555芯片的常用电路应用
- 格式:doc
- 大小:216.00 KB
- 文档页数:24
555定时电路内部结构分析及应用1 绪言555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。
555定时器配以外部元件,可以构成多种实际应用电路。
广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。
2555定时器功能及结构分析2.1 555定时器的分类及管脚作用555定时器又称时基电路。
555定时器按照内部元件分有双极型(又称TTL 型)和单极型两种。
双极型内部采用的是晶体管;单极型内部采用的则是场效应管,常见的555时基集成电路为塑料双列直插式封装(见图2-1),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。
2-1 555时基集成电路各管脚排布555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。
2.2 555定时器的电路组成图2-2为555芯片的内部等效电路U31kBJT_NPN_VIRTUAL2-2 555定时器电路组成5G555定时器内部电路如图所示, 一般由分压器、比较器、触发器和开关。
及输出等四部分组成,这里我们主要介绍RS 触发器和电压比较器。
2.2.1基本RS 触发器原理如图2-3是由两个“与非”门构成的基本R-S 触发器, RD 、SD 是两个输入端,Q 及是两个输出端。
QQRDSD2-3 RS 触发器正常工作时,触发器的Q 和应保持相反,因而触发器具有两个稳定状态:1)Q=1,=0。
试验十 555定时器的原理及三种应用实验内容1.连接施密特触发器电路,分别输入正弦波、锯齿波信号,观察并记录输入输出波形。
电路如下图:输入正弦波时的波形:输入三角波时的波形:2.设计一个驱动发光二级管的定时器电路,要求每接收到负脉冲时,发光管持续点亮二秒后熄灭。
由电路要求知要用单稳态触发器电路,脉冲宽度为Tw=1.1RC,选取R=2KΩ,C=1.1μF,电路如下所示:波形图如下:3.连接多放谐振荡电路电路,取R1=1KΩ,R2=10KΩ,C1=0.1μF,C2=0.2μF观察、记录VCr、Vo的同步波形,测出Vo的周期并与估算值进行比较。
改变参数R1=15KΩ,R2=5KΩ,C1=0.033μF,C2=0.1μF用示波器观察并测量输出波形的频率。
与理论值比较,算出频率的相对误差值。
电路如图所示:R1=1KΩ,R2=10KΩ,C1=0.1μF,C2=0.2μF时的波形图:实验模拟结果:Vo周期To=1.5ms,VCr周期Tc=1.5ms,F=1/T=0.67KHz 理论计算值为:T=0.7*(R1+2R2)*C1=1.47ms,频率f=1/T=0.68KHz频率的相对误差为:ІF-fІ/f=1.47%R1=15KΩ,R2=5KΩ,C1=0.033μF,C2=0.1μF时的波形图:实验模拟结果:Vo周期To=0.6ms期Tc=0.6ms,频率F=1/T=1.67KHz理论计算值为:T=0.7*(R1+2R2)*C1=0.5775频率f=1/T=1.73KHz频率的相对误差为:ІF-fІ/f=3.47%4.用NE556时基电路功能实现救护车警铃电路,用555的两个时基电路构成低频对高频调制的救护车警铃电路。
555时基电路及其应用实验报告一、导言555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。
本实验旨在通过对555时基电路的实验搭建和应用实验,探索其工作原理和应用特点。
二、实验设备和材料1. 555时基电路芯片2. 电阻、电容和电感元件3. 电源、示波器和信号发生器等实验仪器4. 连接线等实验辅助材料三、实验步骤1. 555时基电路搭建实验根据555时基电路的原理图,将实验设备和材料连接起来。
按照标准的接线顺序,将电源、电阻、电容和555芯片等元件逐一连接。
注意检查接线是否正确,以确保电路能够正常工作。
2. 555时基电路测试接下来,将示波器连接到555芯片的输出引脚上,调节示波器的参数,观察波形的变化。
通过改变电阻和电容的数值,可以调节输出波形的频率和占空比。
记录下不同参数下的波形特征,并进行分析和比较。
3. 555时基电路应用实验在实验中,可以将555时基电路应用于脉冲发生器、定时器、频率计等实际电子电路中。
通过改变电路的连接方式和参数设置,可以实现不同的应用功能。
例如,可以将555时基电路连接到脉冲发生器电路中,生成稳定的脉冲信号;也可以将555时基电路作为定时器,控制电路的工作时间。
四、实验结果与分析1. 555时基电路工作特点通过实验观察,我们发现555时基电路可以产生稳定的方波信号。
在输入电压为5V的情况下,根据电路参数的不同设置,可以得到不同频率和占空比的输出波形。
通过改变电阻和电容的数值,可以调节频率的范围。
而通过改变电路的连接方式,如添加电感元件,可以实现更丰富的波形变化。
2. 555时基电路的应用实验结果通过将555时基电路应用于脉冲发生器和定时器电路中,我们成功实现了不同功能的电路设计。
脉冲发生器可以产生稳定的脉冲信号,其频率和占空比可以通过调节电路参数来控制。
定时器电路可以在预设的时间段内控制其他电路的工作状态。
五、实验结论通过本次实验,我们了解了555时基电路的工作原理和应用特点。
555芯片引脚图555 定时器是一种模拟和数字功能相结合的中规模集成器件。
一般用双极性工艺制作的称为 555,用 CMOS 工艺制作的称为 7555,除单定时器外,还有对应的双定时器 556/7556。
555 定时器的电源电压范围宽,可在 4.5V~16V 工作,7555 可在 3~18V 工作,输出驱动电流约为 200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。
555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
555引脚图如下所示。
555引脚图555的内部结构可等效成23个晶体三极管.17个电阻.两个二极管.组成了比较器.RS触发器.等多组单元电路.特别是由三只精度较高5k电阻构成了一个电阻分压器.为上.下比较器提供基准电压.所以称之为555.555属于cmos工艺制造.555引脚图介绍如下1地 GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc单稳类电路单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
555芯片定时电路555芯片是一种广泛应用于定时电路的集成电路。
它具有可调节的稳定多谐振荡器和一个比较器,可以根据输入信号的频率和幅度来生成输出波形。
本文将介绍555芯片的工作原理、应用场景以及调节定时电路的方法。
一、555芯片的工作原理555芯片由电压比较器、RS触发器、RS锁存器、发生器和输出级组成。
当电源电压施加到芯片上时,发生器开始工作,产生一个方波信号。
根据输入引脚上的不同电平,比较器会判断方波信号的高低电平,从而改变输出引脚的电平状态。
通过调节外部电阻和电容,可以改变方波信号的频率和占空比,实现定时电路的功能。
二、555芯片的应用场景1. 脉冲发生器:555芯片可以产生各种各样的脉冲信号,如方波、正弦波、三角波等。
这些脉冲信号在实际应用中被广泛用于时钟信号、定时器、频率计等领域。
2. 延时器:通过调节外部电阻和电容,可以实现不同的延时功能。
这在需要控制设备启动或停止时间的场景中非常有用,如定时灯、定时开关等。
3. 调制解调器:555芯片可以实现调制解调器的功能,将模拟信号转换为数字信号,实现信息的传输和接收。
4. 脉冲宽度调制:通过调节电阻和电容的数值,可以改变输出方波信号的占空比,从而实现脉冲宽度的调制。
这在直流电机的速度控制、LED灯的亮度调节等方面有广泛的应用。
三、调节定时电路的方法1. 改变电阻值:通过改变电阻的数值,可以改变电荷和放电的速率,从而改变定时电路的周期和频率。
电阻值越大,周期越长,频率越低;电阻值越小,周期越短,频率越高。
2. 改变电容值:通过改变电容的数值,可以改变电荷和放电的时间常数,从而改变定时电路的周期和频率。
电容值越大,周期越长,频率越低;电容值越小,周期越短,频率越高。
3. 调节电源电压:改变电源电压的大小,可以改变芯片内部的电流流动速度,从而改变定时电路的周期和频率。
电压越高,周期越短,频率越高;电压越低,周期越长,频率越低。
总结:555芯片是一种功能强大的定时电路集成电路,具有广泛的应用场景。
555振荡电路芯片555振荡电路芯片是一种常见且广泛应用的集成电路芯片,通常用于产生稳定的方波信号或脉冲信号。
它是由美国电子工程师汉肯(Hans R. Camenzind)于1971年设计并推出的,由于其工作稳定性和多种应用场景,成为了电子工程师们常用的一种集成电路。
555振荡电路芯片内部结构简单,主要由比较器、RS触发器、放大器和电压稳定器组成。
它的输入引脚包括正常工作电压引脚Vcc和地引脚GND,以及外部引脚TRIGGER、THRESHOLD、RESET、OUT和DISCHARGE。
这些引脚通过外部元件的连接,可以实现不同类型的振荡和脉冲信号输出。
555振荡电路芯片常见的应用有以下几种:1.方波发生器:利用555振荡电路芯片的特性,可以很方便地实现稳定的方波信号输出。
通过调节电阻和电容的数值,可以控制方波的频率和占空比。
2.时钟电路:555振荡电路芯片可以产生稳定的脉冲信号,常用于数字系统的时钟电路。
通过调节电阻和电容的数值,可以控制脉冲信号的频率。
3.脉冲宽度调制(PWM):PWM是一种常见的调制技术,在电机控制、LED亮度调节等领域广泛应用。
通过调节电阻和电容的数值,可以控制PWM信号的频率和占空比,进而实现对输出信号的精确控制。
4.延时器:在某些场合,需要实现一定时间的延时操作。
555振荡电路芯片可以非常方便地实现延时功能,通过调节电阻和电容的数值,可以实现不同的延时时间。
5.触发器:通过改变输入引脚的电平状态,可以触发555振荡电路芯片的输出状态。
这种触发器在数字逻辑电路、传感器触发等应用中经常使用。
总的来说,555振荡电路芯片具有结构简单、使用方便、稳定性好的特点,被广泛应用于电子系统中。
无论是在实验室中的电子电路设计,还是在工业控制、通信设备、自动化系统等领域,都可以看到它的身影。
它不仅是电子工程师们的得力助手,也推动了电子技术的发展和应用的普及。
555芯片内部原理及经典应用首先,555芯片内部的电压比较器根据输入电压的大小决定输出信号的高低电平。
其次,双稳态多谐振荡器是555芯片的核心部件,它由两个电容器和三个电阻器组成。
其中,一个电容器负责充电,另一个负责放电,而电阻器则用于调节充、放电过程的时间。
当电容器充满电压时,输出信号为高电平;当电容器放电时,输出信号为低电平。
根据电容器的充放电时间及输出信号的高低电平,可以形成不同的波形。
这种双稳态多谐振荡器的特性使得555芯片可以用于多种应用中。
以下是其中几个经典的应用:1.时钟发生器:555芯片可通过调节电容器充放电的时间来产生稳定的方波信号,用作计时器或驱动时钟。
通过改变电阻器的数值,可以调节输出信号的频率,以满足不同应用的需要。
2.脉冲产生器:555芯片能够产生具有可调频率和占空比的脉冲信号。
通过调节电阻器和电容器的数值,可以控制输出脉冲的频率和持续时间。
3.延时器:555芯片能够以输入电平的上升沿或下降沿触发,产生一段可调的延时时间后,输出一个高电平或低电平信号。
这种特性可用于延时触发、时序控制等应用中。
4.频率测量器:在555芯片的稳定多谐振荡模式下,通过将待测信号输入到555芯片的电压比较器进行比较,然后测量输出脉冲的频率,可以实现对待测信号频率的测量。
5.环境亮度控制器:通过将555芯片与光敏电阻等光敏元件相连,测量环境亮度并调节输出信号的占空比,可以实现对环境亮度的自动控制。
除了以上应用外,555芯片还可以用于温度测量、声音闪光灯、警报器等其他领域。
总之,555芯片以其多功能、稳定性和易于调节的特点,在电子电路领域应用广泛。
不仅能够实现各种信号的产生、控制和测量,还能够适应不同的电气环境和需求。
555集成电路应用800例摘要:一、引言1.集成电路概述2.555集成电路简介二、555集成电路的应用领域1.信号处理2.控制器3.模拟电路4.数字电路三、555集成电路的基本原理1.内部结构2.工作原理四、555集成电路的关键参数1.电阻2.电容3.电感五、555集成电路的典型应用电路1.施密特触发器2.多谐振荡器3.脉冲发生器4.电压控制器六、555集成电路的选用与安装1.型号选择2.封装与引脚3.安装与测试七、555集成电路的故障诊断与维修1.故障诊断方法2.维修策略八、555集成电路的应用案例1.音频放大器2.频率计数器3.温度控制器4.无线通信模块九、总结与展望1.555集成电路的重要性2.发展趋势与应用前景正文:一、引言1.集成电路概述集成电路(Integrated Circuit,简称IC)是一种电子元器件,它将多个电子器件及其互连电路集成在同一半导体材料基片上,具有体积小、性能稳定、功能强大等特点。
集成电路在现代电子技术中有着广泛的应用,是电子设备的核心部分。
2.555集成电路简介555集成电路,又称555定时器,是一种常用的CMOS数字集成电路。
它具有两个输入端(INH和GND)、一个输出端(OUT)以及一个控制端(THRESHOLD和TRIGGER)。
555定时器广泛应用于信号处理、控制器、模拟电路和数字电路等领域。
二、555集成电路的应用领域1.信号处理555集成电路可用于信号处理,如滤波、放大、积分、微分等。
通过搭建不同类型的滤波器,可以实现对信号的降噪、放大等处理。
2.控制器555集成电路可作为控制器,对其他电子器件进行控制。
例如,它可以用于实现电机控制、灯光控制等功能。
3.模拟电路555集成电路可用于搭建各种模拟电路,如电压跟随器、电压调整器等。
通过合理设计电路,可以实现对模拟信号的处理和控制。
4.数字电路555集成电路可作为数字电路的核心器件,用于实现计数、定时、报警等功能。
555各种应用电路555触摸定时开关集成电路IC1是一片555定时电路,在这里接成单稳态电路。
平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。
当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。
同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。
当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。
定时长短由R1、C1决定:T1=1.1R1*C1。
按图中所标数值,定时时间约为4分钟。
D1可选用1N4148或1N4001。
相片曝光定时器附图电路是用555单稳电路制成的相片曝光定时器。
用人工启动式单稳电路。
工作原理:电源接通后,定时器进入稳态。
此时定时电容CT的电压为:VCT=VCC=6V。
对555这个等效触发器来讲,两个输入都是高电平,即VS=0。
继电器KA不吸合,常开点是打开的,曝光照明灯HL不亮。
按一下按钮开关SB之后,定时电容CT立即放到电压为零。
于是此时555电路等效触发的输入成为:R=0、S=0,它的输出就成高电平:V0=1。
继电器KA 吸动,常开接点闭合,曝光照明灯点亮。
按钮开关按一下后立即放开,于是电源电压就通过RT向电容CT充电,暂稳态开始。
当电容CT上的电压升到2/3VCC既4伏时,定时时间已到,555等效电路触发器的输入为:R=1、S=1,于是输出又翻转成低电平:V0=0。
继电器KA释放,曝光灯HL熄灭。
暂稳态结束,有恢复到稳态。
曝光时间计算公式为:T=1.1RT*CT。
本电路提供参数的延时时间约为1秒~2分钟,可由电位器RP调整和设置。
电路中的继电器必需选用吸合电流不应大于30mA的产品,并应根据负载(HL)的容量大小选择继电器触点容量。
555芯片zvs电路555芯片ZVS电路引言:555芯片是一种非常常用的集成电路,它具有很多应用领域,其中之一就是用于设计ZVS电路。
本文将介绍555芯片在ZVS电路中的应用原理和工作方式。
一、ZVS电路简介ZVS电路是一种零电压开关电源技术,它通过使开关管在关断状态下的电压为零,从而减小功率开关管的损耗,提高电源的效率。
ZVS 电路常用于高频开关电源、电焊机、感应加热等领域。
二、555芯片概述555芯片是一种集成电路,由计时器、双稳态触发器和比较器组成。
它具有稳定的内部时钟和电压参考,可以用来产生各种脉冲信号和定时控制信号。
555芯片有8个引脚,分别是电源引脚VCC和GND、控制电压引脚CTRL、输出引脚OUT、复位引脚RST、触发引脚TRIG、补偿电容引脚CV和补偿电阻引脚RT。
三、555芯片在ZVS电路中的应用555芯片可以用于控制ZVS电路中的开关动作。
具体实现方式如下:1. 555芯片的接线将电源引脚VCC和GND分别接入电源正负极,使555芯片正常工作。
将CTRL引脚接入一个可变电阻,用于调整控制电压的大小。
将OUT 引脚连接到控制开关管的驱动电路。
2. 555芯片的工作原理在ZVS电路中,使用555芯片的双稳态触发器功能来实现开关动作的控制。
当TRIG引脚的电压低于触发电压时,双稳态触发器的输出为高电平;当TRIG引脚的电压高于触发电压时,双稳态触发器的输出为低电平。
3. 555芯片的控制电压调整通过调整CTRL引脚接入的可变电阻,可以改变控制电压的大小,从而控制ZVS电路的开关频率。
当控制电压较低时,开关频率较低;当控制电压较高时,开关频率较高。
4. 555芯片的输出控制将OUT引脚连接到控制开关管的驱动电路,通过555芯片的输出控制开关管的开关动作。
当双稳态触发器的输出为高电平时,开关管处于导通状态;当双稳态触发器的输出为低电平时,开关管处于关断状态。
四、ZVS电路的优势和应用ZVS电路通过减小开关管的损耗,提高电源的效率。
555芯片功能
555芯片是一种常见的集成电路,常用于计时、频率调整等应用。
555芯片的基本功能包括:计时、脉冲发生、脉宽调制等。
其中最常见的功能是计时。
555芯片可以通过外部的电阻和电
容来构建一个定时电路,可以实现高精度的计时功能。
例如,可以将555芯片连接到一个时钟发生器和一个数码显示器,通过调整电阻和电容的数值,可以精确测量时间并在数码显示器上显示出来。
另一个常见的功能是脉冲发生。
利用555芯片的内部稳态触发器和比较器,可以构建一个稳定的脉冲发生器。
通过调整电阻和电容的数值,可以精确地控制脉冲发生的频率和占空比。
这种脉冲发生器可以应用于信号调制、PWM控制等领域。
此外,555芯片还可以实现脉宽调制功能。
通过改变电容充放
电的时间,可以改变输出信号的占空比,从而实现脉宽的调节。
这种功能可以应用于电源控制、电机驱动等领域。
总之,555芯片具有丰富的功能,可以在电子电路设计中广泛
应用。
无论是计时、脉冲发生,还是脉宽调制,都可以通过合理设计和调节电阻和电容的数值来实现。
通过利用555芯片的多功能特性,可以方便地实现各种不同的电路应用。
NE555的功能作用
NE555是一种经典的集成电路芯片,广泛应用于定时、脉冲发生、频率分频和振荡等电路中。
它具有稳定可靠、精度高、成本低廉等特点,在电子电路设计中被广泛应用。
NE555芯片的功能作用主要包括以下几个方面:
1. 时序控制
NE555芯片作为一种计时器,可以通过外部元件调整其内部的电荷和放电时间,实现不同的时间控制功能。
它可以用来生成精确的延时脉冲信号,用于各种计时、测距、红外遥控等应用中。
2. 方波发生器
NE555芯片可以通过外部电路配置为方波发生器,产生可调的占空比的方波信号。
这种方波信号在电子设备中广泛用于驱动LED、控制继电器、马达等应用。
3. 多谐振荡器
NE555芯片还可以配置为多谐振荡器,用于产生正弦波、三角波、锯齿波等各种形式的信号。
在音频设备、测试仪器等领域有着重要的应用。
4. 脉冲调制
NE555芯片还可以用作脉冲调制器,通过调节控制引脚的电压来实现PWM
(脉宽调制)信号的生成,用于电机控制、调速、灯光调节等应用。
5. 频率分频
NE555芯片可以作为频率分频器使用,通过调整外部元件的数值和连接方式,将输入信号分频成不同的频率输出,用于计数、计时等应用。
总的来说,NE555芯片是一种功能强大的集成电路,可以实现各种时间控制、波形生成以及信号调制的功能。
它在电子设备设计中起着重要的作用,是电子工程师们常用的基本器件之一。
555芯片引脚图555 定时器是一种模拟和数字功能相结合的中规模集成器件。
一般用双极性工艺制作的称为 555,用 CMOS 工艺制作的称为 7555,除单定时器外,还有对应的双定时器 556/7556。
555 定时器的电源电压范围宽,可在 4.5V~16V 工作,7555 可在 3~18V 工作,输出驱动电流约为 200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。
555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
555引脚图如下所示。
555引脚图555的内部结构可等效成23个晶体三极管.17个电阻.两个二极管.组成了比较器.RS触发器.等多组单元电路.特别是由三只精度较高5k电阻构成了一个电阻分压器.为上.下比较器提供基准电压.所以称之为555.555属于cmos工艺制造.555引脚图介绍如下1地 GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc单稳类电路单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
555电路运用大全
1.稳定的方波发生器:555电路可以被配置成生成稳定的方波信号,这在一些数字电路或通信电路中是很有用的。
2.脉冲宽度调制器(PWM):555电路可以用于生成占空比可调的PWM 信号,广泛用于电机控制、电压调节和能量转换等领域。
3.电压控制振荡器(VCO):通过调节控制电压,555电路可以被配置成一个电压控制振荡器。
VCO在频率合成、FM调制和音频合成等领域有广泛应用。
4.脉冲发生器:555电路可以产生固定频率和占空比的脉冲信号,适用于时序控制、定时测量、模拟信号处理等应用。
5.时间延迟器:通过控制电容和电阻的数值,555电路可以实现时间延迟功能,常用于定时开关、风扇延时关闭等应用。
6.多谐振荡器:通过增加电容和电阻,555电路可以配置成多谐振荡器,被广泛应用于音响设备和信号处理中。
7.脉冲调制解调器:通过配置为包络检测器和相干解调器,555电路可以用于数字通信中的脉冲调制解调。
8.频率分频器:555电路可以用作频率分频器,将一个高频输入信号分频为较低频率的输出信号,适用于时钟分频和频率调整应用。
9.触发器:555电路可以被用作触发器,用于时序控制、缓冲与放大信号等。
10.超声波发生器:通过使用声音压电换能器,555电路可以被配置为超声波发生器,常用于超声波清洗仪、超声波测距器等设备。
555芯片引脚图555 定时器是一种模拟和数字功能相结合的中规模集成器件。
一般用双极性工艺制作的称为 555,用 CMOS 工艺制作的称为 7555,除单定时器外,还有对应的双定时器 556/7556。
555 定时器的电源电压范围宽,可在 4.5V~16V 工作,7555 可在 3~18V 工作,输出驱动电流约为 200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。
555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
555引脚图如下所示。
555引脚图555的内部结构可等效成23个晶体三极管.17个电阻.两个二极管.组成了比较器.RS触发器.等多组单元电路.特别是由三只精度较高5k电阻构成了一个电阻分压器.为上.下比较器提供基准电压.所以称之为555.555属于cmos工艺制造.555引脚图介绍如下1地 GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc单稳类电路单稳工作方式,它可分为3种。
见图示。
第1种<图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种<图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种<图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
555芯片功能555芯片是一种经典的集成电路,具有多种功能。
以下是关于555芯片的详细功能描述。
1. 多种工作模式:555芯片可以在不同的工作模式下运行,包括单稳态模式、连续稳态模式和比较模式。
在不同的工作模式下,555芯片可以实现不同的功能。
2. 脉冲宽度调制(PWM):555芯片可以生成可调的脉冲宽度调制信号。
通过调节相关的电阻和电容值,可以控制脉冲的宽度和占空比。
这种功能广泛应用于电子设备中的调光、调速和控制等方面。
3. 时钟发生器:555芯片可以作为一个稳定的时钟发生器,提供可调节频率的时钟信号。
这种功能在微处理器系统、计时器和频率计等应用中非常常见。
4. 电压控制振荡器:555芯片可以根据输入的电压信号频率调整输出的振荡频率。
通过调节电压阈值和电压比较器的阈值,可以实现可变频率的振荡器。
5. 温度补偿电源:555芯片内置了温度补偿电源电路,可以通过温度传感器来自动调整电源电压与温度的关系。
这种功能可用于温度补偿的应用场景,如温度补偿的振荡器和传感器等。
6. 单脉冲发生器:555芯片也可以作为一个单脉冲发生器使用。
在单稳态模式下,通过调节相关的电阻和电容值,可以产生时间可调的单个脉冲信号。
这种功能在门铃、触发器和计数器等应用中比较常见。
7. 频率分频器:555芯片还可以作为一个频率分频器使用。
通过调节相关的电阻和电容值,可以将输入信号的频率进行分频,输出相应分频后的频率信号。
这种功能在电子键盘、计数器和频率测量仪等方面得到广泛应用。
8. 超声波发生器:通过适当的电路设计,555芯片可以实现超声波发生器的功能。
超声波发生器常用于测距、测速和超声波通信等领域。
总之,555芯片作为一种功能强大、应用广泛的集成电路,具有多种工作模式和功能,可以用于各种电子设备和系统中,包括调光、调速、时钟发生器、频率计、温度补偿电源、门铃、触发器、计数器、频率测量仪、超声波发生器等。
无论在消费电子产品、工业控制、通信设备还是科学研究等领域,555芯片都发挥着重要的作用。
关于555集成电路原理及应用555集成电路是一种经典的通用定时器,也被广泛应用于各种电子设备中。
它由三个5K欧姆的电阻和两个电压比较器组成,并且在同一个芯片上集成了放大器、比较器、反相器和触发器等功能。
555集成电路有多种类型,每一种类型的应用领域都有所不同。
555集成电路主要有以下几种类型:1.555定时器:555定时器是555集成电路最常见的类型,能够通过改变电阻和电容的值来实现不同的定时功能。
它可以用作时钟发生器、频率分频器、脉冲宽度调制器、脉冲位置调制器等。
2.555脉宽调制器:555脉宽调制器被广泛应用于电子设备中的PWM 控制电路。
它可以通过调整电阻和电容的值来调节输出脉冲的占空比,从而实现对脉冲宽度的精确控制。
这种类型的555集成电路在电机控制、照明控制、通信设备等领域得到广泛应用。
3.555频率分频器:555频率分频器是一种将输入信号的频率分频为输出信号的频率的设备。
它可以通过改变电容和电阻的值来实现不同的分频比。
这种类型的555集成电路在通信设备、数字显示器等领域有着重要的应用。
4.555驱动器:555驱动器可以将输入信号转化为高电平或低电平的输出信号,并且具有较大的输出能力。
它可以用来驱动各种负载,如LED 灯、继电器、电机等。
这种类型的555集成电路在工控设备、自动化设备等领域得到广泛应用。
555集成电路的应用非常广泛,在电子设备中可以用于时钟电路、计时器、触发器、发生器、速度测量、调光控制、脉冲调制、频率测量、脉冲宽度测量等领域。
它具有稳定可靠、使用方便、性能优良的特点,因此被广泛应用于消费电子、通信设备、汽车电子、工业自动化等领域。
总之,555集成电路作为一种经典的通用定时器,具有多种类型和广泛的应用。
它在电子设备中扮演着重要的角色,对于实现各种定时、控制和驱动功能起到了至关重要的作用。
一、555装饰灯555芯片和R1、R2、C1组成无稳态多谐振荡器,振荡频率f=1.44/(R1+2R2)C1,若LED1----LED4选用不同颜色的发光二振荡频率2Hz左右,即每秒闪烁两次,即每秒闪烁两次,若极管,更添光彩,R3、R4为限流电阻。
根据以上图,是否可以做成一个8个LED灯的流水灯?自主创新二、555接触式防盗报警器1.1R1C1,图示参数的报警时间为3分钟。
根据上图,是否可以进行创新,不光语音报警,并且有灯光提示?自主创新555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态单稳态触发器触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、时器广泛应用于仪器仪表、家用电器、家用电器、家用电器、电子测量及自动控制等方面。
电子测量及自动控制等方面。
电子测量及自动控制等方面。
555 555 555 定时器定时器的内部电路框图如右图所示。
的内部电路框图如右图所示。
它内部包括两个电压比较器,它内部包括两个电压比较器,三个等值串联电阻,三个等值串联电阻,三个等值串联电阻,一个一个一个 RS RS RS 触发器,触发器,触发器,一个放一个放电管电管 T T T 及功率输出级。
它提供两个基准电压及功率输出级。
它提供两个基准电压VCC /3 VCC /3 和和 2VCC /3555 2VCC /3555 定时器的定时器的功能主要由两个比较器决定。
功能主要由两个比较器决定。
两个比较器的输出电压控制两个比较器的输出电压控制RS RS 触发器和放电管的触发器和放电管的状态。
在电源与地之间加上电压,当状态。
在电源与地之间加上电压,当 5 5 5 脚悬空时,则电压比较器脚悬空时,则电压比较器脚悬空时,则电压比较器 C1 C1 C1 的反相输的反相输入端的电压为入端的电压为 2VCC 2VCC /3/3,,C2 C2 的同相输入端的电压为的同相输入端的电压为VCC /3/3。
555集成电路应用800例
摘要:
1.555 集成电路简介
2.555 集成电路的应用领域
3.555 集成电路的800 例应用实例
正文:
555 集成电路,也称为555 定时器,是一种广泛应用的电子元器件。
它是一种多用途的数字模拟混合集成电路,具有多种工作模式,如单稳态、双稳态和无稳态等。
这使得555 集成电路在各种电子设备中都有着广泛的应用。
555 集成电路的应用领域非常广泛,涵盖了电子、电气、通信、计算机等众多领域。
例如,在电子设备中,555 集成电路常用于定时、延时、触发等功能。
在通信设备中,555 集成电路可以用于信号产生、信号整形等功能。
在计算机领域,555 集成电路也可以用于电源管理、信号处理等功能。
尽管555 集成电路的功能强大,但是它的使用却非常简单。
只需要按照其内部结构,连接外部的电阻和电容,就可以实现各种功能。
而且,555 集成电路的800 例应用实例,更是为我们提供了丰富的参考。
无论是初学者还是专业的电子工程师,都可以从中找到适合自己的应用方式。
总的来说,555 集成电路是一种非常重要的电子元器件,它的应用已经渗透到了各个领域。
对于电子工程师来说,掌握555 集成电路的原理和使用方法,无疑可以提高他们的工作效率和创新能力。
各种应用电路555触摸定时开关集成电路IC1是一片555定时电路,在这里接成单稳态电路。
平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。
当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。
同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。
当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。
定时长短由R1、C1决定:T1=1.1R1*C1。
按图中所标数值,定时时间约为4分钟。
D1可选用1N4148或1N4001。
相片曝光定时器附图电路是用555单稳电路制成的相片曝光定时器。
用人工启动式单稳电路。
工作原理:电源接通后,定时器进入稳态。
此时定时电容CT的电压为:VCT=VCC=6V。
对555这个等效触发器来讲,两个输入都是高电平,即VS=0。
继电器KA不吸合,常开点是打开的,曝光照明灯HL不亮。
按一下按钮开关SB之后,定时电容CT立即放到电压为零。
于是此时555电路等效触发的输入成为:R=0、S=0,它的输出就成高电平:V0=1。
继电器KA吸动,常开接点闭合,曝光照明灯点亮。
按钮开关按一下后立即放开,于是电源电压就通过RT向电容CT充电,暂稳态开始。
当电容CT上的电压升到2/3VCC既4伏时,定时时间已到,555等效电路触发器的输入为:R=1、S=1,于是输出又翻转成低电平:V0=0。
继电器KA释放,曝光灯HL熄灭。
暂稳态结束,有恢复到稳态。
曝光时间计算公式为:T=1.1RT*CT。
本电路提供参数的延时时间约为1秒~2分钟,可由电位器RP调整和设置。
电路中的继电器必需选用吸合电流不应大于30mA的产品,并应根据负载(HL)的容量大小选择继电器触点容量。
单稳类电路
单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为
1
简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
双稳类电路
这里我们将对555双稳电路工作方式进行总结、归纳。
555双稳电路可分成2种。
第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。
单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6
端输入。
第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻
2
调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。
双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。
这是双稳工作方式的结构特点。
2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。
无稳类电路
第三类是无稳工作方式。
无稳电路就是多谐振荡电路,是555电路中应用最广的一类。
电路的变化形式也最多。
为简单起见,也把它分为三种。
第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。
第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。
其中第1个单
3。