考研数学终极预测8套卷(数一)
- 格式:pdf
- 大小:6.97 MB
- 文档页数:98
考研数学一预测试题及答案### 考研数学一预测试题及答案一、选择题1. 设函数\( f(x) = \ln(x^2 + 1) \),若\( f(2) = \ln 5 \),则\( f(-2) \)的值为()。
- A. \( \ln 3 \)- B. \( \ln 5 \)- C. \( \ln 4 \)- D. \( \ln 2 \)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 2x}{x} \)的值。
- A. \( 2 \)- B. \( 1 \)- C. \( \frac{1}{2} \)- D. \( 0 \)二、填空题1. 若\( \int_{0}^{1} (x^2 + 1) dx = 2 \),则\( \int_{0}^{1} x^2 dx \)的值为______。
三、解答题1. 证明:若\( \sum_{n=1}^{\infty} a_n \)收敛,则\( \sum_{n=1}^{\infty} \frac{a_n}{n} \)也收敛。
答案一、选择题1. 答案:A解析:由于\( f(-x) = \ln((-x)^2 + 1) = \ln(x^2 + 1) = f(x) \),所以\( f(x) \)是偶函数。
因此,\( f(-2) = f(2) = \ln 5 \)。
2. 答案:A解析:由已知条件\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),可得\( \lim_{x \to 0} \frac{\sin 2x}{2x} = 1 \)。
因此,\( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \)。
二、填空题1. 答案:1解析:由\( \int_{0}^{1} (x^2 + 1) dx = 2 \),可得\( \int_{0}^{1} x^2 dx + \int_{0}^{1} 1 dx = 2 \)。
2022-2023年研究生入学《数学一》预测试题(答案解析)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第壹卷一.综合考点题库(共50题)1.设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于A.见图AB.见图BC.见图CD.见图D正确答案:D本题解析:这是一道常见的基础题,由Aα=λα,α≠0知A^nα=λ^nα,那么对于A^2+A=0(λ^2+λ)α=0λ^2+λ=0所以A的特征值只能是0或-1再由A是实对称必有A~A,而A即是A的特征值,那么由r(A)=3,可知(D)2.设随机变量X,Y不相关,且EX=2,EY=1,DX=3,则E[X(X+Y-2)]=A.A-3B.3C.-5D.5正确答案:D本题解析:3.设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:正确答案:本题解析:4.A.见图AB.见图BC.见图CD.见图D本题解析:5.设二维随机变量(X,Y)的概率密度为求常数A及条件概率密度.正确答案:本题解析:6.设数列{an}单调减少,无界,则幂级数的收敛域为A.A(-1,1]B.[-1,1)C.[0,2)D.(0,2]正确答案:C本题解析:7.设随机变量X与Y的概率分布分别为且P{X^2=Y^2}=1.(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求Z=XY的概率分布;(Ⅲ)求X与Y的相关系数ρXY.正确答案:本题解析:8.设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求正确答案:本题解析:所以,令x=y=1,且注意到g(1)=1,g'(1)=0,得9.设某种商品的需求函数是Q=a-bP,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为已知当边际收益MR=56以及需求价格弹性,出售该产品可获得最大利润,试确定常数a和b的值,并求利润最大时的产量。
2023考研数学模拟卷(一)数学一答案考题分析本次考试主要围绕数学一的基本概念、定理和方法展开,涵盖了高等数学中的微积分、线性代数和概率统计等内容。
共计包含8个小题,覆盖了整个考纲,难度适中。
1. 选择题1.1 题目已知函数f(f)=2f3−3f2−12f+5,则使得f(f)在区间[−2,3]上递减的f的个数为()。
A. 0B. 1C. 2D. 31.2 答案答案:C. 21.3 解析函数的递减区间对应于一阶导数小于零的区间,因此需要先求出函数f(f)的一阶导数:f′(f)=6f2−6f−12然后求出f′(f)的零点,即:6f2−6f−12=0解得f1=−1,f2=2。
将f1,f2代入函数f(f)中可得:f(−1)=−20,f(2)=−11可见f(−1)和f(2)均小于零,因此使得f(f)在区间[−2,3]上递减的f的个数为 2,故选 C。
2. 填空题2.1 题目已知向量 $\\mathbf{a} = (1, 2, 3)^T$,$\\mathbf{b} = (2, -1, 4)^T$,则 $\\mathbf{a} \\cdot \\mathbf{b}$ 等于 \\\\。
2.2 答案答案:142.3 解析向量的点积(内积)定义为两个向量对应分量的乘积之和,即:$$ \\mathbf{a} \\cdot \\mathbf{b} = a_1b_1 + a_2b_2 +a_3b_3 $$代入已知向量的值可得:$$ \\mathbf{a} \\cdot \\mathbf{b} = 1 \\cdot 2 + 2 \\cdot (-1) + 3 \\cdot 4 = 14 $$故答案为 14。
3. 判断题3.1 题目正态分布是一个离散概率分布。
A. 正确B. 错误3.2 答案答案:B. 错误3.3 解析正态分布是连续概率分布,其概率密度函数呈钟形曲线。
在实际问题中,许多现象都服从正态分布,例如测量误差、身高体重等。
【考研】考研数学一全真模拟卷及解析考研数学一是众多考研学子面临的一大挑战。
为了帮助大家更好地备考,我们精心准备了这份全真模拟卷及详细解析,希望能对大家的复习有所助益。
一、选择题(共 8 小题,每题 4 分,共 32 分)1、设函数\(f(x) =\frac{1}{1 + x^2}\),则\(f(f(x))\)为()A \(\frac{1}{1 + 2x^2 + x^4} \)B \(\frac{1}{1 +2x^2} \) C \(\frac{1}{1 + x^2} \) D \(\frac{x^2}{1+ x^2} \)解析:因为\(f(x) =\frac{1}{1 + x^2}\),所以\(f(f(x))=\frac{1}{1 +(\frac{1}{1 + x^2})^2} =\frac{1}{1 +\frac{1}{(1 + x^2)^2}}=\frac{1 + x^2}{1 + x^2 + 1} =\frac{1 + x^2}{2 + x^2} \neq\)选项中的任何一个,此题无正确选项。
2、设\(y = y(x)\)是由方程\(e^y + xy e = 0\)所确定的隐函数,则\(y'(0)\)的值为()A -1B 0C 1D 2解析:对方程两边同时对\(x\)求导,得\(e^y \cdot y' + y+ x \cdot y' = 0\)。
当\(x = 0\)时,代入原方程得\(e^y e= 0\),解得\(y = 1\)。
将\(x = 0\),\(y = 1\)代入\(e^y \cdot y' + y + x \cdot y' = 0\),得\(e \cdot y' + 1 =0\),解得\(y'(0) =\frac{1}{e}\)。
3、设\(f(x)\)具有二阶连续导数,且\(f(0) = 0\),\(f'(0) = 1\),则\(\lim_{x \to 0} \frac{f(x) x}{x^2}\)等于()A \(0\)B \(\frac{1}{2} \)C \(1\)D 不存在解析:利用泰勒公式,将\(f(x)\)在\(x = 0\)处展开:\(f(x) = f(0) + f'(0)x +\frac{1}{2}f''(0)x^2 + o(x^2) = x +\frac{1}{2}f''(0)x^2 + o(x^2)\),则\(\lim_{x \to 0} \frac{f(x) x}{x^2} =\lim_{x \to 0} \frac{\frac{1}{2}f''(0)x^2 + o(x^2)}{x^2} =\frac{1}{2}f''(0)\)。
2022-2023年研究生入学《数学一》预测试题(答案解析)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第壹卷一.综合考点题库(共50题)1.A.见图AB.见图BC.见图CD.见图D 正确答案:D 本题解析:2.A.见图AB.见图BC.见图CD.见图D正确答案:B本题解析:数字型行列式,有较多的0且有规律,应当有拉普拉斯公式的构思.3.设α1=(1,2,-1,0)^T,α2=(1,1,0,2)^T,α3=(2,1,1,α)^T.若由α1,α2,α3生成的向量空间的维数为2,则α=________.正确答案:1、6.本题解析:暂无解析4.设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)= A.A0.1B.0.2C.0.3D.0.4正确答案:B 本题解析:5.A.见图AB.见图BC.见图CD.见图D正确答案:A本题解析:6.设L是柱面x^2+y^2=1与平面z=x+y的交线,从z轴正向往z轴负向看去为逆时针方向,则曲线积分=________.正确答案:1、π.本题解析:暂无解析7.的()A.极大值点B.极小值点C.不是极值点D.不确定正确答案:B本题解析:8.A.见图AB.见图BC.见图CD.见图D正确答案:D本题解析:9.设二次型,则f(x1,x2,x3)=2在空间直角坐标下表示的二次曲面为A.A单叶双曲面B.双叶双曲面C.椭球面D.柱面正确答案:B本题解析:10.A.见图AB.见图BC.见图CD.见图D正确答案:D本题解析:11.若函数z=z(x,y)由方程确定,则=_________.正确答案:1、-dx.本题解析:暂无解析12.若,则a1cosx+b1sinx=A.A2sinxB.2cosxC.2πsinxD.2πcosx正确答案:A本题解析:13.若二阶常系数线性齐次微分方程y"+ay'+by=0的通解为y=(C1+C2x)e^x ,则非齐次方程y"+ay'+by=x 满足条件y(0)=2,y'(0)=0的解为y=________.正确答案:1、y=-xe^x+x+2.本题解析: 暂无解析14.A.见图AB.见图BC.见图CD.见图D正确答案:B本题解析:15.设函数f(u)具有二阶连续导数,z=f(e^xcosy)满足若f(0)=0,f'(0)=0,求f(u)的表达式.正确答案:本题解析:【分析】根据已知的关系式,变形得到关于f(u)的微分方程,解微分方程求得f(u).16.A.见图AB.见图BC.见图CD.见图D正确答案:A本题解析:17.设总体X的分布函数为其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.(Ⅰ)求EX与EX^2;(Ⅱ)求θ的最大似然估计量.(Ⅲ)是否存在实数a,使得对任何ε>0,都有?正确答案:本题解析:【分析】(Ⅰ)给出F(x;θ)就有f(x;θ),密度函数有了,就有A.A秩r(A)=m,秩r(B)=mB.秩r(A)=m,秩r(B)=nC.秩r(A)=n,秩r(B)=mD.秩r(A)=n,秩r(B)=n正确答案:A本题解析:本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)19.设函数,则=________.正确答案:1、4.本题解析:暂无解析18.设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则20.A.见图AB.见图BC.见图CD.见图D正确答案:C 本题解析:21.下列反常积分中,收敛的是A.见图AB.见图BC.见图CD.见图D正确答案:B 本题解析:22.设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是A.Af1(x)f2(x)B.2f2(x)F1(x)C.f1(x)F2(x)D.f1(x)F2(x)+f2(x)f1(x)正确答案:D本题解析:23.A.见图AB.见图BC.见图CD.见图D 正确答案:B本题解析:24.设矩阵,.当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.正确答案:本题解析:25.设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:正确答案:本题解析:26.A.见图AB.见图BC.见图CD.见图D正确答案:D 本题解析:27.设总体X的概率分布为其中参数θ∈(0,1)未知.以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数α1,α2,α3,使为θ的无偏估计量,并求T的方差.正确答案:本题解析:28.A.Ap随着μ的增加而增加B.p随着σ的增加而增加C.p随着μ的增加而减少D.p随着σ的增加而减少正确答案:B本题解析:29.设某种商品的需求函数是Q=a-bP,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为已知当边际收益MR=56以及需求价格弹性,出售该产品可获得最大利润,试确定常数a和b的值,并求利润最大时的产量。
2022-2023年研究生入学《数学一》预测试题(答案解析)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第壹卷一.综合考点题库(共50题)1.若函数z=z(x,y)由方程确定,则=_________.正确答案:1、-dx.本题解析:暂无解析2.A.见图AB.见图BC.见图CD.见图D正确答案:A 本题解析:3.A.见图AB.见图BC.见图C正确答案:D 本题解析:4.A.见图AB.见图BC.见图C 正确答案:C本题解析:5.设总体X的分布函数为其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.(Ⅰ)求EX与EX^2;(Ⅱ)求θ的最大似然估计量.(Ⅲ)是否存在实数a,使得对任何ε>0,都有?正确答案:本题解析:【分析】(Ⅰ)给出F(x;θ)就有f(x;θ),密度函数有了,就有6.若二次曲面的方程经正交变换化为,则a=________. 正确答案:1、1本题解析:暂无解析7.设,其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为A.Aα1,α2,α3B.α1,α2,α4C.α1,α3,α4D.α2,α3,α4正确答案:C本题解析:8.设L是柱面x^2+y^2=1与平面z=x+y的交线,从z轴正向往z轴负向看去为逆时针方向,则曲线积分=________. 正确答案:1、π.本题解析:暂无解析9.曲面x^2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为A.Ax-y+z=-2B.x+y+z=0C.x-2y+z=-3D.x-y-z=0正确答案:A本题解析:10.A.见图AB.见图BC.见图CD.见图D正确答案:D 本题解析:11.设有界区域Ω由平面2x+y+2z=2与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分.正确答案:本题解析:【解】由高斯公式得.【评注】在三重积分的计算中,用先二后一积分较为简单,当然也可化为三次积分计算.12.设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是A.Af(0)>1,f"(0)>0B.f(0)>1,f"(0)C.f(0)0D.f(0)正确答案:A本题解析:13.设函数f(u)具有二阶连续导数,z=f(e^xcosy)满足若f(0)=0,f'(0)=0,求f(u)的表达式.正确答案:14.本题解析:【分析】根据已知的关系式,变形得到关于f(u)的微分方程,解微分方程求得f(u).A.见图AB.见图BC.见图CD.见图D正确答案:A本题解析:,且P{X^2=Y^2}=1.(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求Z=XY的概率分布;(Ⅲ)求X与Y的相关系数ρXY.正确答案:本题解析:16.下列积分发散的是A.见图AB.见图BC.见图CD.见图D正确答案:D 本题解析:17.A.①③B.①②C.②③D.②④正确答案:D本题解析:18.设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足A.A2a+3b=4B.3a+2b=4C.a+b=1D.a+b=2正确答案:A本题解析:19.设,则I,J,K A.AIB.IC.JD.K正确答案:B本题解析:同一区间上定积分大小比较最常用的思想就是比较被积函数大小.由于当时,0故,即I<K<J.20.设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数正确答案:本题解析:21.A.见图AB.见图BC.见图CD.见图D 正确答案:B本题解析:数字型行列式,有较多的0且有规律,应当有拉普拉斯公式的构思.22.曲线的渐近线的条数为A.A0B.1C.2D.3正确答案:C本题解析:由,得y=1是曲线的一条水平渐近线且曲线没有斜渐近线,由,得x=1是曲线的一条垂直渐近线,由,得x=-1不是曲线的渐近线,所以曲线有两条渐近线,故应选(C).23.设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则A.A秩r(A)=m,秩r(B)=mB.秩r(A)=m,秩r(B)=nC.秩r(A)=n,秩r(B)=mD.秩r(A)=n,秩r(B)=n正确答案:A本题解析:本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)24.A.见图AB.见图BC.见图CD.见图D正确答案:D 本题解析:25.A.见图AB.见图BC.见图CD.见图D正确答案:D本题解析:26.27.A.见图AB.见图BC.见图CD.见图D正确答案:D本题解析:A.见图AB.见图BC.见图CD.见图D正确答案:B本题解析:P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为A.A0B.1C.2D.3正确答案:D本题解析:29.下列反常积分中,收敛的是A.见图AB.见图BC.见图CD.见图D正确答案:B 本题解析:30.A.见图AB.见图BC.见图CD.见图D正确答案:C本题解析:本题可以将a1,a2,a3,a4列出来化简,找出对应关系,也可以将λ=-1带入,r(a1,a2,a3)=3,r(a1,a2,a4)=2,不等价,所以λ≠-1,将λ=-2带入,r(a1,a2,a3)=2,r(a1,a2,a4)=3,不等于,所以λ≠-2。
2022-2023年研究生入学《数学一》考前冲刺卷I(答案解析)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第I卷一.综合考点题库(共50题)1.设二维离散型随机变量(X,Y)的概率分布为(Ⅰ)求P{X=2Y);(Ⅱ)求Cov(X-Y,Y).正确答案:本题解析:2.A.见图AB.见图BC.见图CD.见图D正确答案:B本题解析:3.设A,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是A.见图AB.见图BC.见图CD.见图D正确答案:C本题解析:4.设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得aT为θ的无偏估计.正确答案:本题解析:5.设函数z=z(x,y)由方程确定,其中F为可微函数,且F'2≠0,则=A.AxB.zC.-xD.-z正确答案:B本题解析:6.设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,正确答案:本题解析:7.设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.正确答案:本题解析:8.设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.(Ⅰ)求Y的概率分布;(Ⅱ)求EY.正确答案:本题解析:【分析】令A={对X进行一次观测得到的值大于3}.【评注】本题类似于我们在2000年出的几何分布考题.从建模到用幂级数在其收敛区间内可逐项求导求和会有不少考生感到困难,本题要比2000年的难一些.9.A.见图AB.见图BC.见图CD.见图D正确答案:A 本题解析:10.设随机变量X的概率分布为,则EX^2=________. 正确答案:1、2本题解析:暂无解析11.设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=A.A0.1B.0.2C.0.3D.0.4正确答案:B本题解析:12.A.见图AB.见图BC.见图CD.见图D正确答案:A 本题解析:13.将长度为1m的木棒随机地截成两段,则两段长度的相关系数为A.见图AB.见图BC.见图CD.见图D正确答案:D本题解析:设木棒截成两段的长度分别为X和Y.显然X+Y=1,即Y=1-X,然后用公式【求解】Y=1-X,则DY=D(1-X)=DX.Cov(X,Y)=Cov(X,1-X)=Cov(X,1)=Cov(X,X)=0-DX=-DX.答案应选(D).14.设,则I,J,K 的大小关系为A.AIB.IC.JD.K正确答案:B本题解析:同一区间上定积分大小比较最常用的思想就是比较被积函数大小.由于当时,0故,即I<K<J.15.A.见图AB.见图BC.见图CD.见图D正确答案:D 本题解析:16.A.①③B.①②C.②③D.②④正确答案:D 本题解析:17.设数列{an}单调减少,无界,则幂级数的收敛域为A.A(-1,1]B.[-1,1)C.[0,2)D.(0,2]正确答案:C 本题解析:18.关于函数的极值个数,正确的是A.有2个极大值,1个极小值B.有1个极大值,2个极小值C.有2个极大值,没有极小值D.没有极大值,有2个极小值正确答案:A本题解析:19.设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上A.A当f'(x)≥0时,f(x)≥g(x)B.当f'(x)≥0时,f(x)≤g(x)C.当f"(x)≥0时,f(x)≥g(x)D.当f"(x)≥0时,f(x)≤g(x)正确答案:D本题解析:由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1-x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1-x)+f(1)x的下方,即f(x)≤g(x)故应选(D).(方法二)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,则F'(x)=f'(x)+f(0)-f(1),F"(x)=f"(x).当f"(x)≥0时,F"(x)≥0,则曲线y=F(x)在区间[0,1]上是凹的.又F(0)=F(1)=0,从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).(方法三)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,则F(x)=f(x)[(1-x)+x]-f(0)(1-x)-f(1)x=(1-x)[f(x)-f(0)]-x[f(1)-f(x)]=x(1-x)f'(ξ)-x(1-x)f'(η) (ξ∈(0,x),η∈(x,1))=x(1-x)[f'(ξ)-f'(η)]当f"(x)≥0时,f'(x)单调增,f'(ξ)≤f'(η),从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).20.(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.正确答案:本题解析:21.设是二阶常系数非齐次线性微分方程的一个特解,则A.Aa=-3,b=2,c=-1B.a=3,b=2,c=-1C.a=-3,b=2,c=1D.a=3,b=2,c=1正确答案:A本题解析:【评注】其实,我们可看出齐次线性微分方程的特征根为1和2,非齐次线性微分方程的一个特解可为y=xe^x,进一步求得a,b,c.22.设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.(Ⅰ)求曲面∑的方程;(Ⅱ)求Ω的形心坐标.正确答案:本题解析:【分析】利用定义求旋转曲面∑的方程;利用三重积分求Ω的形心坐标.23.A.见图AB.见图BC.见图CD.见图D正确答案:D 本题解析:24.设二次型,则f(x1,x2,x3)=2在空间直角坐标下表示的二次曲面为A.A单叶双曲面B.双叶双曲面C.椭球面D.柱面正确答案:B本题解析:25.A.见图AB.见图BC.见图C正确答案:D 本题解析:26.曲面x^2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为A.Ax-y+z=-2B.x+y+z=0C.x-2y+z=-3D.x-y-z=0正确答案:A本题解析:27.A.见图AB.见图BC.见图CD.见图D正确答案:C 本题解析:28.下列积分发散的是A.见图AB.见图BC.见图C 正确答案:D 本题解析:29.A.见图AB.见图BC.见图CD.见图D正确答案:B本题解析:30.已知函数f(x,y)具有二阶连续偏导数,且,其中D={(x,y)|0≤x≤1,0≤y≤1),计算二重积分.正确答案:31.B.见图BC.见图CD.见图D正确答案:C本题解析:根据分布函数的性质:P{X=x}=F(x)-F(x-0),不难计算P{X=1)的值.【求解】P{X=1}=F(1)-F(1-0)=所以答案应选(C)32.B.见图BC.见图CD.见图D正确答案:B本题解析:画出积分区域,用极坐标把二重积分化为二次积分.曲线2xy=1,4xy=1的极坐标方程分别为33.A.见图AB.见图BC.见图CD.见图D正确答案:A 本题解析:34.A.见图AB.见图BC.见图CD.见图D正确答案:B 本题解析:35.已知曲线,其中函数f(t)具有连续导数,且f(0)=0,f'(t)>0(0).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.正确答案:本题解析:36.设总体X的概率分布为其中参数θ∈(0,1)未知.以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数α1,α2,α3,使为θ的无偏估计量,并求T的方差.正确答案:本题解析:37.A.见图AB.见图BC.见图CD.见图D正确答案:A本题解析:38.若二阶常系数线性齐次微分方程y"+ay'+by=0的通解为y=(C1+C2x)e^x ,则非齐次方程y"+ay'+by=x 满足条件y(0)=2,y'(0)=0的解为y=________.正确答案:1、y=-xe^x+x+2.暂无解析39.A.A收敛点,收敛点B.收敛点,发散点C.发散点,收敛点D.发散点,发散点正确答案:B本题解析:40.设随机变量X的概率密度为令随机变量,(Ⅰ)求Y的分布函数;(Ⅱ)求概率P{X≤Y}.正确答案:本题解析:【分析】Y是随机变量X的函数,只是这函数是分段表示的,这样得到的Y可能是非连续型,也非离散型,【解】(∈)设Y的分布函数为FYy),显然P{1≤Y≤2}=1,所以,当y当1≤y当2≤y时,FY(y)=P{Y≤y}=P{Y≤2}=1.总之,Y的分布函数为(∈)因为Y=41.(Ⅰ)证明:任意的正整数n,都有成立;(Ⅱ)设,证明数列{an}收敛.正确答案:本题解析:42.设A=,E为三阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.正确答案:本题解析:【分析】(∈)是基础题,化为行最简即可.关于(∈)中矩阵B,其实就是三个方程组的求解问题.【解】(∈)对矩阵A作初等行变换,得43.A.见图AB.见图BC.见图CD.见图D正确答案:B 本题解析:44.设某种商品的需求函数是Q=a-bP,其中Q是该产品的销售量,P是该产品的价格,常数a>0,b>0,且该产品的总成本函数为已知当边际收益MR=56以及需求价格弹性,出售该产品可获得最大利润,试确定常数a和b的值,并求利润最大时的产量。
2022-2023年研究生入学《数学一》考前冲刺卷②(答案解析)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第I卷一.综合考点题库(共70题)1.设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.正确答案:本题解析:2.设总体X的概率密度为其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.正确答案:本题解析:3.A.见图AB.见图BC.见图CD.见图D正确答案:D 本题解析:4.A.见图AB.见图BC.见图CD.见图D正确答案:C本题解析:本题可以将a1,a2,a3,a4列出来化简,找出对应关系,也可以将λ=-1带入,r(a1,a2,a3)=3,r(a1,a2,a4)=2,不等价,所以λ≠-1,将λ=-2带入,r(a1,a2,a3)=2,r(a1,a2,a4)=3,不等于,所以λ≠-2。
C正确。
5.设随机变量X与Y相互独立,且EX与EY存在,记U=max{X,Y},V=min{X,Y},则E(UV)=A.AEU·EVB.EX·EYC.EU·EYD.EX·EV正确答案:B本题解析:本题考查相互独立的两个随机变量简单函数的数字特征,显然当X与Y相互独立时E(X·Y)=EX·EY.我们有公式对解题也是有用的.(方法一)故E(UV)=E(X·Y)=EX·EY,答案应选(B).(方法二)UV=max{X,Y)·min{X,Y)=XY,因为二个中大的一个乘小的一个就等于这两个相乘.E(U·V)=E(X·Y)=EX·EY,答案应选(B)6.若函数z=z(x,y)由方程确定,则=_________.正确答案:1、-dx.本题解析:暂无解析7.A.见图AB.见图BC.见图CD.见图D正确答案:B 本题解析:8.A.见图AB.见图BC.见图CD.见图D正确答案:D 本题解析:9.若二次曲面的方程经正交变换化为,则a=________.正确答案:1、1本题解析:暂无解析10.设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则A.A秩r(A)=m,秩r(B)=mB.秩r(A)=m,秩r(B)=nC.秩r(A)=n,秩r(B)=mD.秩r(A)=n,秩r(B)=n正确答案:A本题解析:本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)11.如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是A.见图AB.见图BC.见图CD.见图D 正确答案:B本题解析:由微分定义知f(x,y)在(0,0)处可微,故应选(B).【评注】1.本题主要考查二元函数连续、偏导数、可微的定义.2.可采用举反例排除错误答案.取f(x,y)=|x|+|y|排除(A),f(x,y)=x+y排除(C)、(D).12.设L是柱面x^2+y^2=1与平面z=x+y的交线,从z轴正向往z轴负向看去为逆时针方向,则曲线积分=________.正确答案:1、π.本题解析:暂无解析13.A.见图AB.见图BC.见图CD.见图D正确答案:D 本题解析:14.设数列{an}满足条件:a0=3,a1=1,,S(x)是幂级数的和函数.(Ⅰ)证明:S"(x)-S(x)=0;(Ⅱ)求S(x)的表达式.正确答案:本题解析:【分析】利用幂级数可逐项求导的性质,验证(Ⅰ)成立;解微分方程求出S(x),注意初值条件的使用.15.已知函数f(x,y)具有二阶连续偏导数,且,其中D={(x,y)|0≤x≤1,0≤y≤1),计算二重积分.本题解析:17.设二维离散型随机变量(X,Y)的概率分布为16.设总体X的概率密度为其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.(Ⅰ)求参数λ的矩估计量;(Ⅱ)求参数λ的最大似然估计量.正确答案:本题解析:(Ⅰ)求P{X=2Y);(Ⅱ)求Cov(X-Y,Y).正确答案:本题解析:18.A.见图AB.见图BC.见图CD.见图D正确答案:D本题解析:19.已知二次型f(x1,x2,3x)=x^TAx在正交变换x=Qy下的标准形为,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵.正确答案:本题解析:20.设随机变量X,Y不相关,且EX=2,EY=1,DX=3,则E[X(X+Y-2)]=A.A-3B.3C.-5D.5正确答案:D本题解析:21.设随机变量X~U(0,3),随机变量Y服从参数为2的泊松分布,且X与Y协方差为-1,则D(2X-Y+1)=()A.1B.5D.12正确答案:C本题解析:公式运算,由X?~U(0,3),Y?~?P(2)可得,D(X)=3/4?,D(Y)=?2,故D(2X-Y+1)=?D(2X-Y)=4D(X)+?D(Y)-4Cov(X,Y)=3+2+4=922.设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).(Ⅰ)求T的概率密度;23.(Ⅱ)确定a,使得aT为θ的无偏估计.正确答案:本题解析:A.①③B.①②C.②③D.②④正确答案:D本题解析:24.设二次型,则f(x1,x2,x3)=2在空间直角坐标下表示的二次曲面为A.A单叶双曲面B.双叶双曲面C.椭球面D.柱面正确答案:B本题解析:25.设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P{XA.见图AB.见图BC.见图CD.见图D正确答案:A本题解析:X~E(1),Y~E(4)且相互独立,所以(X,Y)的概率密度利用公式可以计算出结果.【求解】26.A.见图AB.见图BC.见图CD.见图D 正确答案:D 本题解析:27.设A,B均为n阶矩阵,若AX=0与BX=0同解,则A.见图AB.见图BC.见图CD.见图D正确答案:C本题解析:也可以矩阵的秩判断,AX=0与BX=0同解,即r(A)=r(B),不能推出矩阵得秩为2n,A错误,也不能推出AB可逆,B错误,也不能满足D选项中方程组得秩相等。