】(1)A ∪B ={x |−9≤x ≤5},(){}U 25A B x x ⋂=<≤ð; (2)13a a ⎧⎫<⎨⎬⎩⎭.【解析】【分析】(1)根据并集与交集,补集的概念直接计算.(2)根据集合间的包含关系,列不等式,解不等式即可.【小问1详解】因为4a =,所以{}92B x x =-≤≤.因为{}15A x x =≤≤,所以{}95A B x x ⋃=-≤≤.因为R U =,所以{9U B x x =<-ð或}2x >,所以(){}25U A B x x ⋂=<≤ð.【小问2详解】因为B A ⊆.①当B =∅时,满足B A ⊆,此时122a a -->-,解得13a <;②当B ≠∅时,要满足B A ⊆,则121,25,122,a a a a --≥⎧⎪-≤⎨⎪--≤-⎩解得a ∈∅综上所述,实数a 的取值范围是13a a ⎧⎫<⎨⎬⎩⎭.16. 已知()y f x =在()0,∞+上有意义,单调递增且满足()()()()21,f f xy f x f y ==+.(1)求证:()()22f xf x =;(2)求不等式的()()32f x f x ++≤的解集..【答案】(1)证明见解析 (2){}|01x x <≤【解析】【分析】(1)根据条件,通过令y x =,即可证明结果;(2)根据条件得到()()()34f x x f +≤,再利用()f x 在区间()0,∞+上的单调性,即可求出结果.【小问1详解】因为()()()f xy f x f y =+,令y x =,得到()()()()22f x f x f x f x =+=,所以()()22f xf x =.【小问2详解】()()()()()()332224f x f x f x x f f ++=+≤== ,又函数()f x 在区间()0,∞+上单调递增,所以()03034x x x x ⎧>⎪+>⎨⎪+≤⎩,解得01x <≤,所以不等式的()()32f x f x ++≤的解集为{}|01x x <≤.17. 已知函数()21x bf x ax +=+,点()1,5A ,()2,4B 是()f x 图象上的两点.(1)求a ,b 的值;(2)求函数()f x 在[]1,3上的最大值和最小值.【答案】(1)18a b =⎧⎨=⎩(2)max ()5f x =,min 7()2f x =【解析】【分析】(1)把图象上的两点代入函数解析式,由方程组求a ,b 的值;(2)定义法求函数单调性,由单调性求最值.小问1详解】因为点()1,5A ,()2,4B 是()f x 图象上的两点,【所以2514421b a b a +⎧=⎪⎪+⎨+⎪=⎪+⎩,解得18a b =⎧⎨=⎩.【小问2详解】设1213x x ≤<≤,则()()()()()2112121212628281111x x x x f x f x x x x x -++-=-=++++,因为1213x x ≤<≤,所以210x x ->,()()12110x x ++>,则()()120f x f x ->,即()()12f x f x >,所以函数()281x f x x +=+在[]1,3上单调递减.故()max ()15f x f ==,()min 7()32f x f ==.18. 已知函数()122x f x =+.(1)求()0f 与()2f ,()1f -与()3f 的值;(2)由(1)中求得的结果,猜想f(x)与()2f x -的关系并证明你的猜想;(3)求()()()()()()()2020201901220212022f f f f f f f -+-+⋅⋅⋅++++⋅⋅⋅++的值.【答案】(1))()103f =,()126f =,()215f -=,()1310f = (2)()()122f x f x +-=,证明见解析 (3)40434【解析】【分析】(1)根据题意代入0,2,-1,3求值即可;(2)根据(1)的结果猜想()()122f x f x +-=,计算()()2f x f x +-的值即可证明;(3)根据(2)的结果可得1(2020)(2022)2f f -+=,根据规律计算即可求解.【小问1详解】解:因为()122x f x =+,故11(0)123f ==+,211(2)226f ==+,112(1)225f --==+,311(3)2210f ==+.【小问2详解】解:猜想:()()122f x f x +-=,证明:∵对于任意的x R ∈,都有2221122(2)2222222(22)22x x x x x x f x --====++⨯++∴221()(2)2(22)2x x f x f x ++-==+.故()()122f x f x +-=.【小问3详解】解:由(2)得()()122f x f x +-=,故(2020)(22022)f f -=-,1(2020)(2022)2f f -+=,1(2019)(2021)2f f -+=,所以()()()()()()()2020201901220212022f f f f f f f -+-+⋅⋅⋅++++⋅⋅⋅++()()()()()()()2020202220192021(1)(3)021f f f f f f f f f =-++-+⋅⋅⋅+-++++1140432021244=⨯+=.19. 已知()f x 满足 ()()()(),f x f y f x y x y +=+∈R ,且0x >时,()0f x < .(1)判断()f x 的单调性并证明;(2)证明:()()f x f x -=-;(3)若()12f =-,解不等式()2260f x x -->.【答案】(1)减函数,证明见解析(2)证明见解析 (3){|1x x <-或}3x >.【解析】【分析】(1)利用函数的单调性定义证明;(2)采用赋值法探索()f x -与()f x 之间的关系;(3)利用单调性及特殊点的函数值解不等式即可.【小问1详解】()f x 是R 上的减函数,证明如下:对任意12,x x ∈R 且12x x <,则210x x ->,所以()210f x x -<;又()()()1212f x f x x f x +-=即()()()21210f x f x f x x -=-<,所以()()21f x f x <.所以()f x 是R 上的减函数.【小问2详解】由()()()f x f y f x y +=+,令y x =-,得()()()0f x f x f +-=;再令0x =可得()()()000f f f +=⇒()00f =;()()0f x f x ∴-+=即()()f x f x -=-.【小问3详解】()()()()122114f f f f =-⇒=+=-,()()()3216f f f =+=-,()2260f x x ∴-->,即()()()2233f x x f f ->-=-,又()f x 是R 上的减函数,所以223x x -<-⇒2230x x -->,解得:1x <-或3x >,所以不等式的解集为{|1x x <-或}3x >.。
2023学年初一数学第一学期期中考试卷(含答案)一、选择题(每题只有1个选项符合题意,每小题2分) 1. 41-的相反数是( ) A.41 B.-4 C.4 D.41- 2. 2021年5月11日,第七次全国人口普查主要数据结果公布,数据显示,全国人口共141178万人,比2010年增加7206万人,数据“7206万”用科学计数法表示正确的是( ) A.0.7206×108 B.7.206×108 C.7.206×107 D.72.06×107 3. 下列说法正确的是( )A. 近似数5千和5000的精确度是相同的B. 317500精确到千位可以表示为31.8万,也可以表示为3.18×105C. 2.46万精确到百分位D. 近似数8.4和0.7的精确度不一样 4. 下列各对数中,相等的一对是( )A.322与⎪⎪⎭⎫⎝⎛322 B.-22与(-2)2 C.-(-3)与-|-3| D.(-2)3与-23 5. 下列说法正确的是( )A. 如果一个数的绝对值等于它本身,那么这个数是正数B. 数轴原点两旁的两个数互为相反数C. 几个有理数相乘,当负因数的个数为奇数个时,积一定为负数D. -3.14既是负数,分数,也是有理数6. 面粉厂规定某种面粉每袋的标准质量为50±0.2kg ,现随机选取10袋面粉进行质量检测,结果如图所示:A.1袋B.2袋C.3袋D.4袋 7. 实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,则正确的结论是( )A.ac >0B.|b|<|c|C.b+d >0D.a >-d 8. 观察下面三行数:第一行数:2、-4、8、-16、32、-64、······ 第二行数:0、-6、6、-18、30、-66、······ 第三行数:0、-3、3、-9、15、-33、······根据第一行数的排列规律,以及这三行数字之间的关系,确定第三行第8个数是( ) A.128 B.129 C.-128 D.-129二、填空题(每小题2分)9. 在一次立定跳远测试中,合格的标准是1.50m ,小红跳出了1.85m ,记为+0.35m ,小敏跳出了1.46m ,记为 m.10. 大陆上最高处是珠穆朗玛峰的峰顶,海拔为8848.86米,最低处位于亚洲西部名为死海的湖,海拔为-415米,两处高度相差是 米. 11. 比较大小:(1)-43 -65; (2)-(-3) |-4| 12. 绝对值小于2021的所有整数的和是 ;绝对值不大于3的负整数的积是 . 13. 若|x+7|+(y -6)2=0,则(x+y )2021的值为 . 14. 下列4个结论:①-πx 的系数为-1;②-5a 2b 的次数是3;③3nm 是多项式;④多项式3x 2y -6x 4y 2-21xy 3+27是7次多项式.其中正确结论的序号是 .15. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”。
虹口区2021学年第一学期初一数学期中试卷虹口区2021学年度第一学期初一年级数学学科期中教学质量监控试题(满分100分,考试时间90分钟)2021.11问题编号得分1234 26272829考生总分注:1。
本试卷包含五个主要问题,共30个问题;2.除第一、二大题外,其余各题如无特别说明,都必须写出解答的主要步骤.一、多项选择题:(本专业共有6道题,每道题得2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号填在括号内】1.下列代数式中,表示“m的3倍与n的和的平方”的是()222A.3m?nb.(3m)?北卡罗来纳州3号(北纬3米)222.下列代数式中,次数为3的单项式是()a.xy2b.x3?y3c、 x3yd.3xy33.下列运算中,正确的是()235235a。
3a?A.3b。
A.A.交流电。
??2a6a3d。
A.A.A.4.下列整式的乘法中,不能用平方差公式进行计算的是()a.(x?y)(x?y)b.(?x?y)(?x?y)c.(?x?y)(x?y)d(?x?y)(x?y)5.多项式①2x?x,②4x?1?4x,③x?4x?4,④?4x?1?4x;在分解因式后,结果含有相同因式的是()a.①④b.①②c.③④d.②③6.如图所示,从边长为(a?4)厘米的方格纸上剪下一个边长为(a?1)厘米的正方形(a?0),其余部分沿虚线剪成一个矩形(无重叠、无间隙),矩形面积为()a.(2a?5a)cmb.(3a?15)cmc.(6a?9)cmd.(6a?15)cm222222222图6二、填空题:(本大题共14题,每题2分,满分28分)A2B7。
单项式?系数为48.把多项式x?y?5xy?3xy按字母y降幂排列_______________________________.x43?Y9。
如果单项式3AB和单项式?AB是同系物,那么x呢?y=__________。
3322虹口区初一数学本卷共4页第1页10.计算:(?2x2)3=。
一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. 1/32. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 下列各组数中,成比例的是()A. 2, 4, 6, 8B. 3, 6, 9, 12C. 1, 2, 3, 4D. 0, 1, 2, 34. 若x² - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 1或45. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x² + 2x - 1C. y = 3x³ - 2x² + 4D. y = 4x - 56. 在直角坐标系中,点A(2,3)关于原点的对称点是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)7. 下列各式中,分式有最简形式的是()A. 3/6B. 5/10C. 7/14D. 8/168. 若sinθ = 1/2,则θ的度数是()A. 30°B. 45°C. 60°D. 90°9. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 菱形D. 以上都是10. 若a、b、c是等差数列的前三项,且a + b + c = 15,则b的值为()A. 5B. 10C. 15D. 20二、填空题(每题2分,共20分)11. 若x² - 4x + 4 = 0,则x的值为__________。
12. 下列各数中,绝对值最小的是__________。
13. 在直角三角形ABC中,∠C = 90°,AC = 3,BC = 4,则AB的长度为__________。
14. 若sinθ = 3/5,则cosθ的值为__________。
初中一年级数学上册期中考试试题(有答案)初中一年级数学上册期中考试试题(有答案)2017期中考试渐渐向我们走来,我们也一步一步走向期中考试,加紧复习是眼下最重要的事情。
以下是店铺为大家搜索整理的初中一年级数学上册期中考试试题(有答案)2017,希望能给大家带来帮助!一、选择题(每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案1.在① ,② ,③ ,④ ,⑤ ,⑥ 各式中,分式的个数是( )A.2个B.3个C. 4个D.5个2.要使分式有意义,则x应满足的条件是( )A.x≠1B. x≠-1C. x≠0D. x>13.将分式中x,y都扩大3倍,则分式的值( )A.不变B. 扩大3倍C.扩大9倍D.缩小3倍4. 下列运算正确的是( )A.x10÷x5=x2B.x-4•x=x-3C.x3•x2=x6D.(2x-2)-3=-8x65.已知三角形的三边长分别为4,5,x,则x不可能是( )A.3B.5C.7D.96.如图1,已知ΔABC是直角三角形,∠C=90º,若沿虚线剪去∠C,则∠1+∠2=( )A.315ºB.270ºC.180ºD.135º7.如图2,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90º,∠BAC=35º,则∠BCD的度数为( )A.145ºB.130ºC.110ºD.70º8.等腰三角形的周长是40cm,以一边为边作等边三角形,它的周长是45cm,那么这个等腰三角形的底边长为( )A.10cmB.15cmC.10cm或12.5cmD.10cm或15cm二、填空题(每小题3分,共24分)9.当x=______时,分式的值为0.10.约分:11.计算:(5678×5-7689)0+(-2-∣-2∣=________12. 某红外线遥控器发出的红外线波长为0.000 000 94 m,用科学记数法表示这个数是 .13.若关于x的方程有增根,则m的值是_______14. 命题“全等三角形的面积相等”的逆命题是 ______________ .15.如图3,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=12,CF=3,则AC= .16.如图4,已知∠1=∠2,∠B=60º,∠ACB=80º,则∠BCD的.度数为_______三、解答题(本题共52分)17. (8分)计算:① ②18.(6分)计算:19. (6分)解方程:20.(10分)如图5,在ΔABC中,AB=AC,D为BC边上一点,∠B=30º,∠DAB=45º.(1)求∠DAC的度数。
2024-2025学年江苏省常熟市高一第一学期期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知命题p:“∃x∈R,x+2≤0”,则命题p的否定为( )A. ∃x∈R,x+2>0B. ∀x∈R,x+2>0C. ∃x∉R,x+2>0D. ∀x∈R,x+2≤02.已知x>0,则x−1+4x的最小值为( )A. 4B. 5C. 3D. 23.已知函数y=f(x)的定义域为[−2,1],则函数y=f(2x+1)的定义域为( )A. RB. [−2,1]C. [−3,3]D. [−32,0]4.若函数f(x)=(m2−2m−2)x2−m是幂函数,且y=f(x)在(0,+∞)上单调递减,则实数m的值为( )A. 3B. −1C. 1+3D. 1−35.常熟“叫花鸡”,又称“富贵鸡”,既是常熟的特产,也是闻名四海的佳肴,以其鲜美、香喷、酥嫩著称。
双十一购物节来临,某店铺制作了300只“叫花鸡”,若每只“叫花鸡”的定价是40元,则均可被卖出;若每只“叫花鸡”在定价40元的基础上提高x(x∈N∗)元,则被卖出的“叫花鸡”会减少5x只.要使该店铺的“叫花鸡”销售收入超过12495元,则该店铺的“叫花鸡”每只定价应为( )A. 48元B. 49元C. 51元D. 50元6.已知f(x)是奇函数,对于任意x1,x2∈(−∞,0)(x1≠x2),均有(x2−x1)(f(x2)−f(x1))>0成立,且f(2)=0,则不等式xf(x−2)<0的解集为( )A. (−2,0)∪(2,4)B. (−∞,−2)∪(2,4)C. (2,4)D. (−2,0)∪(0,2)7.通过研究发现:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)−b为奇函数,则函数f(x)=x3−3x2图象的对称中心为( ) 参考公式:(a+b)3=a3+3a2b+3ab2+b3A. (0,0)B. (1,2)C. (1,−2)D. (2,−4)8.已知正实数a,b满足a+b=4,则代数式1b +b+1a的最小值为( )A. 5+12B. 5+14C. 54D. 25+2二、多选题:本题共3小题,共18分。
福州一中2023-2024学年第一学期期中考试初一 数学试卷(完卷120分钟 满分150分)注意事项:1.答题前,考生务必在答题卡规定位置填写本人准考证号、姓名等信息,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.第I 卷一、选择题(每小题3分,共36分,请将正确的答案涂在答题卡上) 1.−2023的相反数是( )A.−2023B.2023C.−12023D.120232.节约是一种美德,节约是一种智慧,据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人,350 000 000这个数用科学记数法表示为( ) A.3.5×107 B.35×107 C.3.5×108 D.0.35×1093.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )+0.9−3.6−0.8+2.5A. B. C. D.4.下列各式是整式的是( ) A.2a −b ,2ab 35,a bB.2,25a+3ab ,5πa 2C.a−b 3,−2b 7,3a −5b 2D.a 2,−43a−1,(3a+b)25.3.598精确到百分位是( )A.3.6B.3.600C.3.60D.3.596.实数a ,b 在数轴上的对应点的位置如图所示,则下列不等关系正确的是( )A.a >bB.ab >0C.|a|<|b|D.a <−b7.下列说法:①正整数和负整数统称整数;②正分数和负分数统称分数;③整数和分数统称有理数;④单项式和多项式统称整式;⑤零既不是正数,也不是非负数.其中正确的有( )A.2个B.3个C.4个D.5个 8.下列运算正确的是( )A.−3(a+b)=−3a+3bB.−3(−a −b)=3a+3bC.−3(−a+b)=−3a+3bD.−3(a −b)=−3a+b 9.在数轴上距−3有2个单位长度的点所表示的数是( )A.−5B.−1C.5或−1D.−5或−1 10.已知|a|=2,|b|=3,|a −b|=−(a −b),则a+b 的值为( ) A.5或1 B.−1或1 C.5或−1 D.−5或1 11.对于正数x ,规定f(x )=2x+1,例如f(4)=24+1=25,f(14)=21+14=84+1=85,则f(100)+f(99)+f(98)+…+f(2)+f(1)+f(12)+...+f(198)+f(199)+f(1100)=( ) A.198 B.199 C.200 D.201212.定义运算a ○×b=a(1−b),下面给出了关于这种运算的四个结论:①12○×(−2)=6;②a ○×b=b ○×a ;③(5○×a)+(6○×a)=11○×a ;④若3○×b=3,则b=1.其中正确结论的个数( )A.1个B.2个C.3个D.4个第Ⅱ卷12 340 -1 -2 -3 -4二、填空题(每小题4分,共24分,请将正确的答案写在答题卡上)13.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”,如:向东走30米记为“+30米”,则“−50米”表示_______. 14.倒数等于本身的数是_______,平方等于本身的数是_______. 15.−3a 2bc 5系数是______,次数是_______.16.若(x +2)2+|y −3|=0,则x y 的值为_______.17.若多项式4x 2y m +x y 2−(n −2)x 2y 2+3是关于x ,y 的五次三项式,则m −n=_______. 18.如用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n 个图形需要棋子______枚.(用含n 的代数式表示)三、解答题(本大题共10小题,合计90分,请将答案写在答题卡上) 19.(每小题4分,共16分)计算(1)|−6|−7+(−3) (2)(12−59+23)×(−18)(3)4÷(−2)×(−112)−(−22) (4)−57×[(−3)2×(−223)−2]20.(每小题4分,共8分)化简(1)2x 3−4x 2−3x −2x 2−x 3+5x −7; (2)已知A=2m 2−mn ,B=m 2+2mn −5,求4A −2B. 21.(本题6分)在数轴上表示下列有理数:−12,0,−|−2|,(−2)2,并用“<”把它们连接起来.22.(本题6分)a 、b 、c 在数轴上的位置如图所示,化简|a+b|−2|a+c|−3|c −b|+|a|.23.(本题10分)商店出售茶壶每只定价25元,茶杯每只定价5元,该店制定了两种……①②③④优惠方案,方案一:买一只茶壶赠送一只茶杯;方案二:按总价的94%付款.某顾客需购茶壶4只,茶杯x只(x≥4).(1)分别求出两种优惠办法分别付多少钱.(2)当x=47时,两种方案哪一种更省钱?24.(本题8分)已知−2a2b y+3与4a x b2的和是单项式.(1)x=______,y=______.(2)在(1)的条件下,先化简再求值:2(x2y−3y3+2x)−3(x+x2y−2y3)−x.25.(本题6分)若多项式4m x2+5x−2y2+8x2−n x+y−1的值与x的取值无关,求(m+n)2的值.26.(本题8分)阅读材料:我们知道,4x−2x+x=(4−2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)−2(a+b)+(a+b)=(4−2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)把(m−n)2看成一个整体,合并3(m−n)2−4(m−n)2+3(m−n)2的结果是_______.(2)已知x2+2y=4,则3x2+6y−2的值是_________.(3)已知x2+x y=2,2y2+3x y=5,求2x2+11x y+6y2的值.27.(本题10分)探索规律,观察下面的算式,解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52…(1)请猜想:1+3+5+7+9+…+99=_______.(2)请猜想:1+3+5+7+9+…+(2n−1)=_______(n是正整数且n≥l).(3)计算:201+203+205+…+395+397+399.28.(本题12分)如图1,有P、Q两动点在线段AB上各自做不间断的往返匀速运动(即只要动点与线段AB的某一端点重合则立即转身以同样的速度向AB的另一端点运动与端点重合之前动点运动方向、速度均不改变),已知点P的速度为3米/秒,点Q 的速度为5米/秒.(1)已知AB=120米,若点P 先从点A 出发,当AP=12米时,点Q 从点A 出发,点Q 出发后经过____秒与点P 第一次重合.(2)已知AB=120米,若P 、Q 两点同时从点A 出发,经过几秒P 、Q 两点第一次重合. (3)如图2,若P 、Q 两点同时从点A 出发,点P 与点Q 第一次重合于点M ,第二次重合于点N ,且MN=50米,求AB 的长.福州一中2023-2024学年第一学期期中考试参考答案初一 数学试卷(完卷120分钟 满分150分)注意事项:1.答题前,考生务必在答题卡规定位置填写本人准考证号、姓名等信息,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.第I 卷一、选择题(每小题3分,共36分,请将正确的答案涂在答题卡上) 1.−2023的相反数是( )A.−2023B.2023C.−12023D.120231.解:负数的相反数是正数,绝对值不变,故选B 。
初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
-初1数学期中考试试题2016-2017初1数学期中考试试题一、选择题(共10小题,每小题4分,满分40分)1.在数﹣3,﹣2,0,0.01中,最大的数是()A.﹣3B.﹣2C.0D.0.012.如图所示立体图形从上面看到的图形是()A.B.C.D.3.为筹备首届青运会,福州市共投入了219800万元人民币建造各项体育设施,用科学记数法表示该数据是()A.2.918×105元B.2.918×106元C.2.918×109元D.2.918×1010元4.﹣6的倒数是()A.B.﹣C.6D.﹣65.下列各计算题中,结果是零的是()A.(+3)﹣|﹣3|B.|+3|+|﹣3|C.(﹣3)﹣3D.(﹣)6.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能7.在0,﹣13.48,5,﹣,﹣6,这些数中,负分数共有几个()A.0个B.1个C.2个D.3个8.数a,b在数轴上的位置如图所示,则a﹣b是()A.正数B.零C.负数D.都有可能9.如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,﹣2,0B.0,﹣2,1C.﹣2,0,1D.﹣2,1,010.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,根据上述算式中的规律,你认为32015的末位数字是()A.3B.9C.7D.1二、填空题(每小题4分,共24分,请将答案填入答题卡相应的位置)11.的系数是__________.12.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为__________秒.13.在数轴上与2距离为3个单位的点所表示的数是__________.14.小红家的冰箱冷藏室温度是5℃,冷冻室的温度是﹣12℃,则她家的冰箱冷藏室比冷冻室温度高__________℃.15.巴黎与北京的时差为﹣7时(正数表示同一时刻巴黎比北京时间早的时间(时)),小明想在上午北京时间9:00打电话给远在巴黎的叔叔,该时间打电话合适吗?__________(填合适或不合适)16.如图是一数值转换机,若输入的x为﹣2,则输出的结果为__________.三、解答题(共9题,满分86分,请在答题卡相应的位置解答.)17.计算:(1)﹣1+;(2)(﹣2)(﹣3)﹣(﹣8);(3)﹣24+3×(﹣1)2000﹣(﹣2)2.18.把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来0,+3.5,﹣3,﹣1,﹣(﹣5)19.将下列几何体与它的名称连接起来.20.如图是由六个小正方体堆积而成,分别画出从正面看、从上面看、从左面看后的图形.21.先化简,再求值:3(x﹣y)﹣2(x﹣3y)+2,其中x=﹣1,y=.22.下列是小朋友用火柴棒拼出的一组图形:仔细观察,找出规律,解答下列各题:(1)第四个图中共有__________根火柴棒,第六个图中共有__________根火柴棒;(2)按照这样的规律,第n个图形中共有__________根火柴棒(用含n的代数式表示);(3)按照这样的规律,第2015个图形中共有多少根火柴棒?23.已知代数式A=2x2﹣3xy+4,B=x2+xy﹣3,若C=A﹣2B,求代数式C.24.某电信检修小组从A地出发,在东西向的公路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣3+7﹣9+8+6﹣5﹣4(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3)若每km耗油0.2升,问共耗油多少升?25.观察下列计算,,,,…(1)第5个式子是__________;第n个式是__________.(2)从计算结果中找规律,利用规律计算…+.(3)计算…+.期中数学试卷答案一、选择题(共10小题,每小题4分,满分40分)1.在数﹣3,﹣2,0,0.01中,最大的数是()A.﹣3B.﹣2C.0D.0.01【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小;据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2<0<0.01,故在数﹣3,﹣2,0,0.01中,最大的数是0.01.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.3.为筹备首届青运会,福州市共投入了219800万元人民币建造各项体育设施,用科学记数法表示该数据是()A.2.918×105元B.2.918×106元C.2.918×109元D.2.918×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:219800万=2198000000=2.918×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值4.﹣6的倒数是()A.B.﹣C.6D.﹣6【考点】倒数.【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣6)×(﹣)=1,∴﹣6的倒数是﹣.故选B.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.5.下列各计算题中,结果是零的是()A.(+3)﹣|﹣3|B.|+3|+|﹣3|C.(﹣3)﹣3D.(﹣)【考点】有理数的加法;有理数的减法.【专题】探究型.【分析】根据四个选项,可以分别计算出它们的结果,进行观察,即可解答本题.【解答】解:因为(+3)﹣|﹣3|=3﹣3=0,故选项A的结果是零;因为|+3|+|﹣3|=3+3=6,故选项B的结果不是零;因为(﹣3)﹣3=﹣6,故选项C的结果不是零;因为,故选项D的结果不是零.故选A.【点评】本题考查有理数的加法、有理数的减法、去绝对值,解题的关键是正确的运用加法和减法法则进行计算.6.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能【考点】截一个几何体.【分析】根据圆锥、圆柱、球体的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【解答】解:A、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项错误;B、用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形,故B选项正确;C、用一个平面去截一个球体,得到的图形只能是圆,故A选项错误;D、根据以上分析可得此选项错误;故选:B.【点评】本题考查了圆锥、圆柱、球体的几何特征,其中关键是熟练掌握相关旋转体的几何特征,培养良好的空间想像能力.7.在0,﹣13.48,5,﹣,﹣6,这些数中,负分数共有几个()A.0个B.1个C.2个D.3个【考点】有理数.【分析】按照有理数的分类选择:有理数.【解答】解:在0,﹣13.48,5,﹣,﹣6这些数中,负分数有﹣13.48,﹣,共有2个.故选:C.【点评】本题主要考查了有理数的分类,认真掌握正负分数、整数的定义和特点.负分数:小于0的分数即为负分数.8.数a,b在数轴上的位置如图所示,则a﹣b是()A.正数B.零C.负数D.都有可能【考点】有理数的减法;数轴.【分析】首先根据a、b点所在位置判断正负,再根据有理数的减法法则可知a﹣b=a+(﹣b),然后根据有理数的加法法则可判断出结果的正负.【解答】解:∵a在原点左边,∴a<0,∵b在原点右边,∴b>0,∴a﹣b=a+(﹣b)<0.故选:C.【点评】此题主要考查了数轴上数据特点,根据a、b所在位置判断出其正负性,再利用有理数的加减法法则得出是解题关键.9.如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,﹣2,0B.0,﹣2,1C.﹣2,0,1D.﹣2,1,0【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,﹣2,0.故选:A.【点评】本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.10.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,根据上述算式中的规律,你认为32015的末位数字是()A.3B.9C.7D.1【考点】尾数特征.【分析】从运算的结果可以看出尾数以3、9、7、1四个数字一循环,用2015除以4,余数是几就和第几个数字相同,由此解决问题即可.【解答】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,又2015÷4=503…3,所以32015的末位数字与33的末位数字相同是7.故选:C.【点评】此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键。