10.2.1.图形的平移
- 格式:doc
- 大小:305.00 KB
- 文档页数:2
华师大版七下数学10.2.2平移的特征说课稿一. 教材分析华师大版七下数学10.2.2平移的特征,是学生在学习了图形变换的基础知识之后,进一步探讨平移的性质和应用。
本节内容通过具体的实例,让学生了解平移的定义、平移的方向和距离、平移后的图形与原图形的关系等,旨在让学生掌握平移的基本性质,并能够运用平移解决实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了图形的旋转、翻转等基础知识,具备了一定的图形变换观念。
但平移与这些变换有所不同,它是一种在平面内沿直线移动的变换,学生可能对此概念感到困惑。
因此,在教学过程中,我将以生活中的实例引入,帮助学生理解平移的概念,并通过对比分析,让学生明确平移与其他变换的区别。
三. 说教学目标1.知识与技能目标:让学生理解平移的定义,掌握平移的方向和距离,了解平移后的图形与原图形的关系。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的观察能力、动手能力,使学生在学习过程中体验到成功的喜悦。
四. 说教学重难点1.教学重点:平移的定义、平移的方向和距离、平移后的图形与原图形的关系。
2.教学难点:平移与其他变换的区别,如何判断一个图形是否发生平移。
五. 说教学方法与手段1.教学方法:采用“实例引入——操作体验——对比分析——总结归纳”的教学方法,引导学生主动探究、合作交流。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,使抽象的平移概念具体化、直观化。
六. 说教学过程1.导入新课:以生活中的实例引入平移概念,让学生感受平移在现实生活中的应用。
2.探究平移的性质:学生分组讨论,观察、操作、思考,总结平移的方向和距离,明确平移后的图形与原图形的关系。
3.对比分析:引导学生将平移与其他变换(如旋转、翻转)进行对比,了解它们之间的区别。
4.练习巩固:设计适量练习题,让学生在实践中运用平移知识,巩固所学内容。
1.图形的平移(一)一.教学目标知识与技能:通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质。
过程与方法:在活动过程中,提高学生的探究能力和方法。
情感与态度:通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学美。
二.学情分析学生在七年级下学期已经学习了“图形的轴对称”,初步积累了一定的图形变换的数学活动经验,运用类比的数学思想,从轴对称的眼光看待平移,会降低学生学习的难度,创设特定情境,使学生一直处于轴对称和平移相互交融的氛围之中,会使学生更加主动地去探索平移的基本性质,培养学生良好的数学意识. 学生在前面已学习了轴对称及轴对称图形,在此基础上还将学习生活中的旋转与旋转设计图案等内容。
三.教学重难点:1、能按要求作出简单平面图形平移后的图形.2 、简单平面图形平移后的图形的作法.四、教学程序1.引入问题,出现课题:请你判断:小明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地大叫起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为什么?2.接触平移现象:教师通过多媒体展示(展示画面)现实生活中平移的具体实例:(1)箱子在传送带上移动的过程。
(2)手扶电梯上人的移动的过程。
学生观察多媒体展示的图片。
教师提问:①你能发现传送带上的箱子、手扶电梯上的人在平移前后什么没有改变,什么发生了改变吗?②在传送带上,如果箱子的某一按键向前移动了80cm,那么电视机的其它部位(如屏幕左上角的图标)向什么方向移动?移动了多少距离?③如果把移动前后的同一箱子看成长方体(多媒体演示书上的图3-2),那么四边形与四边形的形状、大小是否相同?学生自由发言,各抒己见。
平移前后两个图形的形状和大小没有改变,位置发生了改变。
活动目的:数学来源于实际生活,使学生感受到生活中处处有数学。
第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。
注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。
平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。
二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。
这个定点称为,转动的角称为。
任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。
(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。
图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。
2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。
3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
这个点叫做对称中心。
中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。
4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。
这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。
在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。
平移一、平移的概念在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动就称做为平移.如图1,△ABC 沿着直线MN 平移到△A ′B ′C ′,点A 与点A ′叫做对应点,点B 、C 与点B ′、C ′也分别是对应点;线段AB 与线段A ′B ′是对应线段,线段BC 、CA 与线段B ′C ′、C ′A ′也是对应线段;∠A 与∠A ′是对应角,∠B 、∠C 与∠B ′、∠C ′也分别是对应角.△ABC 平移的方向也可以看成是由点A (或B 、C )到点A ′(或B ′、C ′)的方向,平移的距离就是线段AA ′(或BB ′、CC ′)的长度.由平移的概念我们知道平移后的图形的形状和大小都不发生改变.同时,我们还应注意:(1)平移是一种运动形式,是图形变换的一种特殊情况;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据,二者缺一不可;(3)图形的平移是指图形的整体平移,即经过平移后的图形与原来的图形相比只是位置发生了变化,其余什么都没有改变.CC ′图2图1B′′ANM二、平移的基本特征平移的基本特征是:经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行且相等,对应角相等.这一特征告诉我们:(1)它刻画了图形在平移运动中一部分的不变性,而没有表达不改变图形的形状和大小的全部含义;(2)对应点所连的线段平行且相等,这个基本特性既可作平移图形之间的性质,又可作为画平移图形的依据;(3)图形平移时,它上面的每一点都作了相应的平移.如图2,△ABC平移到△A′B′C′的位置,则有A′B′∥AB,B′C′∥BC,C′A′∥CA;A′B′=AB,B′C′=BC,C′A′=CA;∠A′=∠A,∠B′=∠B,∠C′=∠C;事实上,我们还不难发现:AA′∥BB′∥CC′且AA′=BB′=CC′.由此我们平时在观察平移图形时,应注意:一要找到每一对对对应点;二要由对应点确定对应线段;三要记住平移的性质:对应线段平行且相等,对应角相等,平移不改变图形的形状和大小,即平移前后的图形全等.三、平移知识应用前面说过,平移的知识在我们的日常生活中有着极为广泛地应用.为了说明这一点请看下面两例:例1如图3,某商场重新装修后,准备在大厅的主楼梯上铺设一种红色的地毯,已知这种地毯的批发价为每平方米40元,已知主楼梯道的宽为3米,其侧面如图2所示,则买地毯至少需要多少元?简析 我们可以利用平移的知识分别将楼梯水平方向的线段沿竖直方向平移到BC 上,竖直方向的线段沿水平方向平移到AC 上,于是铺地毯的横向线段的长度之和就等于横向直角边的长度,纵向线段的长度之和就等于纵向直角长度,所以地毯的总长度至少为5.6米+2.8米=8.4米,此总面积为8.4米×3米=25.2平方米,所以购买地毯至少需要25.8平方米×40元/平方米=1018元..例2 如图4,A 、B 两城市之间有一条国道,国道的宽为a ,现要在国道修建一座垂直于国道的立交桥,使通过A 、B 两城市路程最近,请你设计建桥的位置,并说明理论依据.简析 不妨设国道的两边分别为l 1、l 2,桥为MN ,那么从A 到B 要走的路线就是A →M →N →B 了,如图4,而MN =a =定值,于是要使路径最短,只要AM +BN 最短即可.此时两线段应在同一平行方向BA图32.8图4BAl 1l 2上,若设想先过桥,即平移MN于AC,从C到B应是余下的路程,连结BC的线段即为最短的,此时不难说明线段BC与国道边缘l2的交点N就是修桥的位置.说明本题是设计建桥的位置,却隐含了平移的知识,体现了数学知识与社会生活的紧密联系,既能使我们在具体情况中分析、解决问题,又很好地培养和锻炼了同学们的发散思维能力.填空题1、火车在笔直的轨道上匀速行驶,车头以100m/s的速度前进了半小时,则车尾走的路程是_____km。
图形的平移和旋转【图形的平移】(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.1, 【典型例题】例 1.如图,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D ,试确定顶点 B 对应点的位置,以及旋转后的三角形.分析:绕 C 点旋转,A 点的对应点是 D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角即∠BCB′=ACD, 又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定 B′的位置,如图所示.解:(1)连结 CD(2) 以 CB 为一边作∠BCE,使得∠BCE=∠ACD(3) 在射线 CE 上截取 CB′=CB则 B′即为所求的 B 的对应点.(4) 连结 DB′则△DB′C 就是△ABC 绕 C 点旋转后的图形.例 2.如图,四边形 ABCD 是边长为 1 的正方形,且 DE= 1 ,4△ABF 是△ADE 的旋转图形.(1) 旋转中心是哪一点?(2) 旋转了多少度?(3) AF 的长度是多少?(4) 如果连结 EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到. △ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是 A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是 D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE= 1412 (1)2 4∴AE= = 4∵对应点到旋转中心的距离相等且 F 是 E 的对应点∴AF= 174(4)∵∠EAF=90°(与旋转角相等)且 AF=AE ∴△EAF 是等腰直角三角形.【图形的旋转】(1) 旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。
图形的平移和旋转教学目标:1. 理解平移和旋转的概念。
2. 学会用平移和旋转的方法来变换图形。
3. 能够判断图形是否发生了平移或旋转。
教学重点:1. 平移和旋转的定义。
2. 平移和旋转的方法。
3. 平移和旋转的性质。
教学难点:1. 理解平移和旋转的本质区别。
2. 学会用平移和旋转的方法来变换复杂图形。
教学准备:1. 教学PPT。
2. 图形卡片。
3. 练习题。
教学过程:第一章:平移的概念和性质1.1 引入平移的概念教师展示一些平移的实例,如滑滑梯、电梯等,引导学生感受平移的特点。
1.2 学习平移的性质学生通过观察和操作,发现平移不改变图形的形状和大小,只改变图形的位置。
1.3 练习平移学生分组合作,用图形卡片进行平移操作,体会平移的方法。
第二章:旋转的概念和性质2.1 引入旋转的概念教师展示一些旋转的实例,如旋转门、风车等,引导学生感受旋转的特点。
2.2 学习旋转的性质学生通过观察和操作,发现旋转不改变图形的大小,只改变图形的位置和方向。
2.3 练习旋转学生分组合作,用图形卡片进行旋转操作,体会旋转的方法。
第三章:平移和旋转的判定3.1 学习平移的判定方法学生通过观察和操作,学会判断图形是否发生了平移。
3.2 学习旋转的判定方法学生通过观察和操作,学会判断图形是否发生了旋转。
3.3 练习判断学生独立完成判断题目,巩固平移和旋转的判定方法。
第四章:平移和旋转的应用4.1 学习用平移和旋转的方法来变换图形学生通过观察和操作,学会用平移和旋转的方法来变换图形。
4.2 练习变换学生独立完成变换题目,巩固平移和旋转的变换方法。
第五章:总结与拓展5.1 总结平移和旋转的概念、性质和判定方法学生通过回顾本节课的内容,总结平移和旋转的概念、性质和判定方法。
5.2 拓展平移和旋转的应用学生分组合作,用平移和旋转的方法来创作有趣的图形图案。
教学评价:1. 通过课堂观察,评价学生对平移和旋转概念的理解程度。
2. 通过练习题,评价学生对平移和旋转性质的掌握程度。
10.2.1.图形的平移
1.知道平移的概念及平移的不变性
2.能够根据题目要求做出已知图形的平移后图形
教材第112-113页
完成教材113页填空和试一试
1.教材113页1题
2.教材113页2题
3. 教材113页3题
4. 在下面的六幅图案中,(2)(3)(4)(5)(6)中的哪个图案可以通过平移图案(1)得到?
5.属于平移的有哪些?
6.画出三角形先向右平移10格再向上平移5格后的图形.
7. 如图,把弯月形进行平移,平移后的图形是()
8. 由△ABC平移而得的三角形共有
多少个?请图上阴影。
A C
B
B
C
D
A
9. 请画出将方格中的阴影部分向右平移6格再向下平移2格后的图案
10.如图,将Rt ⊿ABC 沿BC 方向平移到⊿DEF 的位置,你能求出阴影部分的面积吗?
答案:4.(3);7.C;8.5个;10.面积为20.
A
C B
F
D E
G 6
4
2。