单片机的系统扩展
- 格式:ppt
- 大小:272.00 KB
- 文档页数:15
单片机中的IO口扩展技术原理及应用案例一、引言单片机是现代电子技术中常用的核心控制器件之一,其功能强大、使用广泛。
然而,单片机的IO口数量通常有限,难以满足复杂系统的扩展需求。
为了解决这一问题,IO口扩展技术应运而生。
本文将介绍单片机中的IO口扩展技术的原理及应用案例,旨在帮助读者更好地理解和应用该技术。
二、原理介绍单片机中的IO口是用于输入和输出数字信号的接口,通常包括输入输出引脚和控制电路。
然而,随着系统需求的增多,单片机的IO口数量往往无法满足实际应用的需求。
为了扩展IO口数量,可采用以下两种原理:1. 级联扩展级联扩展是通过将多个IO口连接在一起,共享控制信号来实现扩展。
其中,一个IO口作为主控制信号输出,控制其他IO口的输入输出。
通过这种方式,可以将多个IO口级联,实现IO口数量的扩展。
2. IO口扩展芯片IO口扩展芯片是一种专门设计的集成电路,用于扩展单片机的IO口数量。
通过与单片机进行通信,扩展芯片可以提供额外的IO口,大大增加了系统的可扩展性。
常用的IO口扩展芯片有74HC595、MCP23017等,它们具有多个IO口、控制电路和通信接口,可方便地与单片机进行连接。
三、应用案例为了更好地理解IO口扩展技术的应用,下面将介绍两个具体的案例。
1. LED灯控制系统假设我们需要控制大量LED灯,而单片机的IO口数量有限。
这时,我们可以使用74HC595芯片进行IO口扩展。
首先,将单片机与74HC595芯片进行连接,通过SPI或者I2C协议进行通信。
然后,通过写入数据到74HC595的寄存器,实现对每个IO口的控制。
通过级联多个74HC595芯片,可以将LED灯的数量扩展到数十甚至上百个。
应用案例中,我们可以设置不同的数据来控制不同的LED灯状态,实现灯光的闪烁、流水等效果。
通过IO口扩展技术,实现了对大量LED灯的控制,提升了系统的可扩展性和灵活性。
2. 外部设备接口扩展在一些工业自动化系统中,需要与多个外部设备进行通信,如传感器、执行器等。
第8章单片机系统扩展1. 什么是AT89C51单片机的最小应用系统?答:所谓最小应用系统是指能维持单片机运行的最简单配置系统。
AT89C51芯片外加晶振电路和复位电路就构成了一个简单可靠的最小应用系统。
其在简单应用场合,可满足用户的要求。
2. 在AT89C51扩展系统中,程序存储器与数据存储器共用16位地址线和8位数据线,为什么两个存储空间不会冲突?答:AT89C51在片外扩展RAM的地址空间为0000H~FFFFH,共64KB,与ROM地址空间重叠。
但因各自使用不同的指令和控制信号,因而不会“撞车”。
读ROM时用MOVC指令,由PSEN选通ROM的OE端;读/写片外RAM时用MOVX指令,用RD选通RAM的OE端,用WR选通RAM的WE端。
但扩展RAM与扩展I/O 口是统一编址的,使用相同的指令和控制信号。
这在设计硬件系统和编制软件程序时应注意统筹安排。
3. 利用一片74LS138,用全译码方法,设计一个外部扩展8片6116的扩展电路。
写出各芯片的地址空间。
解:(图7.2 74LS138译码片选8片6116(2K×8)存储电路图(2)各芯片地址空间为:(假定无关位取1)芯片(1):1000 0000 0000 0000B~1000 0111 1111 1111B=8000H~87FFH芯片(2):1000 1000 0000 0000B~1000 1111 1111 1111B=8800H~8FFFH芯片(3):1001 0000 0000 0000B~1001 0111 1111 1111B=9000H~97FFH芯片(4):1001 1000 0000 0000B~1001 1111 1111 1111B=9800H~9FFFH芯片(5):1010 0000 0000 0000B~1010 0111 1111 1111B=A000H~A7FFH芯片(6):1010 1000 0000 0000B~1010 1111 1111 1111B=A800H~AFFFH芯片(7):1011 0000 0000 0000B~1011 0111 1111 1111B=B000H~B7FFH芯片(8):1011 1000 0000 0000B~1011 1111 1111 1111B=B800H~BFFFH4.用串行传送方式,在AT89C51上扩展2片AT24C01A,画出硬件连接图,编程向每片传送100个数据。