二元一次方程组与一元一次不等式-习题
- 格式:doc
- 大小:270.50 KB
- 文档页数:8
一元一次方程与二元一次方程组1、理解并掌握不等式的性质,理解它们与等式性质的区别。
2、能用数形结合的思想理解一元一次不等式(组)解集的含义。
3、正确熟练地解一元一次不等式(组),并会求其特殊解。
4、会利用一元一次不等式(组)解综合题、应用题。
1.(宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是( )A . 4150048000x y x y +=⎧⎨+=⎩B .4150068000x y x y +=⎧⎨+=⎩ C .1500468000x y x y +=⎧⎨+=⎩ D .1500648000x y x y +=⎧⎨+=⎩ 2.(随州)我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是( )A .80元B .95元C .135元D .270元8.(黑龙江)今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( )A .3种B .4种C .5种D .6种3.(南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )学习目标课前检测A.19 B.18 C.16 D.154.(泰安,)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式。
第八章 二元一次方程组1一、填空题(每题3分,共24分)3、 3与的差不大于x 与2的和的,用不等式表示为____________。
1、 如果a <b ,那么-2a_____-2b 。
3、5+=x y 中,若3-=x 则=y _______。
5、如果方程组⎩⎨⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==11y x ,则=a ,=b 。
二、选择题:(每题3分,共21分)11、如果a >b ,那么下列不等式中不能成立的是( )。
A 、a -3>b -3B 、-3a >-3bC 、D 、-a <-b13、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组 [ ]正确的个数为:A.1个B.2个C.3个D.4个 三、解方程组(每题6分,共24分)(3x -1)-3(4x +5) >x -4(x -7) ⎩⎨⎧=-=+113032Y X Y X四、用方程组解应用题(共31分)21、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两 种债券各有多少?( 5分)27、一组同学在校门口拍一张合影。
已知冲一张底片需要0.6元,洗一张照片需要0.4元,每人都得到一张照片,每人平均分摊的钱不超过0.5元,那么参加合影的同学至少有几人?第九章 二元一次方程组2一、填空题(每题3分,共24分)4、 关于x 的方程2x +3(m -1)=x +1的解是正数,则m 的取值范围是_________。
6、 不等式2x -9<0的非负整数解是______________。
2、二元一次方程52=+x y 在正整数范围内的解是 。
4、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。
8、已知:10=+b a ,20=-b a ,则2b a -的值是 。
二、选择题:(每题3分,共21分)18、边长是整数,周长不大于12的等边三角形的个数是( )。
二元一次方程组及一元一次不等式(组)应用题1.某商店准备购进甲、乙两种商品,已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。
(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件?(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少?2.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310 元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机100 60乙型挖掘机120 80(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?4.某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1 块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?5.某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购4套A型和6套B型课桌凳共需1820元。
1 某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买2个足球和3个篮球共需340元;购买4个排球和5个篮球共需600元.(1)求购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球? 答案:解(1)设购买一个足球需要x 元,购买一个篮球需要y 元 根据题意,得2334045600x y x y +=⎧⎨+=⎩解这个方程组得:5080x y =⎧⎨=⎩答:购买一个足球需要50元,购买一个篮球需要80元(2)设该中学购买篮球m 个根据题意,得8050(100)6000m m +-≤ 解这个一元一次不等式得:1333m ≤m 是整数33m ∴≤(或m 的最大整数解是33)答:这所中学最多可以购买33个篮球。
2.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A 、B 两种设备,已知:购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元. (1)求每台A 种、B 种设备各多少万元?(2)根据学校实际,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计 解:(1)设每台A 种、B 种设备各x 万元、y 万元,根据题意得出:,解得:,答:每台A 种、B 种设备各0.5万元、1.5万元;(2)设购买A 种设备z 台,根据题意得出: 0.5z+1.5(30﹣z )≤30, 解得:z≥15,答:至少购买A 种设备15台.3.暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?4某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%. (1)求九年一班和九年二班各有多少名学生.(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.5.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?6.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男女两种款式的书包。
一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题.经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为错误! 或错误! 或错误!【变式题组】01.求下列各方程的正整数解:⑴2x +y =10(2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x场,平了y场 ,负了z场,依题意可得:错误!②-①得:2x-z=2 ③变形得:z=2x-2∵0≤z≤2∴0≤2x-2≤2即1≤x≤2又x为正整数∴x=1,2相应地,y=3,0 z=0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔().A.11支B.9支C.7支D.5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x、y的方程组错误!若x>y,求a的取值范围.【解法指导】解本题的指导思想就是构建以a为未知数的不等式•解之即得a的取值范围,构建不等式的依据就是x>y,而解方程组即可用a的代数式分别表示x和y,进而可得不等式.解:解方程组错误!得错误!∵x>y∴2a+1>a-2 解得a>-3故a的取值范围是a>-3.【变式题组】01.已知:关于x的方程3x-(2a-3) =5x+(3a+6)的解是负数,则a的取值范围是_____.02.已知:关于x、y的方程组错误!的解为非负数.(1)求a的取值范围;(2)化简|4a+5|-|a-4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组错误! 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式{x -a >2,b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组错误! 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ 错误! 解设错误!∴(a +b )2009=(-1)2009=-1【变式题组】 01.若错误! 的解集为-1<x <2,则a =___________,b =_____________.02.已知:关于x 的不等式组错误!的解集为3≤x <5,则a b 的值为( ) A .-2 B .21- C .-4 D . 41- 03.若关于x 的不等式组错误! 的解集为x <2,则a 的取值范围是___________.04.已知:不等式组错误! 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃"玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃"玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃"玩具和一盒徽章的价格分别为x元和y元.依题意,得错误!解得错误!答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m盒,则购买徽章(20-m)盒.由题意,得125m+10(20-m)≤450,解得m≤2。
二元一次方程组、一元一次不等式单元测试题 一、选择题(1.已知 是方程3=-y kx 的解,那么k 的值是( ) A .2 B .2- C .1 D .1- 2.不等式x -2<0的正整数解是( )A .1B .0,1C .1,2D . 0,1,23.把不等式组110x x +⎧⎨-≤⎩>0,的解集表示在数轴上,正确的是( )A .B .C .D .4.下列方程组中,属于二元一次方程组的是() A .⎩⎨⎧==+725xy y xB .⎪⎩⎪⎨⎧=-=+043112y x y xC .⎪⎩⎪⎨⎧=+=343453y x y xD .⎩⎨⎧=+=-12382y x y x5.在二元一次方程组①⎩⎨⎧=+-=-1032475y x y x ② ⎩⎨⎧=-+=y x x y 312322③⎩⎨⎧=-=-432653y x y x ④⎩⎨⎧=+=-1443234y x y x 中,解是⎩⎨⎧==22y x 的有( )A .①和③B .②和③C .①和④D .②和④6.不等式组⎩⎨⎧<->+44532x x 的解集是( )A .1>xB .6<xC .81<<xD .1<x 或6>x 7.已知方程组⎩⎨⎧-=-=+1242m ny x ny mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为( )A .⎩⎨⎧-==11n m B .⎩⎨⎧==12n m C .⎩⎨⎧==23n m D .⎩⎨⎧==13n m8.不等式组⎩⎨⎧≥+->+053032x x 的整数解的个数是( )A .1B .2C .3D .49.某校运动员分组训练,若每组7人,余3人;若每组8人,缺5人;设运动员人数为x 人,组数为y 组,则所列方程组为( ) A 、⎩⎨⎧=++=x y x y 5837B 、⎩⎨⎧=-+=x y x y 5837C 、⎩⎨⎧+=-=5837x y x yD 、⎩⎨⎧+=+=5837x y x y10.不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是( )A . 4≥mB . 4≤mC . 4<mD . 4=m二、填空题11.若不等式组 无解,则m 的取值范围是12.方程组⎩⎨⎧-=-=+26y x y x 的解是 。
七年级第一次双周清考试数学试卷一、填空题(每小题4分,共32分)1、某数的23的差大于0,且小于4,设某数为x ,则可列不等式组________。
2、不等式组 的解集是______________。
3、某关于x 的不等式组的解集如图所示,则此不等式组的解集是____________。
4、请写出一个解集为x <2的不等式组______________。
5、请写出一个解为的二元一次方程_____________6的整数解是______________。
(第3题) 7、某地某天最低气温是-1℃,最高气温是6℃,那么此地这天气温t (℃)的变化范围是_______________。
8、4辆板车和7辆卡车能运37吨货,10辆板车和5辆卡车一次能运30吨货,设每辆板书每次可运货x 吨,每辆卡车能运货y 吨,则可列方程组_____________。
二、选择题(每小题4分,共24分)1的解集在数轴上表示正确的是( )…2、若一元一次不等式组 无解,则a 的取值范围是( )A 3->aB 3-≥aC 3-<D 、3-≤ 3、》 4、下列方程组是二元一次方程组的是( )A 、、 C 、 D 、4、不等式组 的解集是( )A 、235<<-xB 、无解C 、2>xD 、35-<x 5、已知方程组的解是 ,则b a ,的值分别为( ) .A 、1,1B 、1,3C 、3,1D 、4,26、下列方程是二元一次方程的是 ( )A 、012=-xB 、032>-y xC 、12=-y xD 、5=xy 43>≥x x -1 4 12==y x 0103≤-<-x x 6)1(201<->+x x -131115=-=+x y x 1322==-x y x 14=-=+y x y x 32==-xy y x 1)2(3132<+>-x x 24=-=+by ax by ax 11==y x 4 -2 #17、有两种药水,一种浓度为60%,另一种浓度为90%,要配制浓度为70%的药水500g ,要这两种药水各多少克若设要浓度为60%的xg ,浓度为90%的yg ,则可列方程组为( )AC ¥三、解不等式组,并在数轴上表示它们的解集。
一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题. 经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为⎩⎨⎧x =1y =7 或⎩⎨⎧x =3y =4 或⎩⎨⎧x =5y =1 【变式题组】01.求下列各方程的正整数解:⑴2x +y =10 (2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x 场,平了y 场 ,负了z 场,依题意可得:⎩⎨⎧x +y =4 ①3x +y =6 ②②-①得:2x -z =2 ③变形得: z =2x -2∵0≤z ≤2∴0≤2x -2≤2即1≤x ≤2又x 为正整数∴x =1,2相应地,y =3,0 z =0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔( ).A .11支B .9支C .7支D .5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x 、y 的方程组⎩⎨⎧x -y =a +32x +y =5a若x >y ,求a 的取值范围. 【解法指导】解本题的指导思想就是构建以a 为未知数的不等式•解之即得a 的取值范围,构建不等式的依据就是x >y ,而解方程组即可用a 的代数式分别表示x 和y ,进而可得不等式.解:解方程组⎩⎨⎧x -y =a +32x +y =5a 得 ⎩⎨⎧x =2a +1y =a -2∵x >y ∴2a +1>a -2 解得a >-3故a 的取值范围是a >-3.【变式题组】01.已知:关于x 的方程3x -(2a -3) =5x +(3a +6)的解是负数,则a 的取值范围是_____.02.已知:关于x 、y 的方程组⎩⎨⎧x +y =3a +9x -y =5a +1的解为非负数. (1)求a 的取值范围;(2)化简|4a +5|-|a -4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组⎩⎨⎧2x +y =5m +6x -2y =-17 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式⎩⎨⎧x -a >2b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组⎩⎨⎧x -a >2a -2x >0 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ ⎩⎪⎨⎪⎧a +2=-12b =1a 解设⎩⎨⎧a =-3a b =2a ∴(a +b )2009=(-1)2009=-1【变式题组】01.若⎩⎨⎧2a +x >a 2-3x >a的解集为-1<x <2,则a =___________,b =_____________. 02.已知:关于x 的不等式组⎩⎨⎧x -a ≥b 2x -a <2b +1的解集为3≤x <5,则ab 的值为( )A .-2B .21-C .-4D . 41- 03.若关于x 的不等式组⎩⎪⎨⎪⎧34+x >12+x x +a >0b的解集为x <2,则a 的取值范围是___________.04.已知:不等式组⎩⎨⎧x +2>a +b x -1<a -b 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃”玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃”玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃”玩具和一盒徽章的价格分别为x 元和y 元.依题意,得⎩⎨⎧x +2y =142x +3y =280 解得⎩⎨⎧x =125y =10答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m 盒,则购买徽章(20-m )盒.由题意,得125m +10(20-m )≤450,解得m ≤2.17.所以m 可以取1,2. 答:该公司有两种购买方案.方案一:购买“福娃”玩具1盒,徽章19盒;方案二:购买“福娃”玩具2盒,徽章18盆.【变式题组】01.(益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品, 奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.02. (眉山)渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.⑴若购买这批鱼苗共用了 2600元,求甲、乙两种鱼苗各购买了多少尾?⑵若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?⑶若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗? 03.(盐城)整顿药品市场,降低药品价格是国家的惠民政策之一.根据国家的《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%根据相关信息解决下列问题:⑴降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?⑵降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实 际情况决定:对甲种药品每盒加价15%对、乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?【例6】认真阅读下面三个人的对话.小朋友:阿姨,我买一盒饼干和一袋牛奶(递上10元钱入).售货员:本来你用10元钱买一盒饼干是多余的,但再买一袋牛奶就不够了.不过今天是儿童节,我给你买的饼干打九折,两样东西请拿好,还有找你的8角钱.旁边者:一盒饼干的标价可是整数哦!根据对话内容,试求出饼干和牛奶的标价各是多少?【解法指导】本题的条件蕴藏在对话中,应学会从对话中获取信息,“用10元钱买一盒饼干是多余的”, 说明一盒饼干的售价小于10元,此不等关系之一;“但再买一袋牛奶就不够了 ”,说明一盒饼干和一袋牛奶的价格之和大于10元,此不等关系之二.对话中还包含有一个等量关系,就是用10元钱买上述两样东西剩余0.8 元钱,即是说一袋牛奶与一盒饼干的价格之和等于10元减去0.8元,由一个方程和两个不等式结合最终可求出答案.解:设饼干的标价为每盒x 元,牛奶的标价为每袋^元.根据题意,得⎩⎪⎨⎪⎧x +y >10 ①0.9x +y =10-0.8 ②x <10 ③由②,得y =9.2-9x 将其代入①,得x +9.2-9x >10,解得:x >8.所以综合③可知8<x <10.又因为x 为整数,所以x =9,y =9.2-9x =1.1即饼干的标价为每盒9元,牛奶的标价为每袋1. 1元.【变式题组】01.某次足球联赛A 组共6队,比赛规定采取小组循环赛的形式,取前3名进人决赛,记分方法为胜1场得2 分,负1场扣1分,平1场不得分,问该小组共需比赛几场?某队得了 7分,则它是几胜几负?能否进人决赛?02.(杭州)宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班” 学生,也有一般普通班学生.由于场地、师资等条件限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%问今年最少可招收“宏志班”学生多少名?03.把一些书分给几个学生,如果每人分3本,那么余8本,如果前面的每个学生分5本,那么最后一个同学分不到3本,这些书有多少本?学生有多少人?【例7】(北京市竞赛题)已知:a 、b 、c 是三个非负数,并且满足3a +2b +c =5,2a +b -3c =1,设m =3a +b -7 c ,设x 为m 的最大值,y 为m 的最小值.求xy 的值.【解法指导】要求某一代数式的最大(或最小)值,往往依题意构建一个不等式组:若s ≤m ≤t ,则m 的最小值为s ,最大值为t .本题思路亦类此,首先利用前两个等式,将c 看作已知量,解关于a 、b 的二元一次方程组,得到用含c 的式子表示a 、b 的形式,代入第三个等式,得到用含c 的式子表示m 的形式,同时依据a 、b 、c 均为非负数,得到c 的范围,代入m 与c 的关系式,得m 的范围,因而x 、y 可求.解:由条件得:解得: ⎩⎨⎧3a +2b =5-c 2a +b =1+3 c⎩⎨⎧a =7c -3b =7-11 c则m =3a +7-7c =3(7c -3)+ (7-11 c ) -7 c =3 c -2由a ≥0,b ≥0,c ≥0得⎩⎪⎨⎪⎧7c -3≥07-11c ≥0c ≥0解得,37≤c ≤711从而x =-57,y =-111故xy =577. 【变式题组】01.若a 、b 满足3a +5∣b ∣=7,S =2a 2-3∣b ∣,则 S 的取值范围是 .02.已知:x 、y 、z 是三个非负有理数,且满足3 x +2 y +z =5,x +y -z =2,若S =3 x + y -z ,则S 的取值范围是 .演练巩固 反馈提高一、填空题01.方程3x +y = 10的解有 个,其正整数解有 个.02.若关于x 的不等式(a -1)<a +5和2x <4的解集相同,则a 的值为 .03.已知:关于x 的不等式2x -a ≥-3的解集如图所示,则a = .04.已知方程组⎩⎨⎧2x -y =m 2y -x =1,若未知数x 、y 满足尤x +y >0,则m 的取值范围是 . 05.若方程组⎩⎨⎧3x +2y =2k 2y -x =3的解满足无x <1且y >0,则整数k 的个数是 . 06.若∣x -1∣ x -1=-1则x 的取值范围是 . 二、选择题07.已知:关于尤的不等式组⎩⎨⎧x -y ≥b 2x -a <2b +1的解为3≤x <5,则b a 的值为( ) A .-2 B .-2 C .2 D .108.若∣x +1∣=-1-x ,∣3x +4∣=3x +4.则x 取值范围是( )A .-43≤x ≤-1B .x ≥-1C .―43≤x ≤―1D .―43<x <―1 09.已知:m 、n 是整数,3 m +2=5n +3,且3 m +2>30,5n +3<40,则mn 的值是〈 〕A .70B .72C .77D .8410.某次测验共20道选择题,答对一题记5分,答错一题记―2分,不答记0分,某同学得48分,那么他答对的题目最多是( )道.A .9B .10C .11D .12三、解答题11.学校举办奥运知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖 三等奖 1盒福娃和1枚徽章 1盒福娃 1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和徽章前,了解到图所示的信息:⑴求一盒“福娃”和一枚徽章各多少元?⑵若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?12.(宿迁)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1 株,共需成本1500元.⑴求甲、乙两种花木每株成本分别为多少元;⑵据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?13.—项维修工程,若由甲工程队单独做,则40天可以完成,需费用24万元;若由乙工程队单独做,则60天可以完成,需费用21万元•现打算由甲、乙两工程队共同完成,要使该项目的总费用不超过22万元,则乙工程队至少要施工多少天?14.足球联赛得分办法是胜一场得3分,平一场得1分,负一场得0分•在一次足球赛中,南方足球队参加了14场比赛,至少负了1场,共积分19分.试推算南方足球队胜、平、负各多少场.15.(温州)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.⑴现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x个.①根据题意,完成以下表格:盒纸板竖式纸盒(个)横式纸盒(个)x正方形纸板(张)2(100-x)长方形纸板(张)4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则求a的值.(写出一个即可)培优升级 奥赛检测01.若方程组⎩⎨⎧4x +y =k +1x+4y =3的解满足条件0<x+y <1,则k 的取值范围是( ) A .-4<k <1 B .-4<k <0 C .0<k <9 D .k <-402.(浙江省竞赛题)要使方程组⎩⎨⎧3x +2y =a 2x+3y =2的解是一对异号的数,则a 的取值范围是( ) A .43<k <3 B .a <43 C .a >3 D .a <43或a >3 03.已知a +b +c =0,a >b >c ,则 c a的取值范围是 . 04.(新加坡竞赛题)正整数m 、n 满足8m +9n =mn +6,则m 的最大值是 .05.(“希望杯”邀请赛初一试题)(中国古代问题)唐太宗传令点兵,若一千零一卒为一营,则剩余一人;若一千零二卒为一营,则剩余四人,此次点兵至少有 人.06.(第15届“希望杯”邀请赛试题)若正整数x 、y 满足2004x =15y ,则x +y 的最小值为 . 07.(北京市竞赛题)有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能表示为3个连续的正整数的和,那么这8个连续的正整数中最大数的最小值是 .三、解答题08.已知:关于x 的方程组⎩⎨⎧x -y =a +32x+y =5a的解满足x >y >0,化简∣a ∣+∣3-a ∣.09.a 、b 、c 、d 是正整数,且a +b =20,a +c =24,a +d =22,设a +b +c +d 的最大值为M ,最小值为N ,求M -N 的值.10.在车站开始检票时,有a (a >0)名旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以便后来到站的旅客能随到随检,至少要同时开放几个检票口?11.(河南省竞赛题)一个盒子里装有不多于200粒棋子,如果每次2粒、3粒、4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那正好取完,求盒子里共有多少粒棋子?12.(“希望杯”初二竞赛题)一个布袋中有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字和等于21,则小明摸出的球中,红球的个数最多不超过多少个?13.(第20届香港中学数学竞赛题)已知:n 、k 皆为自然数,且1<k <n ,若1+2+3+…+n -k n -1,及n +k =a ,求a 的值.。
二元一次方程组与一元一次不等式经典应用题(2007年绵阳中考)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得解此不等式组, 即 2≤x ≤4.⎩⎨⎧≥-+≥-+12)8(220)8(24x x x x ∵ x 是正整数, ∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:方案一,甲种货车2辆,乙种货车6辆方案二,甲种货车3辆,乙种货车5辆方案三,甲种货车4辆,乙种货车4辆(2)方案一所需运费 元;204062402300=⨯+⨯方案二所需运费 元;210052043300=⨯+⨯方案三所需运费 元.216042404300=⨯+⨯所以王灿应选择方案一运费最少,最少运费是元.2040(2007年济南)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车辆,请你帮助学校设计所有可能的租车方案;x (2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:(1)由租用甲种汽车辆,则租用乙种汽车辆x (8)x -由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥解得:56x≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为元;520003180015400⨯+⨯=第二种租车方案的费用为元620002180015600⨯+⨯=∴第一种租车方案更省费用.(2007资阳)年陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ” 王老师算了一下,说:“你肯定搞错了. ”⑴ 王老师为什么说他搞错了?试用方程的知识给予解释;⑵ 陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本. 但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?(1)设单价为8.0元的课外书为x 本,得:812(105)1500418x x +-=-(2)解之得:(不符合题意)44.5x =(3)所以王老师肯定搞错了.⑵ 设单价为8.0元的课外书为y 本,解法一:设笔记本的单价为a 元,依题意得:.812(105)1500418y y a +-=--解之得:178+a =4y ,∵ a 、y 都是整数,且178+a 应被4整除,∴ a 为偶数,又∵a 为小于10元的整数,∴ a 可能为2、4、6、8 .当a =2时,4x =180,x =45,符合题意;当a =4时,4x =182,x =45.5,不符合题意;当a =6时,4x =184,x =46,符合题意;当a =8时,4x =186,x =46.5,不符合题意 . ∴ 笔记本的单价可能2元或6元 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分解法2:设笔记本的单价为b 元,依题意得:[][]⎩⎨⎧+-+-+-+-10418)105(1281500418)105(12815000<<x x x x 解得:475.44<<x ∴ x 应为45本或46本 .当x =45本时,b =1500-[8×45+12(105-45)+418]=2,当x =46本时,b =1500-[8×46+12(105-46)+418]=6,(2012四川泸州,6分)某商店准备购进甲、乙两种商品。
二元一次方程组解应用题列方程解应用题的基本关系量行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度工程问题:工作效率×工作时间=工作量浓度问题:溶液×浓度=溶质银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)列方程组解应用题的常见题型和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量产品配套问题:加工总量成比例速度问题:速度×时间=路程航速问题:此类问题分为水中航速和风中航速两类顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度--水(风)速工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位1的工程问题增长率问题:原始量×(1+增长率)=增长后的量,原始量×(1+减少率)=减少后的量浓度问题:溶液×浓度=溶质银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示几何问题:必须掌握几何图形的性质、周长、面积等计算公式年龄问题:抓住人与人的岁数是同时增长的讲解:(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x人,到乙工厂的人数为y人题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数可列方程为:x-9=2、抽5人后到甲工厂的人数=可列方程为:(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票题中的两个相等关系:1、10分邮票的枚数+20分邮票的枚数=总枚数可列方程为:2、10分邮票的总价+ =全部邮票的总价可列方程为:10X+ =(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?题中的两个相等关系:1、做4个小狗的时间+ =3时42分可列方程为:2、+做6个小汽车的时间=3时37分可列方程为:(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
实用标准文案文档列一元一次方程或二元一次方程组解应用题:(二)班级 姓名 座号1、 白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?3、某年级学生外出参观,如果每辆汽车坐45人,那么有15个学生没有坐位;如果每辆汽车坐60人,那么空出一辆汽车,问有几辆汽车?有多少个学生?4、某班学生参加运土劳动,一部分同学抬土,另一部分同学挑土,已知全班共用土筐59个,扁担36根,求抬土与挑土的各有多少人?2、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车情况如下表:第一次第二次甲种货车辆数(单位:辆) 2 5乙种货车辆数(单位:辆) 3 6累计运货吨数(单位:吨) 15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费30元计算,问:货主应付运费多少元?5、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是几分之几?(注:公民应交利息所得税=利息金额×20%)6、保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460g;第二天收集1号电池2节,5号电池3节,总重量为240g。
求1号和5号电池每节分别重多少克?7、一只船的载重量为380t,容积为2000m3,有甲、乙两种货物,甲货物4m3/t,乙货物6m3/t,现要最大限度地利用船的载重量和容积,问两种货物各应装多少吨?8、某市按以下规定收取每月水费;若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费,如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水。
二元一次方程组练习题 1.二元一次方程9x +5 y= 21 〔 〕A .有且只有一解B .有无数解C .无解D .有且只有两解2.假设02)23(422=+++-x y x ,那么x+3y 的值是〔 〕A .-1B .-2C .0D .323.方程2x+3y -4=0,用含x 的代数式表示y 为_______;用含y 的代数式表示x 为:____. 4.│x -1│+〔2y+1〕2=0,且2x -ky=4,那么k=_____. 5.2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,那么m=_______,n=______. 6.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .7.x ,y 是有理数,且〔│x │-1〕2+〔2y+1〕2=0,那么x -y 的值是多少?8.将假设干只鸡放入假设干笼中,假设每一个笼中放4只,那么有一鸡无笼可放;•假设每一个笼里放5只,那么有一笼无鸡可放,问有多少只鸡,多少个笼?9.〔开放题〕是不是存在整数m ,使关于x 的方程2x+9=2-〔m -2〕x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗10.为知足市民对优质教育的需求,某中学决定改变办学条件,方案撤除一局部旧校舍,建造新校舍,撤除旧校舍每平方米需80元,建新校舍每平方米需700元. 方案在年内撤除旧校舍与建造新校舍共7200平方米,在实施331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥中为扩大绿地面积,新建校舍只完成了方案的80%,而撤除旧校舍那么超过了方案的10%,结果恰好完成了原方案的拆、建总面积. 〔1〕求:原方案拆、建面积各是多少平方米? 〔2〕假设绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?11.如图,在3×3的方格内,填入一些代数式与数,假设各行、各列及对角线上的三个数字之和都相等,请你求出x ,y 的值.12.一批货物要运往某地,货主预备租用汽运公司的甲、乙两种货车,过去租用这两种汽车运货的情形如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次恰好运完这批货物,问这批货物有多少吨?不等式与不等式组 1、不等式x 27->1的正整数解是 .2、假设方程m x x -=+33的解是正数,那么m 的取值范围是_____________.3、关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,那么a 的取值范围是 _.4、解不等式组:⎩⎨⎧≤++≤+423521x x x ,并把它的解集在数轴上表示出来.五、解不等式组 并写出该不等式组的整数解.2x 3 2y -34y2046810127.556.98.19.39.810.9月7654321增长率(%)6、关于y x ,的方程组⎩⎨⎧-=-+=+131m y x m y x 的解知足x >y ,求m 的最小整数值.7、五一节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,依照市场调查,决定电视机进货量很多类 别 电视机 洗衣机 进价〔元/台〕 1800 1500 售价〔元/台〕20001600161 800元.〔1〕请你帮忙商店算一算有多少种进货方案?〔不考虑除进价之外的其它费用〕〔2〕哪一种进货方案待商店销售购进的电视机与洗衣机完毕后取得利润最多?并求出最多利润.〔利润=售价-进价〕数据搜集练习题1. 以下统计中,能用“全面调查〞的是〔 〕A 、某厂生产的电灯利用寿命B 、全国初中生的视力情形C 、某校七年级学生的身高情形D 、“娃哈哈〞产品的合格率2.某校发布了该校反映各年级学生体育达标情形的两张统计图,该校七、八、九三个年级共有学生800人。
七年级数学二元一次方程(组)与一元一次不等式(组)练习题命题人: 冯纯雄 2011.6.2一、填空题(每题3分,共33分)1、已知方程(k 2-1)x 2+(k +1)x +(k -7)y =k +2,当k =______时,方程为一元一次方程;当k =______时,方程为二元一次方程。
2、对二元一次方程2(5-x )-3(y -2)=10,当x =0时,则y = ;当y =0时,则x =3、若-72a 2b 3与10a x +1b x +y 是同类项,则x 、y 的值分别为4、已知方程组2523x ay x y +=⎧⎨-=⎩的解也是二元一次方程x -y =1的一个解,则a =_________.5、已知0132)2(2≤--+++y x y x ,则x +y =6、当a 时,不等式(a —1)x >1的解集是x <11-a . 7、已知x =3是方程2a x -—2=x —1的解,那么不等式(2—5a )x <31的解集是8、若不等式组841x x x m+-⎧⎨⎩<>的解集是x >3,则m 的取值范围是9、已知关于x 的不等式组0321x a x -≥⎧⎨--⎩>的整数解共有5个,则a 的取值范围是10、若不等式组2123x a x b -⎧⎨-⎩<>的解集为—1<x <1,那么(a —1)(b —1)的值等于11、在平面直角坐标系中,已知点A )82(--,b a 与点B )32(b a +-,关于原点对称,则a 、b 的值分别为.二、选择题(每题3分,共30分) 12、方程2x -3y =5,xy =3,33=+yx ,3x -y +2z =0,62=+y x 中是二元一次方程的有( )个。
A、1 B、2 C、3 D、4 13、方程2x +y =9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个 14、已知x =3-k ,y =k +2,则y 与x 的关系是( )A、x +y =5 B、x +y =1 C、x -y =1 D、y =x -1 15、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解 C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成16、已知“①x +y =1;②x >y ;③x +2y ;④x 2—y ≥1;⑤x <0”属于不等式的有( )个.A .2;B . 3;C .4;D . 5.17、韩日“世界杯” 期间,重庆球迷一行若干人从旅馆乘车到球场为中国队加油,现有某个车队,若全部安排乘该车队的车,每辆坐4人则多16人无车坐,若每辆坐6人,则坐最后一辆车的人数不足一半.这个车队有( )辆车A .11B .10C .9D .12 18、如果m <n <0,那么下列结论错误的是( )A .m -9<n -9;B .—m >—n ;C .n 1>m 1;D .nm>1. 19、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )A 、a =-3,b =-14B 、a =3,b =-7C 、a =-1,b =9D 、a =-3,b =1420、已知方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x ,则2215x z yz+的值为( ) A 、521B 、22663C 、37225D 、112121、下列方程组中,是二元一次方程组的是( ) A 、2132x y y z +=⎧⎨-=⎩B 、2351x y x y +=⎧⎨-=⎩C 、23x y xy +=⎧⎨=-⎩D 、32210y x x=-⎧⎪⎨-=⎪⎩ 三、解下列方程或不等式组:(每题4分,共16分)22、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x 23、⎩⎨⎧=--+=-++0)1(3)2(212)1(3)2(2y x y x24、⎪⎩⎪⎨⎧>-+<+02)8(21042x x 25、13112x x x -+≤-<四.解答题26、(4分)若方程组323x y x y a +=⎧⎨-=-⎩的解x 、y 都是正数,求a 的取值范围.27、(5分)若式子y=kx+b 中,当x =1时,y =5,当x =-1时,y =-1,则当-4≤x ≤2时,求y 的取值范围。
二元一次方程组和不等式的结合应用题摘要:一、二元一次方程组的定义和基本解法1.二元一次方程组的定义2.代入法解二元一次方程组3.消元法解二元一次方程组二、不等式的基本性质和解法1.不等式的定义和基本性质2.解不等式的方法3.解含有绝对值的不等式三、二元一次方程组和不等式的结合应用题1.结合二元一次方程组解不等式2.结合不等式解二元一次方程组3.二元一次方程组和不等式的实际应用正文:一、二元一次方程组的定义和基本解法二元一次方程组是指包含两个未知数,且每个方程中的次数都是一次的方程组。
解决二元一次方程组的方法有代入法和解元法。
代入法是将一个方程的未知数表示为另一个方程的未知数的函数,然后代入另一个方程求解。
解元法是先将两个方程相加或相减,消去一个未知数,然后再用已知条件求解另一个未知数。
二、不等式的基本性质和解法不等式是指含有比较关系的数学表达式,如大于、小于、大于等于、小于等于等。
解不等式首先要了解不等式的基本性质,如加减同一数、乘除同一正数或负数等。
解不等式的方法有移项法、系数化为1法、解集的端点法等。
对于含有绝对值的不等式,可以先将其转化为不含绝对值的不等式,然后再用相应的方法解出。
三、二元一次方程组和不等式的结合应用题在实际问题中,我们常常需要同时解决二元一次方程组和不等式的问题。
例如,一个商店的苹果和香蕉的价格分别为每斤x元和y元,已知苹果的总价不小于100元,香蕉的总价不大于200元,求苹果和香蕉各多少斤。
这类问题需要先根据不等式确定未知数的取值范围,然后再用二元一次方程组求解。
另外,二元一次方程组和不等式的结合应用题也可以是关于时间、速度、距离等问题。
二元一次方程组与一元一次不等式组综合应用经典练习题祖π数学之高分速成-新人教七年级下册题型4-二元一次方程组与一元一次不等式在春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元。
1) 求甲、乙两种商品每件的进价分别是多少元?2) 商场决定以每件40元的价格出售甲商品,以每件90元的价格出售乙商品,为了满足市场需求,商场需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,利润不得低于100元。
请你求出获利最大的进货方案。
变式训练1.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵,共花费265元(两次购进的A、B两种花草价格均分别相同)。
1) A、B两种花草每棵的价格分别是多少元?2) 若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,所花费用不超过500元,请你设计出购买方案。
2.荔枝是云南的特色水果,小王的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元。
(每次两种荔枝的售价都不变)1) 求桂味和糯米糍的售价分别是每千克多少元。
2) 如果还需购买两种荔枝共12千克,身上仅剩下了200元,要求糯米糍的数量不少于桂味数量的两倍,请设计购买方案。
3.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元。
1) A、B两种商品的单价分别是多少元?2) 已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?4.我省中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元。
二元一次方程组和不等式的结合应用题二元一次方程组和不等式的结合应用题一、引言在数学学习中,二元一次方程组和不等式是基础且重要的内容。
它们不仅有着独特的解题方法,还能灵活地应用于各种实际情境中。
本文将通过深入讨论二元一次方程组和不等式的结合应用题,探索其在现实生活中的应用和意义。
二、二元一次方程组和不等式的概念回顾在开始探讨二元一次方程组和不等式的结合应用题之前,我们先来回顾一下二元一次方程组和不等式的基本概念。
二元一次方程组是指由两个未知数的一次方程组成的方程组,通常表示为:\[ \begin{cases} ax + by = c \\ dx + ey = f \end{cases} \]其中,a、b、c、d、e、f为已知数,x、y为未知数。
而不等式则表示不同数之间的大小关系,一般形式为:\[ ax + by < c \]\[ dx + ey > f \]其中,a、b、c、d、e、f为已知数,x、y为未知数。
三、二元一次方程组和不等式的结合应用题1. 题目:某商场正在进行促销活动,A品牌和B品牌的T恤分别售价为x和y元,现有总预算为z元,且希望购买数量尽量多,同时要求品牌A的T恤数量不少于品牌B的T恤数量。
请问应该如何安排购买数量才能使总购买数量最多?解析:我们可以建立以下二元一次方程组来表示购买数量:\[ \begin{cases} x \geq y \\ x + y \leq z \end{cases} \]其中,x表示品牌A的T恤数量,y表示品牌B的T恤数量。
根据题意,我们需要找到满足方程组的x和y的取值,使得x+y的值最大。
接下来,我们可以将不等式转化为方程表示:\[ x = y \]\[ x + y = z \]我们可以将x代入x+y=z的方程中,得到:\[ y + y = z \]\[ 2y = z \]\[ y = \frac{z}{2} \]同理,代入x的方程,得到:\[ x = \frac{z}{2} \]品牌A和品牌B的T恤数量应该相等,且都等于预算的一半,这样购买数量才能最多。
《二元一次方程组》测试题一、选择题1.方程2x-1y=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个2.二元一次方程组32325x yx y-=⎧⎨+=⎩的解是()A.3217...230122xx xxB C Dy yyy=⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩3.关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k的值是(• )A.k=-34B.k=34C.k=43D.k=-434.如果方程组1x yax by c+=⎧⎨+=⎩有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个6.已知x,y满足方程组45x my m+=⎧⎨-=⎩,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=97.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为()A.1122 ...2211 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax byy bx by=-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b)·(a-b)的值为()A.-353B.353C.-16 D.16二、填空题9.若2x2a-5b+y a-3b=0是二元一次方程,则a=______,b=______.10.若12ab=⎧⎨=-⎩是关于a,b的二元一次方程ax+ay-b=7的一个解,则代数式x2+2xy+y2-1•的值是_________.11.写出一个解为12xy=-⎧⎨=⎩的二元一次方程组__________.12.a-b=2,a-c=12,则(b-c)3-3(b-c)+94=________.13.已知32111x xy y==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______.14.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________.15.方程mx -2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t +-==4的解为________. 三、解答题17.解方程组(1)257320x y x y -=⎧⎨-=⎩ 33(2)255(2)4x y x y +⎧=⎪⎨⎪-=-⎩18.(3)5341134x y x y x y x y +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ (4)3221456x y x y x y ++-+==19.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b )2004的值.20.已知()229, 1, 2a b a b a b ab +=-=--求的值.21.甲、乙两人同解方程组542ax y x by +=⎧⎨=-⎩甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,200620075()410x a y =⎧+-⎨=⎩试求的值.22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?23.一张方桌由1个桌面,4条桌腿组成,如果1m 3木料可以做方桌的桌面50•个或做桌腿300条,现有10m 3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿恰好能配成方桌?能配成多少张方桌?24.甲、乙二人在上午8时,自A 、B 两地同时相向而行,上午10时相距36km ,•二人继续前行,到12时又相距36km ,已知甲每小时比乙多走2km ,求A ,B 两地的距离.25.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45•座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?26.据统计,连云港港口2002年、2003年的内外贸吞吐总量分别为3300万吨和3760万吨,其中2003年外贸和内贸吞吐量分别较2002年增长10%和20%.(1)试确定2002年的外贸和内贸吞吐量;(2)2004年港口内外贸吞吐量的目标是:总量不低于4200万吨,其中外贸吞吐量所占比重不低于60%.预计2004年的内贸吞吐量较2003年增长10%,则为完成上述目标,2004年的外贸吞吐量较2003年至少应增加多少万吨?《一元一次不等式和一元一次不等式组》测试题一.填空题:1.若x <y ,则2-x 2-y ;(填“<、>或=”号)2.若93b a -<-,则b a _____3;(填“<、>或=”号) 3.不等式x 2≥2+x 的解集是_________; 4.当y _______时,代数式423y -的值至少为1;5.不等式0126<-x 的解集是______ ___;6.不等式17>-x 的正整数解为: ;7.若一次函数62-=x y ,当x ___ __时,0>y ;8.x 的53与12的差不小于6,用不等式表示为__________________; 9.不等式组⎩⎨⎧>+<-023032x x 的整数解是______________; 10.若关于x 的方程组⎩⎨⎧-=++=+134123p y x p y x 的解满足x >y ,则P 的取值范围是_________; 二.选择题:11.若a >b ,则下列不等式中正确的是 ( )(A ) 0<-b a (B ) b a 55-<- (C ) 88-<+b a (D ) 44b a < 12.在数轴上表示不等式x ≥2-的解集,正确的是 ( )(A ) (B ) (C ) (D )13.已知两个不等式的解集在数轴上如图表示,那么这个解集为 ( )(A ) x ≥1- (B ) 1>x(C ) 13-≤<-x (D ) 3->x14.不等式)2(2-x ≤2-x 的非负整数解的个数为 ( )(A ) 1 (B ) 2 (C ) 3 (D ) 415.下列不等式求解的结果,正确的是( )(A )不等式组⎩⎨⎧-≤-≤53x x 的解集是3-≤x (B )不等式组⎩⎨⎧-≥->45x x 的解集是5-≥x (C )不等式组⎩⎨⎧-<>75x x 无解 (D )不等式组⎩⎨⎧->≤310x x 的解集是103≥≤-x16.把不等式组⎩⎨⎧≤->+0101x x 的解集表示在数轴上,正确的是图中的 ( )17.如图⑴所示,天平右盘中的每个破码的质量都是1g ,则物体 A 的质量m (g)的取值范围.在数轴上:可表示为图1-1―1⑵中的 ( )18.已知关于x 的不等式3)1(>-x a 的解集为a x -<13,则a 的取值范围是 ( )(A ) 0>a (B ) 1>a (C ) 0<a (D ) 1<a19.已知关于x 的方程ax -3=0的解是x =2,则不等式-)23(+a x ≤1-2x 的解集是( ).A .x ≥-1B .x ≤-1C .x ≥32D .x ≤3220.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,4-x >1的整数解共有5个,则a 的取值范围是( ). A .-3<a <-2B .-3<a ≤-2C .-3≤a ≤-2D .-3≤a <-2三.解下列不等式(组),并把解集在数轴上表示出来:21. 4352+>-x x 22.)1(2)3(410-≤--x x23. ⎩⎨⎧+≥--≥+x x x x 2236523 24.⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x25.x 为何值时,代数式5123--+x x 的值是非负数?26、已知:关于x 的方程m x m x =--+2123的解是非正数,求m 的取值范围.27.我市移动通讯公司开设了两种通讯业务,A 类是固定用户:先缴50元基础费,然后每通话1分钟再付话费0.4元;B 类是“神州行”用户:使用者不缴月租费,每通话1分钟会话费0.6元(这里均指市内通话);若果一个月内通话时间为x 分钟,分别设A 类和B 类两种通讯方式的费用为元元和21y y ,(1)写出1y 、2y 与x 之间的函数关系式;(2)一个月内通话多少分钟,用户选择A 类合算?还是B 类合算?(3)若某人预计使用话费150元,他应选择哪种方式合算?28.有一群猴子,一天结伴去偷桃子,在分桃子时,如果每个猴子分了3个,那么还剩59个;如果每一个猴子分5个,就都能分得桃子,但剩下一个猴子分得的桃子不够5个,你能求出有几只猴子,几个桃子吗?29.已知一件文化衫价格为18元,一个书包的价格比一件文化衫价格的2倍还少6元.(1)求一个书包的价格是多少元?(2)某公司出资1 800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?30.某校七年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校七年级共有多少人参加春游?(2)请你帮该校设计一种最省钱...的租车方案.。