变量与函数公开课
- 格式:ppt
- 大小:1.69 MB
- 文档页数:40
人教版初中数学八年级下册第十九章课题:19.1变量与函数(第一课时)◆学情分析函数的学习对初中生来说是一大难点,是常量数学到变量数学学习的一次飞跃。
八年级学生的观察能力有所发展,能按照教学的要求有意识地观察,但观察的精确性、深入性不够,不能透过复杂的现象看本质,其抽象的思维还依赖感性经验的支持。
◆教材分析“函数”是研究现实世界变化规律的一个重要模型,是中学数学学习的核心内容。
本节课是函数的启蒙课,在这里学生初步接触了变量的概念,它是函数学习的入门,是后继学习数学的基础,同时在物理、化学等自然科学中有着广泛的应用。
函数概念比较抽象,学生的理解与掌握有一定困难,因而教科书从展示大量实际情境入手,螺旋式地上升对函数概念的理解,对培养学生比较、分析、概括的思维能力具有重要意义。
1. 通过生活实例,了解常量与变量的概念,会在实际问题中辨别常量和变量,自变量与因变量。
2. 通过实例,让学生多角度、多层面地认识和理解函数的意义。
3. 经历观察、分析、思考等数学活动过程,由具体实例到抽象概括,进一步发展学生的抽象思维能力。
培养学生利用函数的观点认识现实世界的意识和能力,会运用运动、变化的观点思考问题。
◆教学重点认识常量、变量、函数的概念。
◆教学难点理解函数的概念。
◆教学流程本节课教学流程共分为五个环节,依次是:环节一创设情境,激发兴趣环节二问题探究,形成新知环节三归纳总结,深化理解环节四快乐之旅,巩固提升环节五课堂小结,布置作业一、创设情境,激发兴趣教师用多媒体出示《乌鸦喝水》的故事视频,创设情境,提出问题,引入新课。
在乌鸦喝水的故事中也蕴含着数学的知识,学完今天这节课,我们就可以用数学的眼光去解释乌鸦喝水的过程中所蕴含的数学道理了。
【设计意图】用学生熟悉的故事引入新课,激发学生探究新知的兴趣。
二、问题探究,形成新知教师多媒体出示问题1 :小刚从家骑自行车去上学,以每分钟300米的速度匀速驶向南瑞实验学校。
(速度v=300米/分钟)师:你能用关系式表示出路程s与时间t的关系吗?引导学生思考:1. 在这个变化过程中有几个量?2. 哪些是没有变化的量?哪些是发生变化的量?3. 在这个变化过程中,有几个变量?4. 随着时间t的变化,路程s有变化吗?5. 当时间t取定一个值比如t=2时,对应路程=的值是多少?是唯一确定的吗?请同学们根据以上几个问题总结出变量s与变量t的关系。
人教版八年级下册19.1.1变量与函数教学设计因为数是固定不变的,所以在一个关系式中,常量是数,而字母可以取相应变化的值,所以变量是字母。
下列运动变化过程中的关系式,哪些是变量,哪些是常量:①y=0.4x常量:变量:②a=3+2.4b常量:变量:③C=2πR常量:变量:④V=6abc常量:变量:2、函数的相关概念:P73一般地,在一个变化过程中,如果有____个变量___与___,并且对于____的每一个确定的值,____都有___________的值与其对应,那么我们就说 x是_________,y是 x的______.如果当x=a 时,对应的y=b,那么 b 叫做当自变量的值为a时的_______.P74用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的_________.x/h 1 2 3 4 (x)y/km 60 120 180 240 (60x)在上述汽车行驶的过程中, y与x的关系式是_________,这其中有____个变量,给一个x,得____个y,所以____是自变量,_____是_____的函数。
x=1时,y的函数值是60;x=2时,y的函数值是120;x=3时,y的函数值是_______;x=4时,y的函数值是_______。
函数解析式即y与x的关系式:___________.y是x的函数吗?如果是,指出自变量。
①y=0.4x 两个变量x和y,给一个x,得一个y,所以,x是自变量,y是x的函数。
②y=±x 反例:当 x=1时,y=±1,给一个x,得两个y,所以y不是x函数。
③y2=x 问题前置的目的。
左题由组代表抢答,并计入本组竞赛成绩,教师根据答题情况纠偏改错。
2、学生齐读并齐答,教师根据回答情况纠偏改错。
①②③④是难点题目,教师先讲解,学生讨论研究。
反例:(±3)2=9,当 x=9时,y=±3,给一个x,得两个y,所以y不是x的函数。