《统计与统计案例》测试卷及答案解析
- 格式:docx
- 大小:541.97 KB
- 文档页数:14
一、选择题1.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .42.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9163.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚4.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:2()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .185.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( ) A .25B .1225C .1625D .457.A B 两支篮球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局A 队获胜的概率是12外,其余每局比赛B 队获胜的概率都是13.假设各局比赛结果相互独立.则A 队以3:2获得比赛胜利的概率为( ) A .427B .281C .1681D .8278.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:低年级 30 15则下列结论正确的是( ) 附参照表:2()P K k ≥0.10 0.025 0.01 k 2.7065.0246.635参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关” 9.在一次独立性检验中,得出列表如下:AA合计 B100 400500B900 a90a + 合计190400a +590a +且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720 B .360C .180D .9010.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量并参考以下临界数据:若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过A.B.C.D.11.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A.0.12 B.0.42 C.0.46 D.0.8812.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为()A.130B.415C.1115D.1315二、填空题13.两个实习生加工一个零件,产品为一等品的概率分别为23和34,则这两个零件中恰有一个一等品的概率为__________.14.掷三个骰子,出现的三个点数的乘积为偶数的概率是________.15.某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:得出下面四个结论:①甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前④乙同学的总成绩排名比丙同学的总成绩排名更靠前则所有正确结论的序号是_________.16.已知x、y之间的一组数据如下:x0123则线性回归方程ˆya bx =+所表示的直线必经过点________. 17.以下四个命题,其中正确的序号是____________________.①从匀速传递的产品生产流水线上,每20分钟从中抽取一件产品进行检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程0.212ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.2个单位;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越大.18.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为__________.19.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________20.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表三、解答题21.在我国,大学生就业压力日益严峻,伴随着政府政策的引导与社会观念的转变,大学生的创业意识与就业方向也悄然发生转变.某大学生在国家提供的税收,担保贷款等多方面的政策扶持下选择加盟某专营店自主创业,该专营店统计了近五年来创收利润数i y (单位:万元)与时间i t (单位:年)的数据,列表如下:(1)依据表中给出的数据,是否可用线性回归模型拟合y 与t 的关系,请计算相关系数r 并加以说明(计算结果精确到0.01).(若0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)该专营店为吸引顾客,特推出两种促销方案. 方案一:每满500元可减50元;方案二:每满500元可抽奖一次,每次中奖的概率都为25,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.(ⅰ)某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客换得100元现金奖励的概率(ⅱ)某位顾客购买了2000元的产品,作为专营店老板,是希望该顾客直接选择方案一返回200元现金,还是选择方案二参加四次抽奖?说明理由.附:相关系数公式:()()nnii i itt y y t yntyr---==∑∑,7.547≈,5185.2i i i t y ==∑,=22.某校将进行篮球定点投篮测试,规则为:每人至多投3次,先在M 处投一次三分球,投进得3分,未投进不得分,以后均在N 处投两分球,每投进一次得2分,未投进不得分.测试者累计得分高于3分即通过测试,并终止投篮.甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在M 处和N 处各投10次,根据他们每轮两分球和三分球的命中次数情况分别得到如图表:若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率.(1)求甲同学通过测试的概率;(2)在甲、乙两位同学均通过测试的条件下,求甲得分比乙得分高的概率.23.奶茶是年轻人非常喜欢的饮品.某机构对于奶茶的消费情况在一商圈附近做了一些调查,发现女性喜欢奶茶的人数明显高于男性,每月喝奶茶的次数也比男性高,但单次奶茶消费金额男性似乎明显高于女性.针对每月奶茶消费是否超过百元进行调查,已知在调查的200人中女性人数是男性人数的4倍,统计如下:超过百元未超过百元合计男8女144合计200关?(2)在月消费超百元的调查者中,同时进行对于品牌喜好的调查.发现喜欢A 品牌的男女均为3人,现从喜欢A 品牌的这6人中抽取2人送纪念品,求这两人恰好都是女性的概率. 附:()20P K k ≥0.10 0.010 0.001 0k2.7066.63510.828()()()()()2n ad bc K a b c d a c b d -=++++. 24.为激活国内消费布场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图,如图所示.(1)求出频率分布直方图中的a 值和这200人的平均年龄;(2)从第2,3,5组中用分层抽样的方法抽取12人,并再从这12人中随机抽取3人进行电话回访,求这三人恰好属于不同组别的概率;(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否“购买力强人群”与年龄有关? 附:()20P K K 0.150 0.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.828()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++ 25.某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如图茎叶图:(1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;(2)设所有50名骑手在相同时间内完成订单数的平均数m ,将完成订单数超过m 记为“优秀”,不超过m 记为“一般”,然后将骑手的对应人数填入如表列联表;(3)根据(2)中的列联表,判断能否有95%的把握认为两种配送方案的效率有差异.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.26.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表)(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.2.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.3.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.4.A解析:A 【分析】设男生人数为x ,依题意可得列联表;根据表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,列不等式即可得出结论. 【详解】设男生人数为x ,依题意可得列联表如下:则2 3.841K >,由222235236183 3.841822x x x K x x x x x ⎛⎫- ⎪⎝⎭==>⋅⋅⋅,解得10.24x >, ,26x x为整数,∴若在犯错误的概率不超过95%的前提下认为是否喜欢追星和性别有关,则男生至少有12人,故选A. 【点睛】本题主要考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.5.A解析:A 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A6.C解析:C 【分析】甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率. 【详解】设甲同学收到李老师的信息为事件A ,收到张老师的信息为事件B ,A 、B 相互独立,42()()105P A P B ===, 则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C . 【点睛】本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.7.A解析:A 【解析】分析:若“A 队以3:2胜利”,则前四局A 、B 各胜两局,第五局A 胜利,利用独立事件同时发生的概率公式可得结果. 详解:若“A 队以3:2胜利”, 则前四局A 、B 各胜两局, 第五局A 胜利,因为各局比赛结果相互独立, 所以队以3:2获得比赛胜利的概率为2224211433227P C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,故选A. 点睛:本题主要考查阅读能力,独立事件同时发生的概率公式,意在考查利用所学知识解决实际问题的能力,属于中档题.8.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论. 详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.9.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.10.A解析:A 【解析】 由题意可得,所以, 由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过,故选A.【方法点睛】本题主要考查独立性检验的应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)11.D解析:D 【解析】由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12. ∴至少有一人被录取的概率为1-0.12=0.88.故选D. 考点:相互独立事件的概率.12.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.二、填空题13.【分析】利用相互独立事件概率乘法公式直接求解【详解】解:两个实习生加工一个零件产品为一等品的概率分别为和这两个零件中恰有一个一等品的概率为:故答案为:【点睛】本题考查概率的求法考查相互独立事件概率乘 解析:512【分析】利用相互独立事件概率乘法公式直接求解. 【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为23和34, ∴这两个零件中恰有一个一等品的概率为:2323511343412p ⎛⎫⎛⎫=⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案为:512. 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.14.【分析】若点数的乘积为偶数此至少有一个骰子的点数为偶数考虑反面情况:三个骰子全部是奇数的概率用减去此概率即可得到结果【详解】因为三个点数的乘积为偶数时则至少有一个点数为偶数若三个点数均为奇数此时对应解析:7 8【分析】若点数的乘积为偶数,此至少有一个骰子的点数为偶数,考虑反面情况:三个骰子全部是奇数的概率,用1减去此概率即可得到结果.【详解】因为三个点数的乘积为偶数时,则至少有一个点数为偶数,若三个点数均为奇数,此时对应的概率为:311 28⎛⎫=⎪⎝⎭,所以至少有一个点数为偶数的概率为:17188 P=-=.故答案为:7 8 .【点睛】本题考查相互独立事件的概率计算,难度一般.概率计算时,若出现至多、至少这样的描述,可考虑从问题的反面解决问题.15.③④【解析】根据图示可得甲同学的逻辑思维成绩排名很靠前但总排名靠后说明阅读表达成绩排名靠后;乙同学的逻辑思维成绩排名适中但总排名靠前说明阅读表达成绩排名靠前;丙同学的逻辑思维成绩排名及阅读表达成绩排解析:③④【解析】根据图示可得,甲同学的逻辑思维成绩排名很靠前但总排名靠后,说明阅读表达成绩排名靠后;乙同学的逻辑思维成绩排名适中但总排名靠前,说明阅读表达成绩排名靠前;丙同学的逻辑思维成绩排名及阅读表达成绩排名居中,则乙同学的总成绩排名比丙同学的总成绩排名更靠前;甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前,故③④正确.故答案为③④.16.(155)【解析】由题意可得:线性回归方程过样本中心点即线性回归方程所表示的直线必经过点(155)点睛:(1)正确理解计算的公式和准确的计算是求线性回归方程的关键(2)回归直线方程必过样本点中心解析:(1.5,5)【解析】由题意可得:0123 1.54x +++==,826454y +++==, 线性回归方程过样本中心点,即线性回归方程ˆya bx =+所表示的直线必经过点(1.5,5) 点睛:(1)正确理解计算,b a 的公式和准确的计算是求线性回归方程的关键. (2)回归直线方程y bx a =+必过样本点中心(),x y .17.②③【分析】利用系统抽样的定义判断①利用独立性检验判断④;利用相关系数的性质判断②;由回归方程的性质判断③【详解】①为系统抽样①不正确;④分类变量与它们的随机变量的观测值为当越小与有关系的把握程度越解析:②③ 【分析】利用系统抽样的定义判断①利用独立性检验判断④;利用相关系数的性质判断②;由回归方程的性质判断③. 【详解】①为系统抽样, ①不正确;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越小,④不正确;根据相关系数的性质可知②正确;由回归方程的性质可知③正确.故答案为②③. 【点睛】本题通过对多个命题真假的判断,综合考查系统抽样、相关系数、回归方程、独立性检验,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.18.【解析】前两个不是红灯第三个是红灯所以概率为解析:427【解析】前两个不是红灯,第三个是红灯,所以概率为2114(1)3327-= 19.【分析】利用等可能事件的概率分别求得从甲袋和乙袋中取一球取到白球的概率然后再利用独立事件的概率求解【详解】从甲袋中取一球取到白球的概率为从甲袋中取一球取到白球的概率为所以从甲乙两袋中各取一球均为白球解析:16【分析】利用等可能事件的概率,分别求得从甲袋和乙袋中取一球取到白球的概率,然后再利用独立事件的概率求解.【详解】从甲袋中取一球取到白球的概率为2142p ==, 从甲袋中取一球取到白球的概率为2163p ==, 所以从甲、乙两袋中各取一球均为白球的概率为111236p =⨯=. 故答案为:16【点睛】本题主要考查等可能事件的概率和独立事件的概率的求法,属于中档题.20.【分析】根据列联表计算可得由可得结果【详解】由题意得:至少有的把握认为学生的学习积极性与对待班级工作的态度有关故答案为:【点睛】本题考查独立性检验问题的求解考查基础公式的应用 解析:99.9%【分析】根据22⨯列联表计算可得2K ,由210.828K >可得结果. 【详解】由题意得:()225018197611.53810.82825252426K ⨯⨯-⨯=≈>⨯⨯⨯, ∴至少有10.1%99.9%-=的把握认为学生的学习积极性与对待班级工作的态度有关.故答案为:99.9%. 【点睛】本题考查独立性检验问题的求解,考查基础公式的应用.三、解答题21.(1)0.97r ≈;y 与t 的线性相关程度很高,可以用线性回归模型拟合;(2)(ⅰ)1225;(ⅱ)选择参加四次抽奖;答案见解析. 【分析】(1)由题表计算出t ,y .55i it ytyr -=∑(2)(ⅰ)设其获得100元现金奖励为事件A ,由独立事件的概率乘法公式可得()P A ;(ⅱ)设X 表示该顾客在四次抽奖中中奖的次数.则24,5XB ⎛⎫⎪⎝⎭,计算出()E X 和奖。
统计案例练习题(附答案)一、选择题 1.对具有线性相关关系的两个变量建立的线性回归方程y=a+bx中,回归系数b( ) A.可以小于0 B.只能大于0 C.可能等于0 D.只能小于0 【解析】b可能大于0,也可能小于0,但当b=0时,x,y不具有线性相关关系.【答案】 A 2.下列两个变量间的关系不是函数关系的是( ) A.正方体的棱长与体积 B.角的弧度数与它的正弦值 C.单产为常数时,土地面积与粮食总产量 D.日照时间与水稻亩产量【解析】∵A、B、C都可以得出一个函数关系式,而D不能写出确定的函数关系式,它只是一个不确定关系.【答案】 D 3.某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元) 4 2 3 5 销售额y(万元) 49 26 39 54 根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为( ) A.63.36万元 B.65.5万元C.67.7万元 D.72.0万元【解析】x=4+2+3+54=3.5, y=49+26+39+544=42,∴a=y-bx=42-9.4×3.5=9.1,∴回归方程为y=9.4x+9.1,∴当x=6时,y=9.4×6+9.1=65.5,故选B. 【答案】 B 4.由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线方程y=bx+a,那么下列说法中不正确的是( ) A.直线y=bx+a必经过点(x,y) B.直线y=bx+a至少经过点(x1,y1)(x2,y2),…,(xn,bn)中的一个点 C.直线y=bx+a的斜率为∑ni=1xiyi-nx•y∑ni=1x2i-nx2 D.直线y=bx+a的纵截距为y-bx 【解析】回归直线可以不经过任何一个点.其中A:由a=y-bx代入回归直线方程y=bx+y-ax,即y=b(x-x)+y过点(x,y).∴B错误.【答案】 B 5.已知两个变量x和y 之间具有线性相关性,甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归的方法求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均数都为s,对变量y 的观测数据的平均数都是t,则下列说法正确的是( ) A.l1与l2一定有公共点(s,t) B.l1与l2相交,但交点一定不是(s,t) C.l1与l2必定平行 D.l1与l2必定重合【解析】由于回归直线y=bx+a恒过(x,y)点,又两人对变量x的观测数据的平均值为s,对变量y的观测数据的平均值为t,所以l1和l2恒过点(s,t).【答案】 A 二、填空题 6.从某大学随机选取8名女大学生,其身高x(cm)和体重y(kg)的线性回归方程为y=0.849x-85.712,则身高172 cm的女大学生,由线性回归方程可以预测其体重约为________.【解析】将x=172代入线性回归方程y=0.849x-85.712,有y=0.849×172-85.712=60.316(kg).【答案】60.316 kg 7.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本的资料进行线性回归分析,结果如下:x=72,y=71,∑6i=1x2i=79,∑6i=1xiyi=1 481. b=1 481-6×72×7179--1.818 2, a=71-(-1.8182)×72≈77.36,则销量每增加1 000箱,单位成本下降________元.【解析】由上表可得,y=-1.818 2x+77.36,销量每增加1千箱,则单位成本下降1.818 2元.【答案】 1.818 2 8.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】由题意知[0.254(x+1)+0.321]-(0.254x+0.321)=0.254. 【答案】0.254 三、解答题 9.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:推销员编号 1 2 3 4 5 工作年限x/年 3 5 6 7 9 推销金额y/万元 2 3 3 4 5 (1)求年推销金额y关于工作年限x的线性回归方程; (2)若第6名推销员的工作年限为11年,试估计他的年推销金额.【解】(1)设所求的线性回归方程为y=bx+a,则b=i=--=-=1020=0.5, a=y-bx=0.4. 所以年推销金额y关于工作年限x的线性回归方程为y=0.5x+0.4. (2)当x=11时,y=0.5x+0.4=0.5×11+0.4 =5.9(万元).所以可以估计第6名推销员的年推销金额为5.9万元. 10.一种机器可以按各种不同速度运转,其生产物件中有一些含有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数.现观测得到(x,y)的4组值为(8,5),(12,8),(14,9),(16,11). (1)假设y与x之间存在线性相关关系,求y与x之间的线性回归方程. (2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1) 【解】(1)设回归方程为y=a+bx,则x=8+12+14+164=12.5, y=5+8+9+114=8.25,∑4i=1x2i=660,∑4i =1xiyi=438, b=∑4i=1xiyi-4xy∑4i=1x2i-4x2=438-4×12.5×8.25660-4×12.52≈0.73, a=y-bx=8.25-0.73×12.5=-0.875,所以所求回归方程为y=-0.875+0.73x. (2)由y≤10,即-0.875+0.73x≤10,得x≤10.8750.73≈15,即机器速度不得超过15转/秒. 11.高二(3)班学生每周用于数学学习的时间x(单位:小时)与数学成绩y(单位:分)之间有如下数据:x 24 15 23 19 16 11 20 16 17 13 y 92 79 97 89 64 47 83 68 71 59 若某同学每周用于数学学习的时间为18小时,试预测该同学的数学成绩.【解】显然学习时间与学习成绩间具有相关关系,可以列出下表,并用科学计算器进行计算.i 1 2 3 4 5 6 7 8 9 10 xi 24 15 23 19 16 11 20 16 17 13 yi 9279 97 89 64 47 83 68 71 59 xiyi 2 208 1 185 2 231 1 691 1 024 517 1 660 1 088 1 207 767 ∑10i=1x2i=3 182,∑10i=1xiyi=13 578于是可得b=∑10i=1xiyi-10xy∑10i=1x2i-10x2=545.4154.4≈3.53, a=y-bx=74.9-3.53×17.4≈13.5. 因此可求得回归直线方程为y=3.53x+13.5. 当x=18时,y=3.53×18+13.5≈77. 故该同学预计可得77分左右.。
一、选择题1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是( ) A .120B .320C .15D .7202.某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中( )表1表2表3 语文 性别不及格 及格 总计 数学 性别不及格 及格 总计 英语 性别不及格 及格 总男 14 36 50 男 10 40 50 男 25 25 女 16 34 50 女 20 30 50 女 5 45 总计3070100总计3070100总计30701A .语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小B .数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小C .英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小D .英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小 3.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C4.在一次抗洪抢险中,准备用射击的方法引爆漂流的汽油桶.现有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击相互独立,且命中概率都是34.则打光子弹的概率是( ) A .9256B .13256C .45512D .910245.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有( )参考公式:0.10 0.05 0.025 0.010 0.005 0.001 2.7063.8415.0246.6357.87910.828A .12人B .18人C .24人D .30人6.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:20()P K k ≥ 0.050 0.0100.0010k3.841 6.635 10.8282()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .187.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有( )的把握认为喜爱打篮球与性别有关.喜爱打篮球 不喜爱打篮球 合计男生 25530 女生 151530合计40 20 60附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.20()P K k ≥ 0.100.050.025 0.010 0.005 0.001 0k 2.706 3.8415.0246.6357.78910.828A .99.9%B .99.5%C .99%D .97.5%8.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为12和45,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( ) A .12B .23C .34D .139.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1125B .12125 C .61125 D .6412510.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样11.为了解学生对街舞的喜欢是否与性别有关,在全校学生中进行抽样调查,根据数据,求得2K 的观测值0 4.804k ≈,则至少有( )的把握认为对街舞的喜欢与性别有关.参考数据:A .90%B .95%C .97.5%D .99%12.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.42二、填空题13.有7个评委各自独立对A 、B 两位选手投票表决,两位选手旗鼓相当,每位评委公平投票且不得弃权.若7位评委依次揭晓票选结果,则A 选手在每位评委投票揭晓后票数始终保持领先的概率是______.14.有9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种,假定每个坑至多补种一次,需要补种的坑数为2的概率等于_______.15.已知如下四个命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于0,表示回归效果越好;②在回归直线方程ˆ0.812yx =-中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.8个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于1;④对分类变量X 与Y ,对它们的随机变量2K 的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________. 16.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.17.从包括甲乙两人的6名学生中选出3人作为代表,记事件A :甲被选为代表,事件B :乙没有被选为代表,则()P B A │等于_________.18.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________19.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23. (1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X 表示结束比赛还需打的局数,求X 的分布列及期望.22.某航空公司规定:国内航班(不构成国际运输的国内航段)托运行李每件重量上限为50kg ,每件尺寸限制为40cm 60cm 100cm ⨯⨯,其中头等舱乘客免费行李额为40kg ,经济舱乘客免费行李额为20kg .某调研小组随机抽取了100位国内航班旅客进行调查,得到如表所示的数据:(1)请完成22⨯列联表,并判断是否在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关?(2)调研小组为感谢参与调查的旅客,决定从托运行李超出免费行李额且不超出的旅客中(其中女性旅客4人)随机抽取4人,对其中的女性旅客赠送“100元超额行李补贴券”,记赠送的补贴券总金额为X 元,求X 的分布列与数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:23.某工厂A ,B 两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,A ,B 生产线生产的产品为合格品的概率分别为p 和21(0.51)p p -.(1)从A ,B 生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求p 的最小值0p ;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的0p 作为p 的值. ①已知A ,B 生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从A ,B 生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为X ,求X 的分布列并估计该厂产量2000件时利润的期望值.24.某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13. (1)若在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多安排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为p ,每人每次接种花费()0m m >元,每个周期至多接种3次,第一个周期连续2次出现抗体则终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期;第二接种周期连续2次出现抗体则终止试验,否则需依次接种至至试验结束;乙团队研发的药物每次接种后产生抗体的概率为q ,每人每次花费()0n n >元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.①若甲团队的试验平均花费大于乙团队的试验平均花费,求p 、q 、m 、n 满足的关系式;②若m n =,2p q =,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发?附:()()()()()22n ad bc K a b c d a c b d -=++++,()20P K k ≥ 0.100.05 0.01 0.005 0.001 0k 2.7063.8416.6357.87910.82825.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动 不喜爱运动 总计 男生 ab30 女生 cd20 总计50(1)求出列联表中a 、b 、c 、d 的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++)20()P K k ≥ 0.5000.100 0.050 0.010 0.001 0k 0.4552.7063.8416.63510.82826.某花圃为提高某品种花苗质量,开展技术创新活动,分别用甲、乙两种方法培育该品种花苗.为比较两种培育方法的效果,选取了40棵花苗,随机分成两组,每组20棵.第一组花苗用甲方法培育,第二组用乙方法培育.培育完成后,对每棵花苗进行综合评分,绘制了如图所示的茎叶图:(1)分别求两种方法培育的花苗综合评分的中位数.你认为哪一种方法培育的花苗综合评分更高?并说明理由.(2)综合评分超过80的花苗称为优质花苗,填写下面的列联表,并判断是否有99.5%的把握认为优质花苗与培育方法有关?优质花苗 非优质花苗 合计甲培育法 乙培育法 合计附:()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥ 0.0100.050 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.2.C解析:C 【分析】根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】因为()()2210014341636100103020403070505030705050⨯⨯-⨯⨯⨯-⨯<⨯⨯⨯⨯⨯⨯()2100254552530705050⨯⨯-⨯<⨯⨯⨯,所以英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小. 故选C 【点睛】本题考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目. 3.B解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B. 【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.4.B解析:B 【分析】打光所有子弹,分中0次、中一次、中2次. 【详解】5次中0次:5 1 4⎛⎫ ⎪⎝⎭5次中一次:4 153144 C⎛⎫⨯⨯ ⎪⎝⎭5次中两次:前4次中一次,最后一次必中314331 444C⎛⎫⨯⨯⨯ ⎪⎝⎭则打光子弹的概率是514⎛⎫⎪⎝⎭+4153144C⎛⎫⨯⨯ ⎪⎝⎭+314331444C⎛⎫⨯⨯⨯ ⎪⎝⎭=13256,选B【点睛】本题需理解打光所有子弹的含义:可能引爆,也可能未引爆.5.B解析:B【解析】【分析】设男生人数为,女生人数为,完善列联表,计算解不等式得到答案.【详解】设男生人数为,女生人数为喜欢抖音不喜欢抖音总计男生女生总计男女人数为整数故答案选B【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.6.A解析:A【分析】设男生人数为x ,依题意可得列联表;根据表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,列不等式即可得出结论. 【详解】设男生人数为x ,依题意可得列联表如下:则2 3.841K >,由222235236183 3.841822x x x K x x x x x ⎛⎫- ⎪⎝⎭==>⋅⋅⋅,解得10.24x >, ,26x x为整数, ∴若在犯错误的概率不超过95%的前提下认为是否喜欢追星和性别有关,则男生至少有12人,故选A. 【点睛】本题主要考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.7.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表, 得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.8.A解析:A 【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140 分以上的概率为甲考140 分以上乙未考到140 分以上事件概率与乙考140 分以上甲未考到140 分以上事件概率的和,而 甲考140 分以上乙未考到140 分以上事件概率为14(1)25⨯-,乙考140 分以上甲未考到140 分以上事件概率为14(1)25-⨯,因此,所求概率为14(1)25⨯-1451(1)25102+-⨯==, 选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.9.C解析:C 【解析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过700辆的概率()()()111700150070010.60.2225P X P X ⎡⎤≥=-<<=⨯-==⎣⎦, ∴这三个收费口每天至少有一个超过700辆的概率 3161115125P ⎛⎫=--=⎪⎝⎭,故选C. 点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.10.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A11.B解析:B 【解析】因为4.804>3.841,所以有95%的把握认为对街舞的喜欢与性别有关.12.C解析:C 【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解. 【详解】解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=.甲队以3:0获胜的概率是: 20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中档题.二、填空题13.【分析】将比分分为四种情况讨论计算概率【详解】由条件可知前两名投票的都投给选手并且投给每位选手的概率是若投票给两位选手的比分为则概率为若比分为则投给选手的方法有种所以概率为若比分为则投给选手的两票不 解析:532【分析】将比分分为7:0,6:1,5:2,4:3四种情况讨论计算概率. 【详解】由条件可知前两名投票的都投给选手A ,并且投给每位选手的概率是12P =. 若投票给A 、B 两位选手的比分为7:0,则概率为712⎛⎫ ⎪⎝⎭, 若比分为6:1,则投给选手B 的方法有155C =种,所以概率为7152⎛⎫⋅ ⎪⎝⎭若比分为5:2,则投给选手B 的两票不能在第三和第四的位置,有2519C -=种,所以概率为7192⎛⎫⋅ ⎪⎝⎭, 若比分为4:3,则投给A 的票不能是最后一位,且不能占5,6位,有2415C -=种,所以概率为7152⎛⎫⋅ ⎪⎝⎭, 所以概率()7151595232P ⎛⎫=+++⋅=⎪⎝⎭. 故答案为:532【点睛】本题考查独立事件同时发生的概率,重点考查分类的思想,属于中档题型.14.【分析】先计算出粒种子都没有发芽的概率即得出每个坑需要补种的概率然后利用独立重复试验的概率得出所求事件的概率【详解】由独立事件的概率乘法公式可知粒种子没有粒发芽的概率为所以一个坑需要补种的概率为由独 解析:21512【分析】先计算出3粒种子都没有发芽的概率,即得出每个坑需要补种的概率,然后利用独立重复试验的概率得出所求事件的概率. 【详解】由独立事件的概率乘法公式可知,3粒种子没有1粒发芽的概率为31128⎛⎫= ⎪⎝⎭, 所以,一个坑需要补种的概率为18, 由独立重复试验的概率公式可得,需要补种的坑数为2的概率为223172188512C ⎛⎫⋅⋅= ⎪⎝⎭, 故答案为21512. 【点睛】本题考查独立事件概率乘法公式的应用,同时也考查了独立重复试验恰有()k k N *∈次发生的概率,要弄清楚事件的基本类型,并结合相应的概率公式进行计算,考查分析问题和理解问题的能力,属于中等题.15.②③【分析】①根据相关指数的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量的观测值k 的关系进行判断【详解】①在线性回归模型中相关指数表示解释变量对于预报变量解析:②③ 【分析】①根据相关指数2R 的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量2K 的观测值k 的关系进行判断. 【详解】①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好,所以①错误;②在回归直线方程ˆy=0.8x−12中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.8个单位,正确;③两个变量相关性越强,则相关系数的绝对值就越接近于1,正确;④对分类变量X 与Y ,对它们的随机变量K2的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越小,所以④错误; 故正确命题的序号是②③. 【点睛】该题考查的是有关统计的问题,涉及到的知识点有线性回归分析,两个变量之间相关关系强弱的判断,独立性检验,属于简单题目.16.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概 解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.17.【解析】因为所以应填答案解析:35【解析】因为()()2254336613,210C C P A P AB C C ====,所以3(|)5P B A =。
一、选择题1.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C2.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有( )的把握认为喜爱打篮球与性别有关.附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.A .99.9%B .99.5%C .99%D .97.5%3.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:则下列结论正确的是( ) 附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”4.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为12和45,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( ) A .12B .23C .34D .135.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1156.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =7.甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为14,则两人中恰有一人答对的概率为 A .720B .12 20C .120D .2208.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++并参照附表,得到的正确结论是( )A .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C .有99.9%的把握认为“爱好游泳运动与性别有关”D .有99.9%的把握认为“爱好游泳运动与性别无关”9.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是( )使用智能手机 不使用智能手机 总计 学习成绩优秀 4 8 12 学习成绩不优秀 16 2 18 总计201030参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828A .有99.9%的把握认为使用智能手机对学习有影响.B .有99.9%的把握认为使用智能手机对学习无影响.C .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响. 10.下面是22⨯列联表:则表中a b,的值分别为()A.84,60 B.42,64 C.42, 74 D.74, 4211.下列结论中正确的是()A.若两个变量的线性关系性越强,则相关系数的绝对值越接近于0B.回归直线至少经过样本数据中的一个点C.独立性检验得到的结论一定正确D.利用随机变量2x来判断“两个独立事件,X Y的关系”时,算出的2x值越大,判断“,X Y 有关”的把握越大12.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为()参考公式附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.参考数据:A.130 B.190 C.240 D.250二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.从包括甲乙两人的6名学生中选出3人作为代表,记事件A:甲被选为代表,事件B:乙没有被选为代表,则()P B A │等于_________. 15.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.16.在10个形状大小均相同的球中有4个红球和6个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率为_________. 17.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.18.某团队派遣甲、乙、丙、丁四人分别完成一项任务,已知甲完成任务的概率为14,乙完成任务的概率为12,丙、丁完成任务的概率均为23,若四人完成任务与否相互独立,则至少2人完成任务的概率为____.19.现有A ,B 两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢1分,答错得0分;A 队中每人答对的概率均为23,B 队中3人答对的概率分别为23,23,13,且各答题人答题正确与否之间互不影响,若事件M 表示“A 队得2分”,事件N 表示“B 队得1分”,则()P MN =______.20.某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件A:“高一家长的满意度等级高于高二家长的满意度等级”,则事件A发生的概率为__________.三、解答题21.随着生活质量的提升,家庭轿车保有量逐年递增.方便之余却加剧了交通拥堵和环保问题.绿色出行引领时尚,共享单车进驻城市黄泽市有统计数据显示.2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年齡分为“年轻人”(20岁~391岁)和“非年轻人”( 19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的经常使用共享单车的称为“单车族”.使用次数为5次或不足5次的称为“非单车族”.已知在“单车族”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为400的样本,请你根据图表中的数据,补全下列22列联表,并判断是否有95%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表是“非年轻人”的人数为随机变量,X 求X 的分布列与期望. 参考数据:独立性检验界值表其中,()()()()()2,n ad bc n a b c d K a b c d a c b d -=+++=++++(注:保留三位小数). 22.奶茶是年轻人非常喜欢的饮品.某机构对于奶茶的消费情况在一商圈附近做了一些调查,发现女性喜欢奶茶的人数明显高于男性,每月喝奶茶的次数也比男性高,但单次奶茶消费金额男性似乎明显高于女性.针对每月奶茶消费是否超过百元进行调查,已知在调查的200人中女性人数是男性人数的4倍,统计如下:22⨯关?(2)在月消费超百元的调查者中,同时进行对于品牌喜好的调查.发现喜欢A 品牌的男女均为3人,现从喜欢A 品牌的这6人中抽取2人送纪念品,求这两人恰好都是女性的概率. 附:()()()()()22n ad bc K a b c d a c b d -=++++. 23.某工厂A ,B 两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,A ,B 生产线生产的产品为合格品的概率分别为p 和21(0.51)p p -.(1)从A ,B 生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求p 的最小值0p ;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的0p 作为p 的值. ①已知A ,B 生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从A ,B 生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为X ,求X 的分布列并估计该厂产量2000件时利润的期望值.24.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示: 停车时间 取车概率 停车人员 (0,2](2,3](3,4](4,5]甲12xxx乙1613y(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 25.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()g y 与尺寸(mm)x 之间近似满足关系式b y c x =⋅(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间(0.302,0.388)内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率; (2)根据测得数据作了初步处理,得相关统计量的值如下表:根据所给统计量,求y 关于x 的回归方程. 附:对于样本(),(1,2,,6)i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘法估计公式分别为:()()()1122211ˆnniii i i i nniii i v v u u v u nvubv v vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7183e ≈. 26.贝诺酯为对乙酰氨基酚与阿司匹林的酯化产物,是一种新型的抗炎、抗风湿、解热镇痛药,主要用于类风湿关节炎、急慢性风湿性关节炎、神经痛及术后疼痛.药监部门要利用小白鼠扭体实验,对某厂生产的该药品的镇痛效果进行检测,若用药后的小白鼠扭体次数没有减少,扭体时间间隔没有变长,则认定镇痛效果不明显. (1)若该药品对雌性小白鼠镇痛效果明显的概率为23,对雄性小白鼠镇痛效果明显的概率为45,药监部门要利用两只雌性和两只雄性小白鼠检测该药药效,对4只小白鼠逐一检测.若在检测过程中,一只小白鼠用药后镇痛效果明显,记录积分为1,镇痛效果不明显,则记录积分为1-.用随机变量X 表示检测4只小白鼠后的总积分,求随机变量X 的分布列和数学期望()E X ;(2)若该药品对每只雌性小白鼠镇痛效果明显的概率均为p ,现对6只雌性小白鼠逐一进行检测,当检测到镇痛效果不明显的小白鼠时,停止检测.设至少检测5只雌性小白鼠才能发现镇痛效果不明显的概率为()f p ,求()f p 最大时p 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B. 【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.2.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表, 得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.3.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论. 详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.A解析:A 【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140 分以上的概率为甲考140 分以上乙未考到140 分以上事件概率与乙考140 分以上甲未考到140 分以上事件概率的和,而 甲考140 分以上乙未考到140 分以上事件概率为14(1)25⨯-,乙考140 分以上甲未考到140 分以上事件概率为14(1)25-⨯,因此,所求概率为14(1)25⨯-1451(1)25102+-⨯==, 选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.5.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.6.D解析:D 【解析】分析:由题意1A ,2A ,3A是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A是两两互斥事件, ()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.7.A解析:A 【解析】第一种:甲答对,乙答错,此时概率为11315420⎛⎫⨯-=⎪⎝⎭;第二种:甲答错,乙答对,此时的概率为11415420⎛⎫-⨯= ⎪⎝⎭. 综上,两人中恰有一人答对的概率为347202020+=. 故选A.8.A解析:A 【解析】()()()()()22n ad bc K a b c d a c b d -=++++2110(1200400)7.82 6.63560506050-=≈>⨯⨯⨯所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”,选A.9.C解析:C 【解析】 经计算,()2230421681020101218K ⨯-⨯==⨯⨯⨯,27.87910.828K <<,对照数表知,在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响,故选C .点睛:本题考查了独立性检验的应用问题,是基础题;其解题步骤为:(1)认真读题,取出相关数据,作出22⨯列联表;(2)根据22⨯列联表中的数据,计算2K 的观测值k ;(3)通过观测值k 与临界值0k 比较,得出事件有关的可能性大小.10.B解析:B 【解析】因2163a +=,故42a =,又22a b +=,则64b = ,应选答案B 。
第一章 统计案例 测试题一、选择题 1.下列属于相关现象的是( ) A.利息与利率 B.居民收入与储蓄存款 C.电视机产量与苹果产量 D.某种商品的销售额与销售价格 2. 已知盒中装有 3 只螺口与 7 只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡, 电工师傅每次从中任取一只并不放回,则在他第 1 次抽到的是螺口灯泡的条件下,第 2 次抽到的是卡口灯泡的概率为 ( )3 2 7 7 A. B. C. D. 10 9 8 93. 如图所示,图中有 5 组数据,去掉组数据后(填字母代号),剩下的 4 组数据的线性相关性最大( )A. E B. C C. D D. A4. 得到如下结果( 单位: 人)根据表中数据,你认为吸烟与患肺癌有关的把握有( ) A. 90% B. 95% C. 99% D.100%5. 调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:晚上 白天 合计男婴 24 31 55 女婴 8 26 34 合计 32 57 89你认为婴儿的性别与出生时间有关系的把握为( )A. 80% B. 90% C. 95% D. 99%6. 已知有线性相关关系的两个变量建立的回归直线方程为 y = a + bx ,方程中的回归系数 b ( )A.可以小于 0 B.只能大于 0 C.可以为 0 D.只能小于 0 7. 每一吨铸铁成本 y c (元)与铸件废品率 x %建立的回归方程 y c = 56 + 8x ,下列说法正确的是( ) A.废品率每增加 1%,成本每吨增加 64 元B.废品率每增加 1%,成本每吨增加 8% C.废品率每增加 1%,成本每吨增加 8 元D.如果废品率增加 1%,则每吨成本为 56 元 8. 下列说法中正确的有:①若 r > 0 ,则 x 增大时,y 也相应增大;②若 r < 0 ,则 x 增大时,y 也相应增大;③若r = 1,或 r = -1,则 x 与 y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上( ) A.①② B.②③ C.①③ D.①②③9. 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与摄氏温度-5 04712151923273136热饮杯数15615013212813011610489937654A.100 B.143 C.200 D.243不患肺病 患肺病 合计 不吸烟 7775 42 7817 吸烟 2099 49 2148 合计 9874 91996510.甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:优秀不优秀合计甲班10 35 45乙班7 38 45合计17 73 90利用独立性检验估计,你认为推断“成绩与班级有关系”错误的概率介于()A.0.3~0.4 B.0.4~0.5 C.0.5~0.6 D.0.6~0.7二、填空题11.某矿山采煤的单位成本Y 与采煤量x 有关,其数据如下:则Y 对x 的回归系数.采煤量289 298 316 322 327 329 329 331 350 (千吨)单位成本43.5 42.9 42.1 39.6 39.1 38.5 38.0 38.0 37.0(元)12.对于回归直线方程 y=4.75x+257,当x=28时,y的估计值为.13.在某医院,因为患心脏病而住院的665 名男性病人中,有214 人秃顶;而另外772 名不=是因为患心脏病而住院的男性病人中有175 人秃顶,则2.3 114.设A、B 为两个事件,若事件A 和B 同时发生的概率为,在事件A 发生的条件下,事件B 发生的概率为,10 2 则事件A 发生的概率为.15.由一个 2*2 列联表中数据计算得2= 4.013 ,有把握认为两个变量有关系.三、解答题 1 1 116.国庆节放假,甲去北京旅游的概率为,乙、丙去北京旅游的概率分别为,.假定三人的行动相互之间没有影响,求这段时间内至少有1 人去北京旅3游的概率 4 517.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了 392 名成年人进行调查,所得数据如下表所示:积极支持教育改革不太赞成教育改革合计大学专科以上学历39 157 196大学专科以下学历29 167 196合计68 324 392对于教育机构的研究项目,根据上述数据能得出什么结论.18.1907 年一项关于 16 艘轮船的研究中,船的吨位区间位于 192 吨到3246 吨,船员的人数从 5 人到32 人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.(1)假定两艘轮船吨位相差 1000 吨,船员平均人数相差多少?(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?19.假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线(1)(2)求出这些数据的回归方程;(3)对于这个例子,你如何解释回归系数的含义?(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从 3~16 岁身高的年均增长数.(5)解释一下回归系数与每年平均增长的身高之间的联系.20.某个服装店经营某种服装,在某周内获纯利 y(元),与该周每天销售这种服装件数 x 之间的一组数据关系见表:7已知∑ x 2= 280 , ∑ y 2= 45309 , ∑ x y= 3487 .(1) i 求=1ix ,y ;ii =1 i ii =1(2) 画出散点图; (3) 判断纯利 y 与每天销售件数 x 之间是否线性相关,如果线性相关,求出回归方程.2 3 21. 甲、乙两人各射击一次,击中目标的概率分别是 和 .假设两人射击是否击中目标相互之间没有影响;每人各3 4次射击是否击中目标,相互之间也没有影响.(1) 求甲射击 4 次,至少有 1 次未击中目标的概率;(2) 假设某人连续 2 次未击中目标,则中止其射击.问:乙恰好射击 5 次后,被中止射击的概率是多少?第一章 统计案例检测题答案一、选择题1-5 BDACB 6-10 ACCBB二、填空题 11. -0.1229 3 12.39013. 16.37314. 约为 6.323cm ;(5)回归系数与每年平均增长的身高之间近似相等. 15. 95%四、解答题20. 解 : ( 1)x =3 +4 +5 +6 +7 +8 +9 = 6 ,716. 1 1 166 + 69 + 73 + 81+ 89 + 90 + 91解:因甲、乙、丙去北京旅游的概率分别为 ,, .3 4 52 3 4y = ≈ 79.86 ;7(2) 略; 因此,他们不去北京旅游的概率分别为 ,,,所以,3 4 52 3 4 3(3)由散点图知,y 与 x 有线性相关关系, 至少有 1 人去北京旅游的概率为 P =1- × × = .3 4 5 5 2 392⨯ (39⨯167 -157 ⨯ 29)2设回归直线方程: y = bx + a , 17. 解: K = 196⨯196⨯ 68⨯ 324≈ 1.78 .3487 - 7 ⨯ 6⨯ 559 7 133因为1.78 < 2.706 ,所以我们没有理由说人具有大学专 b = 280 - 7 ⨯ 36= = 4.75 ,28科以上学历(包括大学专科)和对待教育改革态度有关.18. 解:由题意知:(1)船员平均人数之差=0.006×吨位之差=0.006×1000=6, ∴船员平均相差 6 人;a = 79.86 - 6⨯ 4.75 = 51.36 . ∴回归直线方程 y = 4.75x + 51.36 .21.解:(1)记“甲连续射击 4 次至少有 1 次未击中目标”为事件 A 1.由题意,射击 4 次,相当于作 4 次独立重复试验.2 65 故 P (A 1)=1-P (A 1)=1-( )4= ,( 2) 最小的船估计的船员数为: 9.1+0.006× 192=9.1+1.152=10.252≈10(人).最 大 的 船 估 计 的 船 员 数 为 : 9.1+0.006× 3246=9.1+19.476=28.576≈28(人). 19.解:(1)数据的散点图如下:(2) 用 y 表 示身高,x 表示年龄,则数据的回归3 81所以甲连续射击 4 次至少有一次未击中目标的概率为65. 1(2)记“乙恰好射击 5 次后被中止射击”为事件 A 3,“乙第 i 次射击未击中”为事件 D i (i =1,2,3,4,5),则 1 A 3=D 5D 4·D 3·(D 2D 1),且 P (D i )= .4 由于各事件相互独立,故 P (A 3)=P (D 5)·P (D 4)·P (D 3)·P (D 2D 1) 1 1 3 1 1 45 = × × ×(1- × )= . 4 4 4 4 4 1 02445方程为 y =6.317x +71.984;(3) 在该例中,回归系数 6.317 表示该人在一年中增加的高度;(4) 每年身高的增长数略.3~16 岁身高的年均增长数 所以乙恰好射击 5 次后被中止射击的概率为 .1 02458。
一、选择题1.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以20:领先,则下列说法中错误的是( ) A .甲队获胜的概率为827B .乙队以30:获胜的概率为13 C .乙队以三比一获胜的概率为29D .乙队以32:获胜的概率为492.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9163.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是( ) A .0.216B .0.36C .0.352D .0.6484.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:2()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .185.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表学习成绩不优秀 16 2 18 合计201030经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%6.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13D .297.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .598.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1159.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1x y a a =+-图象不经过第二象限的概率为( ) A .0.3750 B .0.3000C .0.2500D .0.200010.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .411.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;12.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.0050k 2.072 2.706 3.841 5.024 6.635 7.879A .130B .190C .240D .250二、填空题13.每次同时抛掷质地均匀的硬币4枚,抛n 次()*2,n n N ∈,各次结果相互独立,记出现至少有1枚硬币面朝上的次数为X ,若()5E X >,则n 的最小值为________. 14.下列命题中:①已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,则点P 的轨迹是一个圆; ②已知(2,0),(2,0),||||3M N PM PN --=,则动点P 的轨迹是双曲线; ③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;④在平面直角坐标系内,到点(1,1)和直线23x y +=的距离相等的点的轨迹是抛物线; 正确的命题是_________. 15.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.16.4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区进行了“经常使用共享单车与年龄关系”的调查,得下列22⨯列联表:年轻人 非年轻人 合计 经常使用单车用户 100 20 120 不常使用单车用户 60 20 80 合计16040200则得到的2χ=__________.(小数点后保留一位) (附:()()()()()22χ-=++++n ad bc a b c d a c b d )17.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)18.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.19.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bc a b c d a c b d -++++.) 20.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知lg 20.3010=,lg30.4771=) 三、解答题21.为激活国内消费布场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图,如图所示.(1)求出频率分布直方图中的a 值和这200人的平均年龄;(2)从第2,3,5组中用分层抽样的方法抽取12人,并再从这12人中随机抽取3人进行电话回访,求这三人恰好属于不同组别的概率;(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否“购买力强人群”与年龄有关? 附:()20P K K 0.1500.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.828()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++ 22.某研究所在研究某种零件的使用寿命和维护成本的关系时,得到以下数据: 零件寿命x (月) 1 3 5 7 9 维护成本y (千元)102560105170(1)若x 与y 之间存在线性相关关系y a bx =+①,试估计a ,b 的值a ,b ; (2)若x 与y 之间存在非线性相关关系2y c dx =+②,可按与(1)类似的方法得到8c =,2d =,且模型②残差平方和为6.计算模型①的残差平方和,并指出哪个模型的拟合效果更好;(3)利用(2)中拟合效果较好的模型,计算当零件使用多少个月时报废,可使得零件的性价比(即零件寿命与维护成本的比值)最高.参考公式:若()(),1,2,,i i x y i n =⋅⋅⋅是线性相关变量x ,y 的n 组数据,其回归直线y a bx =+的斜率和截距的最小二乘估计分别为:()()()121ˆˆˆni i i nii x x y y b x x ay bx ==⎧--⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑. 23.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:(Ⅰ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.()()()()()22n ad bc K a b c d a c b d -=++++24.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表)(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价.参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155,18.8, 6.8 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.25.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若||0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系: 周光照量X (单位:小时)3050X << 5070X ≤≤70X >光照控制仪最多可运行台数 321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式()()niix x y y r --=∑0.55≈,0.95≈.26.在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不少于120分的有10人,统计成绩后得到如下22⨯列联表:(1)请完成上面22⨯列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,其中每周线上学习时间不足5小时的人数为X ,求X 的分布列及其数学期望. (下面的临界值表供参考)(参考公式()()()()()22n ad bc K a b c d a c b d -=++++其中n a b c d =+++)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜;B ,乙队以3:0获胜,即第4局乙获胜;C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜;D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输.【详解】解:对于A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜, 所以甲队获胜的概率为3128()327P ==,故正确; 对于B ,乙队以3:0获胜,即第4局乙获胜,概率为13,故正确; 对于C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜,概率为212339⨯=,故正确;对于D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输, 所以乙队以3:2获胜的概率为221433327⨯⨯=,故错. 故选:D . 【点睛】本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于中档题.2.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.3.C解析:C【解析】 【分析】先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。
专题8 第1讲统计与统计案例一、选择题1.(2011·湛江测试)某学校进行问卷调查,将全校4200名同学分为100组,每组42人按1~42随机编号,每组的第34号同学参与调查,这种抽样方法是() A.简单随机抽样B.分层抽样C.系统抽样D.分组抽样[答案] C[解析]一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.2.(文)(2011·重庆文,4)从一堆苹果中任取10只,称得它们的质量如下(单位:克):12512012210513011411695120134则样本数据落在[114.5,124.5)内的频率为()A.0.2 B.0.3C.0.4 D.0.5[答案] C[解析]在[114.5,124.5]范围内的频数m=4,样本容量n=10,∴所求频率410=0.4. (理)(2011·四川理,1)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5) 4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是()A.16B.13C.12D.23[答案] B[解析]因为[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3故[31.5,43.5)的概率为12+7+366=13,故选B.3.(2011·山东理,7)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额大约为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元[答案] B[解析] 依题意:x =3.5,y =42, 又b ^=9.4,∴42=9.4×3.5+a ^. 而a ^=9.1,∴y ^=9.4x +9.1, 当x =6时,y ^=65.5,故选B.4.(2011·大连模拟)某养兔场引进了一批新品种,严格按照科学配方进行喂养,四个月后管理员称其体重(单位:kg),将有关数据进行整理后分为五组,并绘制频率分布直方图(如图所示).根据标准,体重超过6kg 属于超重,低于5kg 的不够分量.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.20,0.10,0.05,第二小组的频数为400,则该批兔子的总数和体重正常的频率分别为( )A .1000,0.50B .800,0.50C .800,0.60D .1000,0.60[答案] D[解析] 第二组的频率为1-0.25-0.20-0.10-0.05=0.40,所以兔子总数为4000.40=1000只,体重正常的频率为0.40+0.20=0.60.故选D.5.(文)(2011·江西文,7)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x ,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x[答案] D[解析] 由图可以不难发现众数为5.中位数为5+62=5.5,平均值x =2×3+4×3+5×10+6×6+7×3+8×2+9×2+10×230=17930(理)(2011·江西理,6)变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0 B. 0<r 2<r 1 C. r 2<0<r 1 D .r 2=r 1[答案] C[解析] 对于第一组数据x -=10+11.3+11.8+12.5+135=11.75,y -=1+2+3+4+55=3.∑i =15(x i -x -)(y i -y -)=(x 1-x -)(y 1-y -)+(x 2-x -)(y 2-y -)…(x 5-x -)(y 5-y -)=1.75×(-2)+(-0.45)×(-1)+0.05×0+0.75×1+1.25×2=0.2. ∑i =15(x i -x -)2=(x 1-x -)2+(x 2-x -)2+…+(x 5-x -)2=1.752+(-0.45)2+0.052+0.752+1.252=5.3925.∑i =15(y i -y -)2=(y 1-y -)2+(y 2-y -)2+…+(y 5-y -)2=(-2)2+(-1)2+02+12+22=10, 代入公式中有r 1=0.25.3925×10=0.27.09≈0.0282.同理r 2中∑i =15(x i -x -)(y i -y -)=-4.36<0,故r 2<0,∴r 2<0<r 1,故选C.6.(2011·湖南理,4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” [答案] C[解析] ∵6.635<K 2=7.8<10.828,∴我们有99%的把握认为二者有关,或者说在犯错的概率不超过1%的前提下二者有关. 7.(2011·合肥二检)甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差. 上面说法正确的是( ) A .③④ B .①②④ C .②④ D .①③④[答案] A[解析] 由茎叶图知甲同学的成绩为72,76,80,82,86,90;乙同学的成绩为69,78,87,88,92,96.故甲同学成绩的中位数小于乙同学成绩的中位数,①错;计算得甲同学的平均分为81,乙同学的平均分为85,故甲同学的平均分比乙同学的平均分低,因此②错、③对;计算得甲同学成绩的方差小于乙同学成绩的方差,故④对.所以说法正确的是③④,选A.8.(2011·东北四市联考)在2011年5月1日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:y ^=-3.2x +a (参考公式:回归方程y ^=bx +a ,a =y --b x -),则a =( )A .-24B .35.6C .40.5D .40[答案] D[解析] 价格的平均数是x -=9+9.5+10+10.5+115=10,销售量的平均数是y -=11+10+8+6+55=8,由y ^=-3.2x +a 知b =-3.2,所以a =y --b x -=8+3.2×10=40,故选D.二、填空题9.(2011·湖北文,11)某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市________家.[答案] 20[解析] 属简单题,关键是清楚每一层的抽取比例都一样是n N.由于所有超市共计200+400+1400=2000家,需抽取100家,则抽取比例为1002000所以中型超市抽取400×1002000=20家.10.(文)(2011·广东文,13)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这56号打6小时篮球的投篮命中率为________.[答案] 0.5 0.53[解析] 小李这5天的平均投篮命中率y =0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的投篮命中率约为0.53.(理)(2011·广东理,13)某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.[答案] 185[解析] 设儿子身高y 与父亲身高x 有关系,列表如下:∵x =13(173+170+176)=173,y =13+176+182)=176,∑i =13x i y i =173×170+170×176+176×182=91362,∑i =13x 2i =1732+1702+1762=89805, ∴b ^=91362-3×173×17689805-3×1732=1,a ^=y -b ^x =176-173=3 ∴回归直线方程为y ^=x +3, ∴x =182时,y ^=182+3=185(cm).11.(文)(2011·西城抽样)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则这200名同学中成绩大于等于80分且小于90分的学生有________名.[答案] 40[解析] 由题知,成绩大于等于80分且小于90分的学生所占的频率为1-(0.005×2+0.025+0.045)×10=0.2,所以这200名同学中成绩大于等于80分且小于90分的学生有200×0.2=40名.(理)(2011·福州二检)若样本a 1,a 2,a 3,a 4,a 5的方差是3,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的方差是________.[答案] 12[解析] 若a -表示样本a 1,a 2,a 3,a 4,a 5的均值,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的均值为2a -+3.又15∑i =15 (a i -a -)2=3,∴15∑i =15[(2a i +3)-(2a -+3)]2=15∑i =15 (2a i -2a -)2=12. 12.把容量为1000的某个样本数据分为10组,并填写频率分布表.若前3组的频率依次构成公差为0.05的等差数列,且后7组的频率之和是0.79.则前3组中频率最小的一组的频数是________.[答案] 20[解析] 设前3组中频率最小的一组的频率是x .由题意得前3组的频率之和是1-0.79=0.21,则x +(x +0.05)+(x +0.05×2)=0.21,由此解得x =0.02,即前3组中频率最小的一组的频率是0.02,相应的频数是0.02×1000=20.三、解答题13.(2010·广东文,17)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.[解析](1)由于大于40岁的42人中有27人收看新闻节目,而20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关.(2)27×545=3,∴大于40岁的观众应抽取3名.(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a1,a2,大于40岁的为b1,b2,b3,从中随机取2名,基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共十个,设恰有一名观众年龄在20至40岁为事件A,则A中含有基本事件6个:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),∴P(A)=610=3 5.14.(文)(2011·郑州二次质检)某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:(1)试分析估计两个班级的优秀率;(2)由以上统计数据填写下面2×2列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.参考公式及数据:K2=(a+b)(c+d)(a+c)(b+d),[解析] 甲班优秀人数为30人,优秀率为3050=60%,乙班优秀人数为25人,优秀率为2550=50%,所以甲、乙两班的优秀率分别为60%和50%. (2)因为K 2=100×(50×50×55×45=99≈1.010,所以由参考数据知,没有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.(理)(2011·广东广州)某校高三(1)班的一次数学测试成绩的茎叶图如图所示和频率分布直方图如图所示,都受到不同程度的破坏,但可见部分如下,据此回答如下问题:(1)求全班人数;(2)求分数在[80,90)之间的人数;并计算频率分布直方图中[80,90)间的矩形的高; (3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.[解析] (1)由茎叶图知,分数在[50,60)之间的频数为2,由频率分布直方图知,分数在[50,60)之间的频率为0.008×10=0.08,所以,全班人数为20.08=25(人).(2)分数在[80,90)之间的人数为25-2-7-10-2=4人,分数在[80,90)之间的频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(3)将[80,90)之间的4个分数编号为1,2,3,4;[90,100]之间的2个分数编号为5,6. 则在[80,100)之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个,其中至少有一个在[90,100]之间的基本事件有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)共9个,故至少有一份分数在[90,100]之间的概率是915=35.15.(2011·安徽文,20)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求的直线方程预测该地2012年的粮食需求量.[解析] 由所给数据分析,年需求量与年份之间近似直线上升,可对数据进行预处理如下表对预处理后的数据,容易算出x =0,y =3.2∑i =15x i y i =-4×(-21)+(-2)×(-11)+2×19+4×29=260∑i =15x 2i =16+4+0+4+16=40∴b ^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=26040=6.5,∴a ^=y -b ^x =3.2 ∴所求回归直线方程y -257=6.5(x -2006)+3.2即y =6.5(x -2006)+260.2(2)当x =2012时,y =6.5(2012-2006)+260.2=299.2万吨=300万吨 故预测2012年粮食需求量约为300万吨.。
一、选择题1.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e2.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是( ) A .①回归分析,②取平均值 B .①独立性检验,②回归分析 C .①回归分析,②独立性检验D .①独立性检验,②取平均值3.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:2()P K k≥0.0500.0250.0100.0050.001k 3.841 5.024 6.6357.87910.828由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是() A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关5.某中学共有5000人,其中男生3500人,女生1500人,为了了解该校学生每周平均体育锻炼时间的情况以及该校学生每周平均体育锻炼时间是否与性别有关,现在用分层抽样的方法从中收集300位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如下:附:22()=()()()()n ad bcKa cb d a d b c-++++,其中n a b c d=+++.2()P K k≥0.100.050.010.005k 2.706 3.841 6.6357.879已知在样本数据中,有60位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理,我们()A.没有理由认为“该校学生每周平均体育锻炼时间与性别有关”B.有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C.有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有99.5%的把握认为“该校学生每周平均体育锻炼时间与性别有关”6.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘” 能做到“光盘” 男 45 10 女3015则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()20P K k ≥0.100 0.050 0.010 0.001 0k 2.7063.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%7.为了普及环保知识,增强环保意识,随机抽取某大学30名学生参加环保知识测试,得分如图所示,若得分的中位数为m e ,众数为m 0,平均数为x -,则( )A .m e =m 0=x -B .m 0<x -<m e C .m e <m 0<x -D .m 0<m e <x -8.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:心脏病 无心脏病 秃发 20 300 不秃发5450根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0019.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=12;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.其中正确的说法是()A.①④B.②③C.①③D.②④10.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差 B.回归分析C.独立性检验 D.概率11.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由()()()()()22n ad bcka b c d a c b d-=++++并参照附表,得到的正确结论是A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”12.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K=,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是()2()P K k≥…0.250.150.100.0250.0100.005…k… 1.323 2.072 2.706 5.024 6.6357.879…A.90%B.95%C.97.5%D.99.5%二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A:“甲、乙中至少一人击中目标”与事件B:“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______.14.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关,随机调查了观看该节目的观众110名,得到如下的2×2列联表:试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”.参考附表:(参考公式:K2=()()()()()2n ad bca b c d a c b d-++++,其中n=a+b+c+d)15.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案.若某用户每月上网时间为66小时,应选择__________方案最合算.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x 之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则= . 月 份x 1 2 3 4 用水量y4.5432.517.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到22⨯列联表:喜欢 不喜欢 总计 男 15 10 25 女520 25 总计 203050(参考公式22()()()()()n ad bc k a b c d a c b d -=++++,()n a b c d =+++)20()P K k ≥ 0.010 0.005 0.0010k 6.635 7.879 10.828则有___________以上的把握认为“喜欢足球与性别有关”.18.为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:理科 文科 总计 男 13 10 23 女 7 20 27 总计203050已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到≈4.844,则认为选修文理科与性别有关系出错的可能性约为________. 19.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.20.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.三、解答题21.为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米): 男:173 178 174 185 170 169 167 164 161 170 女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值;(2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异? 人数 男生 女生身高h ≥ 身高h <参照公式:()()()()()22n ad bc k a b c d a c b d -=++++()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.22.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,23.某科研小组为了验证一种治疗新冠肺炎的新药的效果,选60名患者服药一段时间后,记录了这些患者的生理指标x 和y 的数据,并统计得到如下的22⨯列联表(不完整):在生理指标 1.8x >的人中,设A 组为生理指标65y ≤的人,B 组为生理指标65y >的人,将他们服用这种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16,17,19. B 组:12,13,14,15,16,17,20,21,25.(1)填写上表,并判断是否有95%95%的把握认为患者的两项生理指标x 和y 有关系; (2)从A ,B 两组人中随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,求乙的康复时间比甲的康复时间长的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)20k0.2524.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.25.某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:(1)请问是否有90%的把握认为该球员射门成功与射门距离是否超过30米有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++.(2)当该球员距离球门30米射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为([0,])2πθθ∈,其射门成功率为2+3()cos sin 4f θθθθθ=+⋅-,求该球员射门成功率最高时射门角θ的值.26.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:(1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e=.故选:B.【点睛】本题考查非线性回归问题的转化,是基础题.2.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.D解析:D【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++,分别利用4个选项中所给数据求出2K的值,比较所求值的大小即可得结果.【详解】选项A:22160(535155)3204010502K⨯⨯-⨯==⨯⨯⨯,选项B:22260(5251515)152040204016K⨯⨯-⨯==⨯⨯⨯,选项C:22360(5201520)24204025357K⨯⨯-⨯==⨯⨯⨯,选项D:22 460(5101530)96 204035257K⨯⨯-⨯==⨯⨯⨯,可得222431K K K>>22K>,所以由选项D中的数据得到的2K值最大,说明X与Y有关系的可能性最大,故选D.【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2K越大两个变量有关的可能性越大这一性质.4.D解析:D【解析】【分析】由题意结合独立性检验的结论和临界值表给出结论即可.【详解】根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.本题选择D选项.【点睛】本题主要考查独立性检验的思想及其应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B【解析】分析:根据题设收集的数据,得到男生学生的人数,进而得出22⨯的列联表,利用计算公式,求解2K的值,即可作出判断.详解:由题意得,从5000人中,其中男生3500人,女生1500人,抽取一个容量为300人的样本,其中男女各抽取的人数为35003002105000⨯=人,1500300905000⨯=人,又由频率分布直方图可知,每周体育锻炼时间超过4小时的人数的频率为0.75,所以在300人中每周体育锻炼时间超过4小时的人数为3000.75225⨯=人,又在每周体育锻炼时间超过4小时的人数中,女生有60人,所以男生有22560165-=人,可得如下的22⨯的列联表:结合列联表可算得22300(456016530)4.762 3.8412109075225K⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”,故选B.点睛:本题主要考查了独立性检验的基础知识的应用,其中根据题设条件得到男女生的人数,得出22⨯的列联表,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力.6.A解析:A【解析】分析:根据列联表中数据代入公式计算k 的值,和临界值表比对后即可得到答案. 详解:将列联表中数据代入公式可得()210045153010 3.030 2.70675255545k ⨯⨯-⨯=≈>⨯⨯⨯,所以有0090的把握认为“该市居民能否做到‘光盘’”与性别有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)7.D解析:D 【解析】由条形图知,30名学生的得分情况依次为2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分,中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现的次数最多,故众数为m 0=5,平均数为x =130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97,故m 0<m e <x . 故答案为D.点睛:这个题目考查的是条型分布直方表的应用,以及基本量:均值,平均数的考查;一般在这类图中平均数就是将数据加到一起除以数据的个数即可,在频率分布直方表中是取每个长方条的中点乘以相应的频率并相加即可.8.D解析:D 【解析】010.828,10.0010.99999.90k ≥∴-==,则有0099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.B解析:B 【解析】①中各小长方形的面积等于相应各组的频率;②正确,相关指数R 2越大,拟合效果越好,R 2越小,拟合效果越差;③随机变量ξ服从正态分布N (4,22),正态曲线对称轴为x =4,所以P (ξ>4)=;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则说明“X 与Y 有关系”的犯错误的概率越大.故选B.10.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 考点:独立性检验的意义.11.A解析:A 【解析】()22110403020207.8 6.63560506050k ⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“爱好游泳运动与性别有关”,所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”12.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。
统计与统计案例练习题与知识点总结1.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距.2.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.828【答案】(1)75%;60%;(2)能.【分析】本题考查频率统计和独立性检验,属基础题,根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为15075% 200=,乙机床生产的产品中的一级品的频率为12060% 200=.(2)()22400150801205040010 6.63527013020020039K⨯-⨯==>>⨯⨯⨯,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.1.随机抽样(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.用样本的频率分布估计总体分布(1)在频率分布直方图中,纵轴表示频率/组距,数据落在各小组内的频率用各小长方形的面积表示.各小长方形的面积的总和等于1.(2)频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.(3)茎叶图茎是指中间的一列数,叶是从茎的旁边生长出来的数.3.用样本的数字特征估计总体的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x=x1+x2+…+x nn,反映了一组数据的平均水平.(4)标准差:是样本数据到平均数的一种平均距离,s=1[x1-x2+x2-x2+…+x n-x2].n[(x1-x)2+(x2-x)2+…+(x n-x)2](x n是样本数据,n是样本容量,x是样本平均数).(5)方差:s2=1n4.相关关系与回归方程(1)相关关系的分类①正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.②负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(2)线性相关关系如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(3)回归方程①最小二乘法求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法.②回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数.(4)回归分析①定义:对具有相关关系的两个变量进行统计分析的一种常用方法.②样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中(x ,y )称为样本点的中心.③相关系数当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.5.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为2×2列联表y 1y 2总计x 1a b a +b x 2c d c +d 总计a +cb +da +b +c +d构造一个随机变量K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d 为样本容量.(3)独立性检验:利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验.1.如图为国家统计局2021年1月19日发布的2020年各季度社会消费品零售总额及增速,则下列说法:①各季度社会消费品零售总额增速最快的是4季度;②各季度社会消费品零售总额增速最快的是2季度;③各季度社会消费品零售总额增量最大的是4季度;④各季度社会消费品零售总额增量最大的是2季度.其中所有正确说法的序号为()A.①④B.②③C.①③D.②④2.下图是2020年我国居民消费价格月度涨跌幅度图(来源于国家统计局网站)下列说法错误的是()A.1~12月月度同比的平均值为2.55B .1~12月月度环比的平均值为负数C .1~12月月度同比整体为下降趋势D .1~12月月度环比的方差大于月度同比的方差3.已知相关变量x 和y 的散点图如图所示,若用()11ln y b k x =⋅与22y kx b =+拟合时的相关系数分别为12,r r 则比较12,r r 的大小结果为()A .12r r >B .12r r =C .12r r <D .不确定4.下列说法中错误的个数是①某校共有女生2021人,用简单随机抽样的方法先剔除21人,再按系统抽样的方法抽取为200人,则每个女生被抽到的概率为110;②由样本数据得到的回归直线方程y bx a =+$$$必经过样本中心点()x y ;③如果落在回归直线上的样本点越多,则回归直线方程的拟合效果就越好;④在一个2×2列联表中,由计算得出220.21K =,而()210.8280.001P K ≥≈,则在犯错误的概率不超过0.001的前提下认为这两个变量之间有相关关系.()A .1B .2C .3D .45.质检机构为检测一大型超市某商品的质量情况,从编号为1~120的该商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号67的商品,则下列编号一定被抽到的是()A .112B .53C .38D .96.2020年是全面实现小康社会目标的一年,也是全面打赢脱贫攻坚战的一年,某研究性学习小组调查了某脱贫县的甲、乙两个家庭,对他们过去6年(2014年到2019年)的家庭收入情况分别进行统计,发现他们的收入逐年增长,得到这两个家庭的年人均纯收入(单位:百元/人)茎叶图.对甲、乙两个家庭的年人均纯收入(以下分别简称“甲”“乙”)情况的判断,不正确的是()A.过去的6年,“甲”的极差小于“乙”的极差B.过去的6年,“甲”的平均值小于“乙”的平均值C.过去的6年,“甲”的中位数小于“乙”的中位数D.过去的6年,“甲”的平均增长率小于“乙”的平均增长率7.为了普及新冠肺炎知识,增强疫情防控意识,某学校从高一和高二两个年级各抽取5位同学参加新冠肺炎知识测试,得分(十分制)情况如下表所示,则下列描述正确的是()高一年级组高二年级组得分45678得分569频数11111频数311A.高一年级组数据的平均数为6分,高二年级组数据的平均数为5分B.两组数据的中位数都是6分C.高一年级组数据的极差小于高二年级组数据的极差D.高一年级组成绩的方差小于高二年级组成绩的方差8.某中学2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:则下列结论正确的是()A.与2015年相比,2018年一本达线人数减少B .与2015年相比,2018年二本达线人数增加了0.5倍C .2015年与2018年艺体达线人数相同D .与2015年相比,2018年不上线的人数有所增加9.m 个数据的平均数为a ,中位数为b ,方差为c .若将这m 个数据均扩大到原来的2倍得到一组新数据,则下列关于这组新数据的说法正确的是()A .平均数为aB .中位数为2bC D .方差为2c10.已知变量y 关于x 的回归方程为0.5bx y e -=,其一组数据如表所示:若5x =,则预测y 值可能为()x1234ye3e 4e 6e A .5e B .112e C .7e D .152e 11.给出下列说法:①回归直线ˆˆˆy bx a =+恒过样本点的中心(x y ,且至少过一个样本点;②两个变量相关性越强,则相关系数||r 就越接近1;③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy 平均减少0.5个单位.其中说法正确的是()A .①②④B .②③④C .①③④D .②④12.在一次对性别与是否说谎有关的调查中,得到如下数据,根据表中数据判断如下结论中正确的是()性别说谎不说谎总计男6713女8917总计141630A .在此次调查中有95%的把握认为是否说谎与性别有关B .在此次调查中有99%的把握认为是否说谎与性别有关C .在此次调查中有99.5%的把握认为是否说谎与性别有关D .在此次调查中没有充分证据显示说谎与性别有关13.下列四个命题中,正确的有()①两个变量间的相关系数r 越小,说明两变量间的线性相关程度越低;②命题“x ∃∈R ,使得210x x ++<”的否定是:“对x ∀∈R ,均有210x x ++>”;③命题“p g ∧为真”是命题“p q ∨为真”的必要不充分条件;④若函数322()3f x x ax bx a =+++在1x =-有极值0,则2a =,9b =或1a =,3b =.A .0B .1C .2D .314.某中学共有1000人,其中男生700人,女生300人,为了了解该校学生每周平均体育锻炼时间的情况以及经常进行体育锻炼的学生是否与性别有关(经常进行体育锻炼是指:周平均体育锻炼时间不少于4小时),现在用分层抽样的方法从中收集200位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如图.已知在样本数据中,有40位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理()附:()()()()()22n ad bc K a c b d a d b c -=++++,其中n a b c d =+++.()20P K k ≥0.100.050.010.0050k 2.7063.8416.6357.879A .有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”B .有90%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C .有90%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”15.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2B.0.4C.0.5D.0.616.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01B.0.1C.1D.1017.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.5,5B.3,5C.3,7D.5,718.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次[0,200](200,400](400,600]空气质量等级1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.0500.0100.001k 3.841 6.63510.82819.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.P(K2≥k)0.0500.0100.001k 3.841 6.63510.82820.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:是否需要志愿性别男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:1.C 【分析】根据折线统计图比较各季度社会消费品零售总额增速,可判断①②的正误;计算各季度社会消费品零售总额增量,可判断③④的正误.【详解】第1季度社会消费品零售总额增速为19.0%-,第2季度社会消费品零售总额增速为 3.9%-,第3季度社会消费品零售总额增速为0.9%,第4季度社会消费品零售总额增速为4.6%,故①正确,②错误;第2季度社会消费品零售总额增量为9.377.86 1.51-=(万亿元),第3季度社会消费品零售总额增量为10.119.370.74-=(万亿元),第4季度社会消费品零售总额增量为11.8710.11 1.76-=(万亿元).故③正确,④错误.故选:C.2.D 【分析】根据图表数据计算平均数,然后判断A 和B ;根据图表数据的变化趋势判断C 和D.【详解】同比平均数:()5.4 5.2 4.3 3.3 2.4 2.5 2.7 2.4 1.70.50.50.72.5512++++++++++-+=,环比平均数:()()()()()()1.40.8 1.20.90.80.10.60.40.20.30.60.20.02512++-+-+-+-++++-+-+=-,1-12月月度同比的平均值为2.55,选项A 正确;1~12月月度环比的平均值为0.025-,选项B 正确;观察图表可以得出,1~12月月度同比整体为下降趋势,选项C 正确;1~12月月度环比的波动小于月度同比的波动,选项D 错误.故选:D .3.C 【分析】由散点图可知,对数形式的拟合程度高,再根据负相关,比较两个相关系数大小.【详解】由散点图可知,()11ln y b k x =拟合比用22y k x b =+拟合的程度高,故12r r >;又因为此关系为负相关,1212,r r r r ∴->-<故选:C 4.B 【分析】由古典概型的特征可判断①;由回归直线方程的特征可判断②③;由独立性检验思想可判断④.【详解】①错误,古典概率中,每个个体被抽的概率都是一样的,都等于2002021;②正确由回归直线方程的特征可知回归直线方程y bx a =+$$$必经过样本中心点(),x y ;③错误,落在回归直线附近的样本点越多,则回归直线方程的拟合效果越好;④正确,当220.21K =,而()210.8280.001P K ≥≈,则在犯错误的概率不超过0.001的前提下认为这两个变量之间有相关关系所以错误个数为2.故选:B.5.A 【分析】根据系统抽样的特征,结合所给编号求出第一组抽取商品编号,即可求解.【详解】由题意知,组距为120158=,设第一组抽取编号为k ,则第n 组抽取的编号为15(1)n k -+,样本中含有编号67的商品,即15(51)67k ⨯-+=,可得7k =,因为1577112⨯+=,即第8组中抽取商品的编号为112.故选:A 6.B 【分析】对茎叶图进行数据分析,分别计算极差、平均数、中位数、及平均增长率,依次判断四个选项.【详解】对于A ,甲的极差为42366-=,乙的极差为41347-=,所以“甲”的极差小于“乙”的极差,A 正确;对于B ,甲的平均数是1230(363737384042)66⨯+++++=,乙的平均数为1228(343638394041)66⨯+++++=,所以“甲”的平均值大于“乙”的平均值,B 错误;对于C ,甲的中位数是1(3738)37.52⨯+=,乙的中位数是1(3839)38.52⨯+=,所以,“甲”的中位数小于“乙”的中位数,C 正确;对于D ,设过去6年甲的平均增长率为x ,则()636142x +=,解得:1x =-,即过去61-;1-.因为42413634<,所以“甲”的平均增长率小于“乙”的平均增长率,D 正确.故选:B.7.D 【分析】根据表中数据,依次讨论各选项即可得答案.【详解】对于A 选项,高一年级和高二年级的平均分均为6分,故A 选项错误;对于B 选项,高一年级的中位数是6,高二年级的中位数是5,故B 选项错误;对于C 选项,高一年级的极差为4,高二年级的极差为3,故高一年级组数据的极差大于高二年级组数据的极差,故C 选项错误;对于D 选项,高一年成绩的方差为()()()()()2222221465666768625S ⎡⎤=-+-+-+-+-=⎣⎦,高二年级成绩的方差为()()()222213566696 2.45S ⎡⎤=-+-+-=⎣⎦,满足,故D 选项正确;故选:D 8.D 【分析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S ,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到【详解】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S.对于选项A :2015年一本达线人数为0.28S ,2018年一本达线人数为0.24×1.5S =0.36S ,可见一本达线人数增加了,故A 错误;对于选项B :2015年二本达线人数为0.32S ,2018年二本达线人数为0.4×1.5S =0.6S ,显然2018年二本达线人数不是增加了0.5倍,故B 错误;对于选项C :2015年和2018年艺体达线率没变,但是人数是不相同的,故C 错误;对于选项D :2015年不上线人数为0.32S ,2018年不上线人数为0.28×1.5S=0.42S ,不达线人数有所增加,故D 正确.故选:D 9.B 【分析】m 个12,,,n x x x 数据的平均数为a ,中位数为b ,方差为c .若将这m 个数据均扩大到原来的2倍得到一组新数据122,2,,2n x x x ,根据平均数、中位数、方差、标准差的定义进行判断即可.【详解】m 个12,,,n x x x 数据的平均数为a ,中位数为b ,方差为c .若将这m 个数据均扩大到原来的2倍得到一组新数据122,2,,2n x x x ,则由于平均数为所有数之和除以m ,故平均数变为2a ,故A 错;中位数为这组数从小到大排列后中间的那个数或中间两数和的平均数,由于每个数都变为原来2倍,所以中位数也变为原来的2倍,即2b ,故B 对;方差描述的是这组数的波动情况,12,,,n x x x 的方差为c ,则122,2,,2n x x x 的方差为224c c =2c =,故C,D 错;故选:B 【点睛】熟悉平均数、中位数、方差、标准差的概念,特别是一组数据扩大某个倍数或增加某个数值的情况下,平均数、中位数、方差、标准差的变化.10.D 【分析】将回归方程左右同时取对数得:ln 0.5y bx =-,看作回归直线的形式,由回归直线过样本中心点可构造方程求得b ,由此得到回归方程;将5x =代入回归方程即可求得结果.【详解】由0.5bx y e-=得:ln 0.5y bx =-,346ln ln ln ln 12340.544e e e e b ++++++∴=⋅-,解得: 1.6b =,∴回归方程为 1.60.5x y e -=,若5x =,则1580.52y e e -==.故选:D.【点睛】关键点点睛:本题考查非线性回归中的预估值的求解,解题关键是能够通过对指数型回归模型左右同时取对数,将其变为线性回归的形式来进行求解.11.B 【分析】①中,根据回归直线方程的特征,可判定是不正确;②中,根据相关系数的意义,可判定是是正确的;③中,根据方差的计算公式,可判定是正确的;④中,根据回归系数的含义,可判定是正确的.【详解】对于①中,回归直线ˆˆˆy bx a =+恒过样本点的中心(x y ,但不一定过一个样本点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数||r 就越接近1,所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位,所以是正确的.故选:B.【点睛】本题主要考查了统计知识的相关概念及判定,其中解答中熟记回归直线方程的特征,回归系数的含义,相关系数的意义,以及方程的计算方法是解答的关键,属于基础题.12.D 【解析】根据上表数据可求得20.027 1.323k ≈<,再结合课本上的概率附表可知在此次调查中没有充分证据显示说谎与性别有关,故选D 13.A 【分析】根据相关系数的定义可知①错误;根据特称命题(又叫存在性命题)的否定可知②错误;根据真值表即可判断“p q ∧为真”是命题“p q ∨为真”的充分不必要条件,故③错误;由条件可得,(1)0,(1)0,f f '-=-=解得a=2,b=9或a=1,b=3,经检验,当a=1,b=3时,22()3633(1)0f x x x x '=++=+≥恒成立,此时()f x 没有极值点,故④错误。
统计学案例分析单选题100道及答案解析1. 为了了解某工厂生产的一批灯泡的使用寿命,从中抽取了100 只进行检测,在这个问题中,样本是()A. 工厂生产的一批灯泡B. 抽取的100 只灯泡C. 100D. 每只灯泡的使用寿命答案:B解析:样本是从总体中抽取的一部分个体,这里抽取的100 只灯泡就是样本。
2. 一组数据的最大值与最小值之差称为()A. 极差B. 方差C. 标准差D. 平均差答案:A解析:极差是一组数据中的最大值减去最小值。
3. 下列指标中,属于位置平均数的是()A. 算术平均数B. 调和平均数C. 几何平均数D. 中位数答案:D解析:中位数是将数据排序后,位于中间位置的数值,属于位置平均数。
4. 若一组数据的偏态系数为0,则该组数据的分布为()A. 对称分布B. 右偏分布C. 左偏分布D. 无法确定答案:A解析:偏态系数为0 时,数据分布为对称分布。
5. 抽样调查中,样本容量的确定取决于()A. 总体标准差B. 允许误差C. 抽样方法D. 以上都是答案:D解析:样本容量的确定需要考虑总体标准差、允许误差和抽样方法等因素。
6. 在假设检验中,原假设和备择假设()A. 只有一个成立B. 都有可能成立C. 都有可能不成立D. 原假设一定成立,备择假设不一定成立答案:A解析:原假设和备择假设相互对立,只有一个成立。
7. 对于两个变量之间的线性相关程度,常用()来衡量。
A. 相关系数B. 决定系数C. 回归系数D. 残差平方和答案:A解析:相关系数用于衡量两个变量之间的线性相关程度。
8. 下列哪种抽样方法不是概率抽样()A. 简单随机抽样B. 系统抽样C. 方便抽样D. 分层抽样答案:C解析:方便抽样是非概率抽样方法。
9. 一组数据的标准差越大,说明()A. 数据的离散程度越大B. 数据的离散程度越小C. 平均数越大D. 平均数越小答案:A解析:标准差越大,数据的离散程度越大。
10. 若一组数据服从正态分布,则其均值和中位数的关系是()A. 均值大于中位数B. 均值小于中位数C. 均值等于中位数D. 无法确定答案:C解析:正态分布的数据,均值等于中位数。
一、选择题1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是( ) A .120B .320C .15D .7202.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .43.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 3 4.下列命题:①在一个22⨯列联表中,由计算得2 6.679K =,则有99%的把握确认这两类指标间有关联②若二项式22nx x ⎛⎫+ ⎪⎝⎭的展开式中所有项的系数之和为243,则展开式中4x -的系数是40 ③随机变量X 服从正态分布()1,2N ,则()()02P X P X <=> ④若正数,x y 满足230x y +-=,则2x yxy+的最小值为3 其中正确命题的序号为( ) A .①②③B .①③④C .②④D .③④5.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .236.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等,现调研某自由职业者的工资收入情况,记x 表示该自由职业者的平均水平每天工作的小时数,y 表示平均每天工作x 个小时的月收入.假设y 与x 具有线性相关关系,则y 关与x 的线性回归方程ˆˆˆy bx a =+必经过点( )A .()33,B .()34,C .()44,D .()45,7.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系 8.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1159.一射手对同一目标独立地进行4次射击,且射击结果之间互不影响.已知至少命中一次的概率为8081,则此射手的命中率为( ) A .19 B .13 C .23D .8 910.以下四个命题,其中正确的个数有( )①由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程^0.212y x =+中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.A .1B .2C .3D .411.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( ) A .116B .14C .13D .1212.下面给出四种说法:①用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好; ②命题P :“∃x 0∈R ,x 02﹣x 0﹣1>0”的否定是¬P :“∀x ∈R ,x 2﹣x ﹣1≤0”; ③设随机变量X 服从正态分布N (0,1),若P (x >1)=p 则P (﹣1<X <0)=12﹣p ④回归直线一定过样本点的中心(,x y ). 其中正确的说法有( ) A .①②③B .①②④C .②③④D .①②③④二、填空题13.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为13,乙每次投中的概率为12,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______. 14.为了了解司机开车时礼让斑马线行人的情况,交警部门调查了100名机动车司机,得到以下统计数据:若以2χ为统计量进行独立性检验,则2χ的值是__________.(结果保留2位小数) 参考公式()1122122121212n n n n n n n n n χ++++-=15.在一场对抗赛中,,A B 两人争夺冠军,若比赛采用“五局三胜制”,A 每局获胜的概率均为23,且各局比赛相互独立,则A 在第一局失利的情况下,经过五局比赛最终获得冠军的概率是_____.16.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.17.某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是______.18.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”__________.(填有或没有)附:()()()()()22n ad bc K a b c d a c b d -=++++19.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是___________. ①()25P B =;②()1511P B A =;③事件B 与事件1A 相互独立;④1A ,2A ,3A 是两两互斥的事件20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.某士特产超市为预估2021年元旦期间游客购买土特产的情况,对2020年元且期间的90位游客购买情况进行统计,得到如下人数分布表.60元与性别有关.60元可抽奖3次,每次中奖概率为P (每次抽奖互不影响,且P 的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元若游客甲计划购买80元的土特产,请列出实际付款数X (元)的分布列并求其数学期望. 参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++ 附表:22.某县为了在全县营造“浪费可耻、节约为荣”的氛围,制定施行“光盘行动”有关政策,为进一步了解此项政策对市民的影响程度,县政府在全县随机抽取了100名市民进行调查,其中男士比女士少20人,表示政策无效的25人中有10人是女士.(1)完成下列22⨯列联表,并判断是否有99%的把握认为“政策是否有效与性别有关”;5名市民中任意抽取2名,对政策的有效性进行调研分析,求抽取的2人中有男士的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++(n a b c d =+++)23.消费者信心指数是反映消费者信心强弱的指标;它是预测经济走势和消费趋向的一个先行指标,是监测经济周期变化的重要依据.消费者信心指数值介于0和200之间.指数超过100时,表明消费者信心处于强信心区;指数等于100时,表示消费者信心处于强弱临界点;指数小于100时,表示消费者信心处于弱信心区.我国某城市从2016年到2019年各季度的消费者信心指数如下表1:记2016年至2019年年份序号为,该城市各年消费者信心指数的年均值(四舍五入取整)为y ,x 与y 的关系如下表2:的消费者信心指数不小于2017年的消费者信心指数的概率;(2)根据表2得到线性回归方程为:ˆˆ4.4yx a =+,求ˆa 的值,并预报该城市2020年消费者信心指数的年平均值.(3)根据表2计算(,)x y 的相关系数r (保留两位小数),并判断是否正相关很强.参考数据和公式:ˆˆa y bx =-;12342.54x +++==;105112114119112.54y +++==23.45≈22.47≈;()()niix x y y r --=∑0.751r ≤≤时,y 与x 正相关很强.24.某沙漠地区经过治理,生态系统得到改善.为调查该地区植物覆盖面积(单位:公顷)和某种野生动物的数量的关系,将该地区分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(),i i x y (i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,()202180i i x x =-=∑,()20219000i i y y =-=∑,()()201800i ii x xy y =--=∑.(1)求样本(),i i x y (i =1,2,…,20)的相关系数(精确到0.01),并用相关系数说明各样区的这种野生动物的数量与植物覆盖面积的相关性.(2)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()20ii xx y y r --=∑.25.某学校六年级1、2两个班级同时进行一次数学竞赛考试,已知满分100分,分数不小于60视为及格,否则视为不及格,现随机抽取两个班级各40名学生的数学成绩,其结果如下表:(1)根据表中数据,分别估计六年级1、2两个班级数学竞赛考试的及格率;(2)根据以上数据,完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的情况下认为此次数学竞赛考试中学生数学及格与班级有关?(3)若按高分(大于等于80分为高分)与非高分的比例,从1班考试的分数中抽取4个分数,从2班考试的分数中抽取5个分数,记事件A:从上面4个1班考试的分数中随机抽取2个,且都不是高分;事件B:从上面5个2班考试的分数中随机抽取2个,一个是高分,一个不是高分.试通过计算说明这两个事件中哪一个事件发生的概率大.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.26.近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是12,13,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.参考数据参考公式:K 2()()()()2()n ad bc a b c d a c b d -=++++,其中n =a +b +c +d【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.2.C解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kx y ce =,两边取自然对数,可得ln ln y c kx =+, 令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.3.D解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.4.B解析:B 【解析】 【分析】根据2 6.679 6.635K =>可知①正确;代入1x =可求得5n =,利用展开式通项,可知3r =时,为含4x -的项,代入可求得系数为80,②错误;根据正态分布曲线的对称性可知③正确;由2121223x y x yxy y x y x ⎛⎫++=+=+⋅ ⎪⎝⎭,利用基本不等式求得最小值,可知④正确. 【详解】①2 6.679 6.635K =>,则有99%的把握确认这两类指标间有关联,①正确;②令1x =,则所有项的系数和为:3243n =,解得:5n = 52222n x x x x ⎛⎫⎛⎫∴+=+ ⎪ ⎪⎝⎭⎝⎭则其展开式通项为:()55355222rrrr r rC x C x x --⎛⎫=⋅⋅ ⎪⎝⎭当534r -=-,即3r =时,可得4x -系数为:335280C ⋅=,②错误;③由正态分布()1,2N 可知其正态分布曲线对称轴为1X = ()()02P X P X ∴<=>,③正确; ④212122122533x y x y x yxy y x y x y x ⎛⎫⎛⎫++=+=+⋅=++ ⎪ ⎪⎝⎭⎝⎭0x,0y > 20x y ∴>,20y x>224x y y x ∴+≥=(当且仅当22x y y x =,即x y =时取等号) ()214533x y xy +∴≥+=,④正确. 本题正确选项:B 【点睛】本题考查命题真假性的判断,涉及到独立性检验的基本思想、二项展开式各项系数和与指定项系数的求解、正态分布曲线的应用、利用基本不等式求解和的最小值问题.5.B解析:B 【解析】分析:设已知第一次取出的是红球为事件A ,第二次是白球为事件B ,先求出P AB ()的概率,然后利用条件概率公式进行计算即可.详解:设已知第一次取出的是红球为事件A ,第二次是白球为事件B .则由题意知,77371010930PA P AB ⨯===⨯(),(), 所以已知第一次取出的是白球,则第二次也取到白球的概率为7130|.7310PB A ()== . 故选B .点睛:本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键. 6.C解析:C 【解析】分析:由题意结合回归方程的性质确定回归方程经过样本中心点即可. 详解:由题意可得:2345645x ++++==, 2.534 4.5645y ++++==,由线性回归方程的性质可知线性回归方程ˆˆˆy bx a =+经过样本中心点:()4,4.本题选择C 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论. 详解:∵观测值 4.328 3.841k ≈>, 而在观测值表中对应于3.841的是0.05,∴在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系. 故选:A .点睛:本题考查了独立性检验的应用问题,是基础题.8.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.9.C解析:C 【解析】设此射手未射中目标的概率为p ,则1-p 4=8081,所以p =13,故此射手的命中率为1-p =23. 故选C10.B解析:B 【解析】对于命题①认为数学成绩与物理成绩有关,不出错的概率是99%,不是数学成绩优秀,物理成绩就有99%的可能优秀,不正确;对于④,随机变量K 2的观测值k 越小,说明两个相关变量有关系的把握程度越小,不正确;容易验证②③正确,应选答案B 。
一、选择题1.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为37和27,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为( ) A .2949B .649C .2349D .43492.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( ) A .14 B .89 C .116D .5323.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 3 4.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( )A .25 B .310 C .15D .1106.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13 D .297.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >=B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样 8.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750B .0.3000C .0.2500D .0.20009.下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心(,)x yB .残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的2R 分别约为0.98和0.80,则模型乙的拟合效果更好10.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为 A .13B .14C .12D .3511.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .4012.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A.130 B.190C.240 D.250二、填空题13.掷三个骰子,出现的三个点数的乘积为偶数的概率是________.14.一盒子中装有6只产品,其中4只一等品,2只二等品,从中取产品两次,每次任取1只,做不放回抽样.则在第一次取到的是一等品的条件下,第二次取到的是二等品的概率为__________.15.已知x、y之间的一组数据如下:=+所表示的直线必经过点________.则线性回归方程ˆy a bx16.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________17.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知=)=,lg30.4771lg20.301018.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p,若该同学本次测试合格的概率为0.784,则p=_____.19.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.20.一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求:(i)三个球中有两个红球一个黑球的概率;(ii)第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查结果如下面22⨯列联表.22⨯与性别有关”?(2)现在从这100名学生中按性别采取分层抽样的方法抽取5名学生,如果再从中随机选取2人进行有关“嫦娥五号”情况的宣讲,求选取的2名学生中恰有1名女生的概率.若将频率视为概率. 附:()()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++ 23.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 24.随着运动App 和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健康达人”小王某天统计了他朋友圈中所有好友(共400人)的走路步数,并整理成下表:间中点值作代表);(2)若用A 表示事件“走路步数低于平均步数”,试估计事件A 发生的概率;(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人有200人,其中健步达人恰有150人,请填写下面22⨯列联表.根据列联表判断有多大把握认为,健步达人与年龄有关?附:()()()()()22n ad bc K a b c d a c b d -=++++25.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:(Ⅰ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.()20P K k ≥ 0.050 0.010 0.001 0k3.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++26.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额.(1)完成22⨯列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为x ,若每次抽取的结果是相互独立的,求x 的分布列,期望和方差. 附表:22()()()()()n ad bc K a b c d a c b d -=++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案. 【详解】根据题意:32291117749p ⎛⎫⎛⎫=---=⎪⎪⎝⎭⎝⎭. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.2.D解析:D 【分析】首先确定是条件概率,在出现数字乘积为偶数的前提下,乘积为非零偶数的概率, 首先求两次数字乘积为偶数的概率, 然后两次为非零偶数的概率,再按照条件概率的公式求解. 【详解】两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,概率是22169⎛⎫= ⎪⎝⎭, 所以两次数字乘积为偶数的概率P =228169⎛⎫-= ⎪⎝⎭ ; 若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),P =111152366636⨯⨯+⨯=,.故所求条件概率为55368329P ==.故选:D 【点睛】本题主要考查了条件概率的计算和独立事件,考查了学生的计算能力,属于基础题.3.D解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.4.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。
一、选择题1.已知x 与y 之间的几组数据如下表:参考公式:线性回归方程y bx a =+,其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-;相关系数()()niix x y y r --=∑上表数据中y 的平均值为2.5,若某同学对m 赋了三个值分别为1.5,2,2.5得到三条线性回归直线方程分别为11y b x a =+,22y b x a =+,33y b x a =+,对应的相关系数分别为1r ,2r ,3r ,下列结论中错误..的是( ) A .三条回归直线有共同交点 B .相关系数中,2r 最大 C.12b b>D .12a a >2.下列命题中正确的个数( )①“0x ∀>,2sin x x >”的否定是“00x ∃≤,002sin x x ≤”;②用相关系数r 可以刻画回归的拟合效果,2r 值越小说明模型的拟合效果越好;③命题“若0a b >>,则0>”的逆命题为真命题;④若()22130mx m x m -+++≥的解集为R ,则m 1≥.A .0B .1C .2D .33.为了调查某校高二学生的身高是否与性别有关,随机调查该校64名高二学生,得到2×2列联表如表:附:K 2()()()()2()n ad bc a b c d a c b d -=++++由此得出的正确结论是( )A .在犯错误的概率不超过0.01的前提下,认为“身高与性别无关”B .在犯错误的概率不超过0.01的前提下,认为“身高与性别有关”C .有99.9%的把握认为“身高与性别无关”D .有99.9%的把握认为“身高与性别有关”4.经过对K 2的统计量的研究,得到了若干个观测值,当K 2≈6.706时,我们认为两分类变量A 、B ( )A .有67.06%的把握认为A 与B 有关系 B .有99%的把握认为A 与B 有关系C .有0.010的把握认为A 与B 有关系D .没有充分理由说明A 与B 有关系5.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%6.假设有两个分类变量X 和Y 的22⨯列联表如下:注:2K 的观测值2()()()()()()()n ad bc a b a ck n a b c d a c b d a c b d a b c d-==--++++++++.对于同一样本,以下数据能说明X 和Y 有关系的可能性最大的一组是( ) A .45,15a c == B .40,20a c ==C .35,25a c ==D .30,30a c ==7.以下四个命题中:①在回归分析中,可用相关指数R 2的值判断拟合的效果,R 2越大,模型的拟合效果越好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近1; ③若数据x 1,x 2,x 3,…,x n 的方差为1,则2x 1,2x 2,2x 3,…,2x n 的方差为2;④对分类变量x 与y 的随机变量K 2的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为( ) A .1 B .2 C .3 D .48.若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( ) A .25B .25C .35D .32109.已知样本789x y 、、、、的平均数是8,标准差是2,则xy 值为 A .8B .32C .60D .8010.为了增强环保意识,某校从男生中随机抽取60人,从女生中随机抽取50人,参加环保知识测试,统计数据如下表所示: (参考数据:()21122122121212n n n n n n n n n χ++++-=)则认为环保知识测试成绩是否优秀与性别有关的把握为 A .90%B .95%C .99%D .99.9%11.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K =,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是( )2()P K k ≥ … 0.25 0.15 0.10 0.025 0.010 0.005 … k …1.3232.0722.7065.0246.6357.879…A .90%B .95%C .97.5%D .99.5%12.下列命题中:①线性回归方程y bx a =+必过点(),x y ;②在回归方程35y x =-中,当变量增加一个单位时,y 平均增加5个单位; ③在回归分析中,相关指数2R 为0.80的模型比相关指数2R 为0.98的模型拟合的效果要好;④在回归直线0.58ˆyx =-中,变量2x =时,变量y 的值一定是-7. 其中假命题的个数是 ( ) A .1B .2C .3D .4二、填空题13.回归方程ˆˆ 2.50.2x y=+在样本(4,1.2)处的残差为________. 14.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表: 专业 性别非统计专业统计专业男生1310女生720为了检验主修统计专业是否与性别有关系,根据表中的数据得到随机变量K 2的观测值为.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________. 15.某单位为了了解用电量度与气温之间的关系,随机统计了某天的用电量与当天气温.由表中数据得回归直线方程中,据此预测当气温为5℃时,用电量的度数约为____.16.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温. 气温(℃)14 12 86用电量(度) 22 26 34 38由表中数据得线性方程x b a yˆˆˆ+=中2ˆ-=b ,据此预测当气温为5℃时,用电量的度数约为 .17.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是_____________. ①若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.18.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________. 19.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________. 20.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.三、解答题21.近年来,共享单车进驻城市,绿色出行引领时尚.某公司计划对未开通共享单车的A 县城进行车辆投放,为了确定车辆投放量,对过去在其他县城的投放量情况以及年使用人次进行了统计,得到了投放量x (单位:千辆)与年使用人次y (单位:千次)的数据如下表所示,根据数据绘制投放量x 与年使用人次y 的散点图如图所示.x1 2 3 4 5 67y6 112134 66 101196(1)观察散点图,可知两个变量不具有线性相关关系,拟用对数函数模型lg =+y a b x 或指数函数模型(0,0)=⋅>>x y c d c d 对两个变量的关系进行拟合,请问哪个模型更适宜作为投放量x 与年使用人次y 的回归方程类型(给出判断即可,不必说明理由),并求出y 关于x 的回归方程;(2)已知每辆单车的购入成本为200元,年调度费以及维修等的使用成本为每人次0.2元,按用户每使用一次,收费1元计算,若投入8000辆单车,则几年后可实现盈利? 参考数据:y v71i ii x y =∑71i i i x v =∑0.5410 62.141.54 2535 50.123.47其中lg i i v y =,17i i v v ==∑.参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆˆv a u β=+的斜率和截距的最小二乘估计公式分别为1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆa v u β=-. 22.为了解使用手机是否对学生的学习有影响,某校随机抽取50名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):使用手机 不使用手机 总计与使用手机有关;(2)现从上表不使用手机的学生中按学习成绩是否优秀分层抽样选出9人,再从这9人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X,试求X的分布列与数学期望.参考公式:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.参考数据:23.根据教育部《中小学生艺术素质测评办法》,为提高学生审美素养,提升学生的综合素质,江苏省中考将增加艺术素质测评的评价制度,将初中学生的艺术素养列入学业水平测试范围.为初步了解学生家长对艺术素质测评的了解程度,某校随机抽取100名学生家长参与问卷测试,并将问卷得分绘制频数分布表如下:了解”(得分低于60分)两类,完成22⨯列联表,并判断是否有99%的把握认为“学生家长对艺术素质评价的了解程度”与“性别”有关?(2)以这100名学生家长中“比较了解”的频率代替该校学生家长“比较了解”的概率.现在再随机抽取3名学生家长,设这3名家长中“比较了解”的人数为X,求X的概率分布列和数学期望.合计附:()()()()()22n ad bc a b c d a c b d χ-=++++,()n a b c d =+++.临界值表:()20P x χ≥0.15 0.100.050.025 0.010 0.005 0.001 0x2.0722.7063.8415.0246.6357.87910.82824.某私营业主为确定下一年度投入某种产品的宣传费,需了解月宣传费x (单位:百元)对月销售量y (单位:t )和月利润z (单位:百元)的影响,对8个月的宣传费i x 和销售量i y (i =1,2,...,8)数据作了初步处理,得到如图的散点图及一些统计量的值.x y w()821i i x x =-∑()821ii w w =-∑()()81iii x x y y =--∑ ()()81iii w w yy =--∑5.4 563 2.2 63.88 3.7 645.188 151.7(1)根据散点图判断出y =c +x y 关于月宣传费x 的回归方程类型,求y 关于x 的回归方程;(表中i i w x =(2)已知这种产品的每月利润z 与x 、y 的关系为2z y x =-,根据(1)的结果,当月宣传费用x =16时,求月利润的预报值.参考公式:1122211()()()()n ni iiii i nniii i x y nx y x x y y b xn x x x ====-⋅--==--∑∑∑∑, ˆˆa y bx=- 25.“海水稻”就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区,具有耐盐碱的水稻,它比其它普通的水稻均有更强的生存竞争能力,具有抗涝,抗病虫害,抗倒伏等特点,还具有预防和治疗多种疾病的功效,防癌效果尤为显著.海水稻的灌溉是将海水稀释后进行灌溉.某试验基地为了研究海水浓度x (‰)对亩产量y (吨)的影响,通过在试验田的种植实验,测得了某种海水稻的亩产量与海水浓度的数据如表.绘制散点图发现,可用线性回归模型拟合亩产量y 与海水浓度x 之间的相关关系,用最小二乘法计算得y 与x 之间的线性回归方程为.88ˆ0ˆy bx=+.(2)①完成上述残差表:②统计学中,常用相关指数2R 来刻画回归效果,2R 越大,模型拟合效果越好,并用它来说明预报变量与解释变量的相关性.你能否利用以上表格中的数据,利用统计学的相关知识,说明浇灌海水浓度对亩产量的贡献率?(计算中数据精确到0.01)(附:残差公式ˆˆi i i ey y =-,相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑)26.为了了解某班学生喜欢数学是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表,已知在全部50人中随机抽取1人抽到喜欢数学的学生的概率为35. (1)能否在犯错误的概率不超过0.005的前提下认为喜欢数学与性别有关?说明你的理由;(2)现从女生中抽取2人进一步调查,设其中喜欢数学的女生人数为ξ,求ξ的分布列与期望.临界表供参考:(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意可得5m n +=,分别取m 与n 的值,由公式计算出1122123,,,,,,b a b a r r r 的值,逐一分析四个选项,即可得到答案. 【详解】由题意,1410m n +++=,即5m n +=. 若 1.5m =,则 3.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 1.5 2.53 2.5 3.5 2.54 2.54 2.5 5.5iii x x y y =--=--+--+--+--=∑ ,()()()4222221 1.50.50.5 1.55i i x x =-=-+-++=∑ ,()()()42222211.511 1.5 6.5ii y y =-=-+-++=∑.则1 5.51.15b ==,1 2.5 1.1 2.50.25a =-⨯=- ,1r =≈; 若2m =,则3n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.52 2.53 2.53 2.54 2.54 2.55iii x x y y =--=--+--+--+--=∑,()4215ii x x =-=∑,()()()42222211.50.50.5 1.55i i y y =-=-+-++=∑.2515b ==,2 2.51 2.50a =-⨯=,21r ==; 若 2.5m =,则 2.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 2.5 2.53 2.5 2.5 2.54 2.54 2.5 4.5iii x x y y =--=--+--+--+--=∑,()4215i i x x =-=∑,()()422211.5 1.5 4.5i i y y =-=-+=∑,3r ==由样本点的中心相同,故A 正确;由以上计算可得,相关系数中,2r 最大,12b b >,12a a <,故B ,C 正确,D 错误. 故选:D . 【点睛】本题考查线性回归方程与相关系数的求法,考查计算能力,是中档题.2.C解析:C 【分析】写出全称命题的否定判断①;由相关指数的大小与拟合效果的关系判断②;由不等式的性质判断③;由22(1)30mx m x m -+++的解集为R 求得m 的范围判断④. 【详解】解:对于①,“0x ∀>,2sin x x >”的否定是“00x ∃>,002sin x x ”,故①错误;对于②,用相关指数r 可以刻画回归的拟合效果,2r 值越大说明模型的拟合效果越好,故②错误;对于③,命题“若0a b >>0>>”的逆命题为“0>,则0a b >>”,是真命题,故③正确;对于④,当0m =时,22(1)30mx m x m -+++化为230x -+,解得32x,不合题意; 当0m ≠时,要使22(1)30mx m x m -+++的解集为R ,则24(1)4(3)0m m m m >⎧⎨+-+⎩,解得1m .∴若22(1)30mx m x m -+++的解集为R ,则1m .故④为真命题. ∴正确命题的个数是2个.故选:C . 【点睛】本题考查命题的真假判断与应用,考查命题的真假判断与命题的否定,训练了一元二次不等式的解法,属于中档题.3.D解析:D【分析】根据22⨯列联表,计算2k,与临界值表比较即可得出结论.【详解】K的观测值:K2264(862426)34303232⨯⨯-⨯=≈⨯⨯⨯20.330;由于20.330>10.828,∴有99.9%的把握认为“身高与性别有关”,即在犯错误的概率不超过0.001的前提下,认为“身高与性别有关”故选:D.【点睛】本题主要考查了独立性检验的应用问题,K2的计算,22⨯列联表,考查了运算能力,属于中档题.4.B解析:B【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P(K2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A与B有关系.【详解】依据下表:2 6.635K>,2 6.6350.01P K=(>)∴我们在错误的概率不超过0.01的前提下有99%的把握认为A与B有关系,故选B.【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.5.A解析:A【解析】分析:根据列联表中数据代入公式计算k的值,和临界值表比对后即可得到答案.详解:将列联表中数据代入公式可得()210045153010 3.030 2.70675255545k ⨯⨯-⨯=≈>⨯⨯⨯,所以有0090的把握认为“该市居民能否做到‘光盘’”与性别有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)6.A解析:A 【解析】根据独立性检验的方法和22⨯列联表可得,当10a a +与10cc +相差越大,则分类变量X 和Y 有关系的可能性越大,即,a c 相差越大,10a a +与10cc +相差越大.由各选项可得A 满足条件,选A .7.B解析:B【解析】由题意得,若数据x 1,x 2,x 3,…,x n 的方差为1,则2x 1,2x 2,2x 3,…,2x n 的方差为4,所以③不正确;对分类变量x 与y 的随机变量K 2的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越小,所以④不正确.其中①、②是正确的,故选B.8.B解析:B 【解析】∵直线0x y a ++=与圆()()22122x y -+=+有公共点,∴≤13a -≤≤,∴在区间[55]-,内任取一个实数a ,使直线0x y a ++=与圆()()22122x y -+=+有公共点的概率为312555+=+,故选B. 点睛:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题;利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a ,最后根据几何概型的概率公式可求出所求.9.C解析:C 【解析】由78982x y++++⎧=⎪⎪=得=60xy ,故选C.10.C解析:C 【解析】 由题意得:()221104030202060505060χ⨯-⨯=≈⨯⨯⨯7.8>6.635,所以认为环保知识测试成绩是否优秀与性别有关的把握为99%. 本题选择C 选项.11.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。
一、选择题1.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是()A.①回归分析,②取平均值B.①独立性检验,②回归分析C.①回归分析,②独立性检验D.①独立性检验,②取平均值2.某中学采取分层抽样的方法从高二学生中按照性别抽出20名学生,其选报文科、理科的情况如下表所示,参考公式和数据:22()()()()()n ad bcKa cb d a bc d-=++++,其中n a b c d=+++.则以下判断正确的是A.至少有97.5%的把握认为学生选报文理科与性别有关B.至多有97.5%的把握认为学生选报文理科与性别有关C.至少有95%的把握认为学生选报文理科与性别有关D.至多有95%的把握认为学生选报文理科与性别有关3.某班主任对全班50名学生进行了作业量的调查,数据如表:若推断“学生的性别与认为作业量大有关”,则这种推断犯错误的概率不超过()附:()()()()()22n ad bcKa b c d a c b d-=++++A.0.01 B.0.025 C.0.10 D.0.054.为了考查两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是( )A.l1和l2有交点(s,t)B.l1与l2相交,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合5.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是()P(K2≥k)…0.250.150.100.0250.0100.005…k…1.3232.0722.7065.0246.6357.879…A.90% B.95% C.97.5% D.99.5%6.以下四个命题中:①在回归分析中,可用相关指数R2的值判断拟合的效果,R2越大,模型的拟合效果越好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近1; ③若数据x 1,x 2,x 3,…,x n 的方差为1,则2x 1,2x 2,2x 3,…,2x n 的方差为2;④对分类变量x 与y 的随机变量K 2的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为( ) A .1 B .2 C .3 D .47.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列说法正确的是( )A .男、女人患色盲的频率分别为0.038,0.006B .男、女人患色盲的概率分别为,C .男人中患色盲的比例比女人中患色盲的比例大,患色盲与性别是有关的D .调查人数太少,不能说明色盲与性别有关8.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A .平均数与方差 B .回归分析 C .独立性检验 D .概率 9.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归方程^^^y b x a =+必过(),x y ;④在一个22⨯列联表中,由计算得213.079K =,则有99%以上的把握认为这两个变量间有关系.其中错误..的个数是( ) A .0 B .1 C .2D .310.若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( ) A .25B .25C .35D .321011.由某个22⨯列联表数据计算得随机变量2K 的观测值k 6.879=,则下列说法正确的是 ( )0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0.7081.3232.0722.7063.8415.0246.6357.87910.828A .两个分类变量之间有很强的相关关系B .有99%的把握认为两个分类变量没有关系C .在犯错误的概率不超过1.0%的前提下认为这两个变量间有关系D .在犯错误的概率不超过0.5%的前提下认为这两个变量间有关系 12.某商场为了解毛衣的月销售量y (件)与月平均气温()x C 之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: )C(件)由表中数据算出线性回归方程ˆybx a =+中的2b =-,气象部门預测下个月的平均气温约为6C ,据此估计该商场下个月毛衣销售量约为( )件. A .46B .40C .38D .58二、填空题13.针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的13,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数的23.若有95%的把握认为是否喜欢韩剧和性别有关,求男生至少有______人.14.以下结论正确..的序号有_________ (1)根据22⨯列联表中的数据计算得出2K ≥6.635, 而P (2K ≥6.635)≈0.01,则有99% 的把握认为两个分类变量有关系.(2)在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关.(3)在线性回归分析中,相关系数为r ,r 越接近于1,相关程度越大;r 越小,相关程度越小.(4)在回归直线0.585y x =-中,变量200x =时,变量y 的值一定是15.15.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表: 专业 性别非统计专业统计专业男生1310女生720为了检验主修统计专业是否与性别有关系,根据表中的数据得到随机变量K 2的观测值为.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________.16.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程=+x 中=﹣2,据此预测当气温为5℃时,用电量的度数约为_____.17.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③某项测量结果ξ服从正态分布()21,σN ,()50.81ξP ≤=,则()30.19ξP ≤-=;④对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大.以上命题中其中真命题的个数为___________.18.从某高校在校大学生中随机选取5名女大学生,由她们身高和体重的数据得到的回归直线方程为ˆ0.7973.56yx =-,数据列表是:则其中的数据a =__________.19.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K 来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cos sin x y θθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y +=;③极坐标系中,22,3A π⎛⎫⎪⎝⎭与()3,0B 的距离是19; ④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误. 20.下列说法:①线性回归方程y bx a =+必过(),x y ;②命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃<+<” ③相关系数r 越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上) 本题可参考独立性检验临界值表:三、解答题21.网购是当前人们购物的新方式,某公司为了改进营销方式,随机调查了100名市民,统计了不同年龄的人群网购的人数如下表: 年龄段(岁) ()0,20[)20,40[)40,60[)60100,网购人数 2632348 男性人数1510 105(1)若把年龄在[2060,的人称为“网购迷”,否则称为“非网购迷”,请完成下面的22⨯列联表,并判断能否在犯错误的概率不超过1%的前提下,认为网购与性别有关?网购迷 非网购迷 总计男性 女性 总计附:()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥0.10 0.05 0.01 0.001两人年龄都小于20岁的概率.22.为了解使用手机是否对学生的学习有影响,某校随机抽取50名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):与使用手机有关;(2)现从上表不使用手机的学生中按学习成绩是否优秀分层抽样选出9人,再从这9人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X,试求X的分布列与数学期望.参考公式:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.参考数据:23.第十八届中国国际农产品交易会于11月27日在重庆国际博览中心开幕,我市全面推广“遂宁红薯”及“遂宁鲜”农产品区域公用品牌,并组织了100家企业、1000个产品进行展示展销,扩大优质特色农产品市场的占有率和影响力,提升遂宁特色农产品的社会认知度和美誉度,让来自世界各地的与会者和消费者更深入了解遂宁,某记者对本次农交会进行了跟踪报道和实际调查,对某特产的最满意度()%x和对应的销售额y(万元)进行了调查得到以下数据:关系数r的绝对值在0.95以上(含0.95)是线性相关性较强;否则,线性相关性较弱.请你对线性相关性强弱作出判断,并给出理由;(2)如果没有达到较强线性相关,则采取“末位淘汰”制(即销售额最少的那一天不作为计算数据),并求在剔除“末位淘汰”的那一天后的销量额y 关于最满意度x 的线性回归方程(系数精确到0.1). 参考数据:24x =,81y =,52215146ii xx =-=∑, 52215176i i y y =-=∑,515151i ii x y xy =-=∑13.27≈≈.附:对于一组数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅.其回归直线方程 ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:1221ˆ·ni ii n ii x y nx y bxnx ==-=-∑∑,ˆa y bx=-,线性相关系数·ni ix y nx y r -=∑24.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,25.为了响应国家号召,某校组织部分学生参与了“垃圾分类,从我做起”的知识问卷作答,并将学生的作答结果分为“合格”与“不合格”两类与“问卷的结果”有关?(1)是否有90%以上的把握认为“性别”与“问卷的结果”有关?(2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望()E X.附:22()()()()()n ad bcKa b c d a c b d-=++++26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001k 3.841 6.63510.828【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2.C解析:C【解析】由题易得22⨯列联表如下:则2K的观测值为()220235104.432 3.841128713k⨯⨯-⨯=≈>⨯⨯⨯,所以至少有95%的把握认为学生选报文理科与性别有关,故选:C.【解题必备】(1)独立性检验是对两个分类变量有关系的可信程度的判断,而不是对其是否有关系的判断.独立性检验的结论只能是有多大的把握认为两个分类变量有关系,而不能是两个分类变量一定有关系或没有关系.(2)列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此,需要用独立性检验的方法确认所得结论在多大程度上适用于总体.即独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释. (3)独立性检验的具体做法:①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α, 然后查下表确定临界值0k ; ②利用公式()()()()()22n ad bc K a c b d a b c d -=++++,计算随机变量2K 的观测值k ;③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”.说明:通常认为 2.706k ≤时,样本数据就没有充分的证据显示“X 与Y 有关系”.3.B解析:B 【解析】分析:根据表格中所给数据,代入公式()()()()()22n ad bc K a b c d a c b d -=++++,求出观测值,把所求的观测值同临界值进行比较,从而可得结果. 详解:根据表中数据得到()2250181589 5.059 5.024********K ⨯⨯-⨯=≈>⨯⨯⨯,所以,若推断“学生的性别与认为作业量大有关”, 则这种推断犯错误的概率不超过0.025,故选B.点睛:本题主要考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,计算过程一定要细心,避免出现计算错误,属于基础题.4.A解析:A 【解析】回归直线方程过样本中心点,过A 选项正确.5.C解析:C 【详解】∵2 6.023 5.024K=>∴可断言市民收入增减与旅游欲望有关的把握为97.5%.故选C.点睛:本题主要考查独立性检验的实际应用.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22()()()()()n ad bcKa b c d a c b d-=++++,计算出2K的值;(3)查表比较2K与临界值的大小关系,作统计判断.6.B解析:B【解析】由题意得,若数据x1,x2,x3,…,x n的方差为1,则2x1,2x2,2x3,…,2x n的方差为4,所以③不正确;对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y 有关系”的把握程度越小,所以④不正确.其中①、②是正确的,故选B.7.C解析:C【解析】男人中患色盲的比例为,要比女人中患色盲的比例大,其差值为,差值较大,所以认为患色盲与性别是有关的.考点:独立性检验.8.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C.考点:独立性检验的意义.9.B解析:B【解析】一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x的系数具备直线斜率的功能,对于回归方程y35x=-,当x增加一个单位时,y平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y= b x+a必过点(),x y,③正确;因为213.079 6.635K=>,故有0099以上的把握认为这两个变量间有关系,④正确,即错误的个数为1,故选B. 10.B解析:B【解析】∵直线0x y a ++=与圆()()22122x y -+=+有公共点,∴≤13a -≤≤,∴在区间[55]-,内任取一个实数a ,使直线0x y a ++=与圆()()22122x y -+=+有公共点的概率为312555+=+,故选B. 点睛:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题;利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a ,最后根据几何概型的概率公式可求出所求.11.C解析:C 【解析】由22⨯列联表数据计算得随机变量2K 的观测值是 6.879 6.635k =>,通过对照表中数据得,在犯错误的概率不超过1.0%的前提下,认为这两个变量间有关系,故选C.12.A解析:A 【解析】试题分析:根据题意,样本中心点的坐标为()10,38,所以38210,58a a =-⨯+∴=,因此回归直线方程为2ˆ58yx =-+,所以当6x =时,估计该商场下个月毛衣销售量约为26ˆ5846y=-⨯+=,故选A. 考点:回归直线方程.二、填空题13.【分析】设男生人数为依题意填写列联表计算观测值列出不等式求出的取值范围再根据题意求出男生的人数【详解】设男生人数为由题意可得列联表如下: 喜欢韩剧 不喜欢韩剧 总计 男生 女生 总 解析:18【分析】设男生人数为x ,依题意填写列联表,计算观测值,列出不等式求出x 的取值范围,再根据题意求出男生的人数. 【详解】设男生人数为x ,由题意可得列联表如下:则 3.841k>,即2452()3636969 3.84171711931818x x x x xxkx x xx⋅-⋅==>⋅⋅⋅,解得12.697x>.因为各部分人数均为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有18人.故答案为:18.【点睛】本题考查独立性检验的应用,解题关键是列出列联表,然后进行计算,属于常考题. 14.(1)(3)【解析】分析:根据独立性检验残差图相关系数回归分析的定义及性质逐一分析四个答案的真假即可详解:对于(1)根据2×2列联表中的数据计算得出≥6635而P(≥6635)≈001则有99的把握解析:(1)(3).【解析】分析:根据独立性检验、残差图、相关系数、回归分析的定义及性质,逐一分析四个答案的真假即可.详解:对于(1),根据2×2列联表中的数据计算得出2K≥6.635, 而P(2K≥6.635)≈0.01,则有99%的把握认为两个分类变量有关系,故(1)正确.对于(2),根据残差图的意义可得,当带状区域的宽度较小时,说明选用的模型比价合适,而当带状区域的宽度较大时,说明选用的模型不合适,故(2)不正确.对于(3),在线性回归分析中,相关系数为r,|r|越接近于1,则相关程度越大;|r|越接近于0,则相关程度越小.故(3)正确.对于(4),在回归直线y=0.5x−85中,当x=200时,y=15,但实际观测值可能不是15,故(4)不正确.综上可得(1)(3)正确.点睛:本题考查回归分析和独立性检验的基本知识,属于基础类题目,解题的关键是熟记相关的的概念和性质.15.5【解析】因为随机变量K2的观测值k>3841所以在犯错误的概率不超过005的前提下认为主修统计专业与性别有关系故这种判断出现错误的可能性为5考点:独立性检验思想解析:5% 【解析】因为随机变量K 2的观测值k >3.841,所以在犯错误的概率不超过0.05的前提下认为“主修统计专业与性别有关系”.故这种判断出现错误的可能性为5%. 考点:独立性检验思想.16.40【解析】试题分析:根据所给的表格做出本组数据的样本中心点根据样本中心点在线性回归直线上利用待定系数法做出a 的值现在方程是一个确定的方程根据所给的x 的值代入线性回归方程预报要销售的件数解:由表格得解析:40 【解析】试题分析:根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a 的值,现在方程是一个确定的方程,根据所给的x 的值,代入线性回归方程,预报要销售的件数.解:由表格得=(14+12+8+6)÷4=10,=(22+26+34+38)÷4=30 即样本中心点的坐标为:(10,40), 又∵样本中心点(10,40)在回归方程 上且b=﹣2∴30=10×(﹣2)+a , 解得:a=50, ∴当x=5时,y=﹣2×(5)+50=40. 故答案为40.考点:回归分析的初步应用.17.【解析】试题分析:对于①从匀速传递的新产品生产流水线上质检员每20分钟抽取一件新产品进行某项指标检测这样的抽样是系统抽样而不是分层抽样故①错;对于②两个随机变量的相关性知识可知②正确;对于③变量所以 解析:2【解析】试题分析:对于①,从匀速传递的新产品生产流水线上,质检员每20分钟抽取一件新产品进行某项指标检测,这样的抽样是系统抽样,而不是分层抽样,故①错;对于②,两个随机变量的相关性知识可知②正确;对于③变量2(1,)N ξσ~,所以()()30.191510.810.19ξξP ≤-==-P ≤=-=,故③正确;对于④,随机变量2K 观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④错,所以真命题有2个. 考点:1. 回归分析的基本思想及其应用初步;2.统计与概率.18.163【解析】由根据回归直线经过样本中心即得由得故答案为解析:163 【解析】由4953565864565y ++++==,根据回归直线经过样本中心(),x y ,即560.7973.56x =⨯-,得164x =,由1551611671741645a x ++++==,得163a =,故答案为163.19.①③④【解析】①是独立性检验的应用①对②中由于所以显然是半个圆②错③中由极坐标中两点距离公式=③对④中所有边长相等的凸多边形都是正多边形为大前提是错误的因为只需要正多边形挤压变形使之仍为凸多边形即可解析:①③④ 【解析】①是独立性检验的应用,①对.②中由于[]0,θπ∈,所以01y ≤≤,显然是半个圆,②错.③中,由极坐标中两点距离公式2221212212cos()AB ρρρρθθ=+--=14912()19,2+-⨯-=AB ③对.④中“所有边长相等的凸多边形都是正多边形”为大前提,是错误的,因为只需要正多边形挤压变形,使之仍为凸多边形即可.④对.所以填①③④.20.①④【解析】分析:根据性回归方程独立性检验相关关系以及命题的否定等知识选出正确的得到结果详解:线性回归方程必过样本中心点故①正确命题的否定是故②错误③相关系数r 绝对值越小表明两个变量相关性越弱故不正解析:①④ 【解析】分析:根据性回归方程,独立性检验,相关关系,以及命题的否定等知识,选出正确的,得到结果.详解:线性回归方程ˆˆˆy bx a =+必过样本中心点(),x y ,故①正确.命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃≥+<” 故②错误 ③相关系数r 绝对值越小,表明两个变量相关性越弱,故不正确;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系,正确. 故答案为①④.点睛:本题以命题真假的判断为载体,着重考查了相关系数、命题的否定、独立性检验、回归直线方程等知识点,属于中档题.三、解答题21.(1)列联表答案见解析,能在犯错误的概率不超过1%的前提下,认为网购与性别有关;(2)310.【分析】(1)根据表格中的数据可题中信息可完善22⨯列联表,计算出2K 的观测值,结合临界值表可得出结论;(2)计算得出年龄段()0,20应抽取3人,分别记为1、2、3;年龄段[)20,40应抽取2人,分别记为a 、b ,列举出所有的基本事件,并确定事件“所抽的两人年龄都小于20岁”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)由题中信息可完善22⨯列联表如下表所示:计算得()2100201446207.605 6.63566344060K ⨯⨯-⨯=≈>⨯⨯⨯,故能在犯错误的概率不超过1%的前提下,认为网购与性别有关;(2)年龄在()0,20、[)20,40网购男性分别有15人、10人.按分层抽样的方法随机抽取5人,年龄段()0,20应抽取3人,分别记为1、2、3;年龄段[)20,40应抽取2人,分别记为a 、b .从中随机抽取2人的一切可能结果所组成的基本事件共10个:()1,2、()1,3、()1,a 、()1,b 、()2,3、()2,a 、()2,b 、()3,a 、()3,b 、(),a b .用A 表示“两人年龄都小于20岁”这一事件,则事件A 由3个基本事件组成:()1,2、()1,3、()2,3.故事件A 的概率为()310P A =. 【点睛】方法点睛:求解古典概型的概率方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列、组合数的应用.22.(1)没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)分布列见解析,()2E X =.【分析】(1)根据表格中数据和题中信息可完善22⨯列联表,计算出2χ的观测值,结合临界值表可得出结论;(2)由题意可知,随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得随机变量X 的数学期望值. 【详解】(1)22⨯列联表如下表所示:()22505102015258.33310.828203025253χ⨯⨯-⨯==≈<⨯⨯⨯,所以,没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)9人中学习成绩优秀的人有209630⨯=人,学习成绩一般的有109330⨯=人, X 可能的取值有0、1、2、3,()3911084P X C ===,()1263393114C C P X C ===,()21633915228C C P X C ===,()363953?21C P X C ===.所以,随机变量X 的分布列为()1232142821E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.23.(1)0.94r ≈,线性相关性较弱;(2) +77.3ˆyx =。
一、选择题1.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9162.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%4.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .595.某射手射击一次命中的概率为0.8,连续两次射击均命中的概率是0.6,已知该射击手某次射中,则随后一次射中的概率是( ) A .34B .45C .35D .7106.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1157.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =8.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样9.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 10.在一次独立性检验中,得出列表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720B .360C .180D .9011.下列有关结论正确的个数为( )①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()2|9P A B =; ②设,a b ∈R ,则“22log log a b >”是“21a b ->的充分不必要条件;③设随机变量ξ服从正态分布(),7N μ,若()()24P P ξξ<=>,则μ与D ξ的值分别为3,7D μξ==. A .0B .1C .2D .312.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;二、填空题13.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p 值为______. 14.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.15.如图, A, B, C 表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________16.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.17.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.18.甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为12,乙投篮命中的概率为23,求甲至多命中2个且乙至少命中2个概率____.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)的值是_____.20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.2020年1月24日,中国疾控中心成功分离中国首株新型冠状病毒毒种.6月19日,中国首个新冠mRNA疫苗获批启动临床试验,截至2020年10月20日,中国共计接种了约6万名受试者,为了研究年龄与疫苗的不良反应的统计关系,现从受试者中采取分层抽样抽取100名,其中大龄受试者有30人,舒张压偏高或偏低的有10人,年轻受试者有70人,舒张压正常的有60人.(1)根据已知条件完成下面的22⨯列联表,并据此资料你是否能够以99%的把握认为受试者的年龄与舒张压偏高或偏低有关?大龄受试者年轻受试者合计舒张压偏高或偏低舒张压正常合计6人,从抽出的6人中任取3人,设取出的大龄受试者人数为X,求X的分布列和数学期望.运算公式:()()()()()22n ad bcKa b c d a c b d-=++++,对照表:22.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面22⨯列联表,并问是否有0099的把握认为“两个分厂生产的零件的质量有差异”.附:22()()()()()n ad bcKa b c d a c b d-=++++23.为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示. (1)求a 的值及通过电子阅读的居民的平均年龄;(2)把年龄在第123,,组的居民称为青少年组,年龄在第45,组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成上面22⨯列联表,则是否有97.5%的把握认为阅读方式与年龄有关? ()()()()()22n ad bc K a b a d b c c d -=++++()2P K k >0.15 0.100.050.025 0.010 0.005 0.001k2.0722.7063.8415.0246.6357.879 10.82824.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为子调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到如图所示的频率分布直方图.(1)根据女性频率分布直方图估计女性使用微信的平均时间;(2)若每天再微信超过4个小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“微信控”与“性别有关”? 25.2019年,中国的国内生产总值(GDP )已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x1 2 3 4 5 6 7 8 y1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型by a x=+和指数函数模型dx y ce =分别对两个变量的关系进行拟合.为此变换如下:令1xμ=,则y a b μ=+,即y 与μ满足线性关系;令ln νμ=,则ln c dx ν=+,即ν与x 也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54dx y e =,ν与x 的相关系数10.94r =-,其他参考数据如表(其中1ln i i i iy x μν==).(1)求指数函数模型和反比例函数模型中y 关于x 的回归方程;(2)试计算y 与μ的相关系数2r ,并用相关系数判断:选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?(3)根据(2)小题的选择结果,该企业采取订单生产模式(即根据订单数量进行生产,产品全部售出).根据市场调研数据,该产品单价定为100元时得到签订订单的情况如表:已知每件产品的原料成本为10元,试估算企业的利润是多少?(精确到1千元) 参考公式:对于一组数据()11,μν,()22,μν,⋅⋅⋅,(),n n μν,其回归直线ναβμ=+的斜率和截距的最小二乘估计分别为:1221ni i i nii n n μνμνβμμ==-=-∑∑,ανβμ=-,相关系数ni in r μνμν-=∑26.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n 的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名. ①完成如下所示22⨯列联表技术工 非技术工 总计 月工资不高于平均数 50 月工资高于平均数50 总计5050100②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.050.01 0.005 0.001 0k 3.8416.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.2.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.3.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.C解析:C 【解析】分析:利用概率的计算公式,求解事件A 和事件A B 的概率,即可利用条件概率的计算公式,求解答案.详解:由题意,事件A =“第一次摸出的是红球”时,则63()105P A ==, 事件A =“第一次摸出的是红球”且事件B =“第二次摸出白球”时,则6412()10945P AB =⨯=, 所以()4(|)()9P AB P B A P A ==,故选C . 点睛:本题主要考查了条件概率的计算,其中熟记条件概率的计算公式和事件的概率是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力.5.A解析:A 【解析】分析:某次射中,设随后一次射中的概率为p ,利用相互独立事件概率乘法公式能求出p 的值.详解:某次射中,设随后一次射中的概率为p ,∵某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,0.80.6p ,∴= 解得34p =.故选:A .点睛:本题考查概率的求法,涉及到相互独立事件概率乘法公式的合理运用,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.6.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.7.D解析:D 【解析】分析:由题意1A ,2A ,3A是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A是两两互斥事件, ()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.8.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A9.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.10.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.11.D解析:D 【解析】对于①,4344443273()()464432A PB P AB ⨯====,,所以()2()()9P AB P A B P B ==,故①正确;对于②,当22log log a b >,有0a b >>,而由21a b ->有a b >,因为0,0a b a b a b a b >>⇒>>≠>>> ,所以22log log a b >是21a b ->的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线3ξ=对称,且27σ= 所以3,7D μξ==,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.12.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.二、填空题13.【分析】根据甲乙两人各射击一次得分之和为2的概率为列方程解方程求得的值【详解】甲乙两人各射击一次得分之和为2可能是甲击中乙未击中或者乙击中甲未击中故解得故答案为:【点睛】本小题主要考查相互独立事件概解析:34【分析】根据甲、乙两人各射击一次得分之和为2的概率为920列方程,解方程求得p 的值. 【详解】甲、乙两人各射击一次得分之和为2,可能是甲击中乙未击中,或者乙击中甲未击中,故()339115520p p ⎛⎫⋅-+⋅-= ⎪⎝⎭,解得34p =. 故答案为:34【点睛】本小题主要考查相互独立事件概率计算,属于基础题.14.【解析】设第一次摸出正品为事件第二次摸出正品为事件则事件和事件相互独立在第一次摸出正品的条件下第二次也摸到正品的概率为:故答案为 解析:【解析】设“第一次摸出正品”为事件A ,“第二次摸出正品”为事件B , 则事件A 和事件B 相互独立,在第一次摸出正品的条件下,第二次也摸到正品的概率为:()()655109|6910P AB P B A P A ⨯===().故答案为5915.994【解析】由题意知本题是一个相互独立事件同时发生的概率种开关中至少有个开关能正常工作的对立事件是种开关都不能工作分别记开关能正常工作分别为事件故答案为解析:994 【解析】由题意知本题是一个相互独立事件同时发生的概率,,,A B C ,3种开关中至少有1 个开关能正常工作的对立事件是3种开关都不能工作,分别记,,A B C 开关能正常工作分别为事件123,,A A A ,()()1231,,10.10.20.30.994P E P A A A =-=-⨯⨯=, 故答案为0.994. 16.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.17.乙【解析】线性回归模型中越接近1效果越好故乙效果最好解析:乙 【解析】线性回归模型中2R 越接近1,效果越好,故乙效果最好.18.【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件分别做出甲至多命中2个球的概率和乙至少命中两个球的概率根据相互独立事件的概率公式得到结果【详解】甲至多命中2个且乙至少命中2个包含的解析:1118【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件,分别做出甲至多命中2个球的概率和乙至少命中两个球的概率,根据相互独立事件的概率公式得到结果. 【详解】甲至多命中2个且乙至少命中2个包含的两个事件是互相独立事件, 设“甲至多命中2个球”为事件A ,“乙至少命中2个球”为事件B ,由题意()41322124411111112222216P A C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()22342344212128333339P B C C ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴甲至多命中2个球且乙至少命中2个球的概率为()()1181116918P A P B ⋅=⨯=,故答案为1118. 【点睛】本题考查独立重复试验,考查离散型随机变量,是一个综合题,解题时注意进球的个数对应的是乙所得的分数,注意分数与进球个数的对应.19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的车能够充电2500次为事件B 即求条件概率:由条件概率公式即得解【详解】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的解析:717【分析】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:(|)P B A ,由条件概率公式即得解. 【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:()35%7(|)()85%17P A B P B A P A ===故答案为:717【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.三、解答题21.(1)没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)分布列见解析,()32E X = 【分析】(1)根据题意列出列联表,再计算2 4.762 6.635K ≈<,故没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)由分层抽样得抽得样本的大龄受试者有3人,年轻受试者有3人,X 的可能取值为0,1,2,3,再结合超几何分布求概率和期望即可.【详解】解:()122⨯列联表如下:()210010601020 4.762 6.63530702080K ⨯⨯-⨯∴=≈<⨯⨯⨯所以,没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关.(2)由题意得,采用分层抽样抽取的6人中,大龄受试者有3人,年轻受试者有3人, 所以大龄受试者人数为X 的可能取值为0,1,2,3,所以()33361020C P X C ===,()2133369120C C P X C ===, ()1233369220C C P X C ===,()33361320C P X C ===,所以X 的分布列为:所以()0123202020202E X =⨯+⨯+⨯+⨯=. 【点睛】本题第二问解题的关键在于根据题意得抽取的6人中,大龄受试者有3人,年轻受试者有3人,进而根据超几何分布求概率分布列与数学期望,考查运算求解能力,是中档题.22.(1) 72% 64% (2) 有99%的把握认为“两个分厂生产的零件的质量有差异” 【解析】解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%. (2)χ2=()1000360180320140500500680320⨯⨯-⨯⨯⨯⨯≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”. 23.(1)0.035,41.5;(2)有. 【分析】(1)由频率分布直方图求出a 的值,再计算数据的平均值;(2)由题意填写列联表,计算观测值,对照临界值得出结论. 【详解】(1)由频率分布直方图可得:10×(0.01+0.015+a +0.03+0.01)=1, 解得a =0.035,所以通过电子阅读的居民的平均年龄为:20×10×0.01+30×10×0.015+40×10×0.035+50×10×0.03+60×10×0.01=41.5;(2)由题意200人中通过电子阅读与纸质阅读的人数之比为3:1, ∴纸质阅读的人数为20014⨯=50,其中中老年有30人,∴纸质阅读的青少年有20人,电子阅读的总人数为150,青少年人数为1500.10.150.35⨯++()=90,则中老年有60人, 得2×2列联表,计算()2200903060202006.061 5.024501501109033K ⨯-⨯==≈>⨯⨯⨯,所以有97.5%的把握认为认为阅读方式与年龄有关. 【点睛】本题考查了频率分布直方图与独立性检验的应用问题,考查了阅读理解的能力,是基础题.24.(1)4.76;(2)有90%的把握认为“微信控”与“性别”有关 【解析】 试题分析:(1)由频率直方图中各概率乘以各方块中点频率相加后即得;(2)从频率直方图中可计算出“微信控”和“非微信控”的男女生人数,再计算出2K 可得. 试题(1)女性平均使用微信的时间为:0.16×1+0.24×3+0.28×5+0.2×7+0.12×9=4.76. (2)2(0.04+a +0.14+2×0.12)=1,解得a =0.08. 由题设条件得列联表:所以K 2==≈2.941>2.706.所以有90%的把握认为“微信控”与“性别”有关.25.(1)指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+;(2)20.99r ≈;用反比例函数模型拟合效果更好;(3)612(千元). 【分析】(1)由96.54dx y e =,得ln ln96.54 4.6y dx dx ν=+⇔=+,将 3.7ν=, 4.5x =代入可得指数模型回归方程.令1xμ=,则y b a μ=+,代入y ,求得b ,a ,可得反比例函数回归方程.(2)求得y 与u 的相关系数为2r ,由12r r <,可得结论. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,可求得订单的期望,从而求得该企业的利润约. 【详解】解:(1)因为96.54dx y e =,所以ln ln96.54 4.6y dx dx ν=+⇔=+, 将 3.7ν=, 4.5x =代入上式,得0.2d =-,所以0.296.54x y e -=.令1xμ=,则y b a μ=+, 因为360458y ==,所以182218183.480.34451001.5380.1158ni ii i i u y u yb u u==-⋅-⨯⨯===-⨯-∑∑,则451000.3411a y b u =-⋅=-⨯=,所以11100y u =+, 所以y 关于x 的回归方程为10011y x=+. 综上,指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+. (2)y 与u 的相关系数为812882222118610.9961.40.616185.588i ii i i i i u y u yr u u y y ===-⋅===≈⨯⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑,因为12r r <,所以用反比例函数模型拟合效果更好. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 令109811111123102222T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭①, 则111092111111*********T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②, ②-①,得11109211111522222T ⎛⎫⎛⎫⎛⎫⎛⎫-=+++⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简得10192T ⎛⎫=+ ⎪⎝⎭,所以101391292256S ⎛⎫=+⨯=+ ⎪⎝⎭,所以该企业的利润约为:3310091009101161232562569256⎡⎤⎢⎥⎛⎫⎛⎫+⨯-+⨯++≈ ⎪ ⎪⎢⎥⎝⎭⎝⎭+⎢⎥⎣⎦(千元). 【点睛】本题考查线性回归方程的求得,相关系数的比较,以及运用数学期望求利润,属于中档题. 26.(1)0.05n =;(2)①列联表见解析;②不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关 【分析】(1)根据频率分布直方图列方程组求得n 的值;(2)根据题意得到22⨯列联表,计算观测值,对照临界值表得出结论. 【详解】 (1)月工资收入在[45,50)(百元)内的人数为15月工资收入在[45,50)(百元)内的频率为:150.15100=; 由频率分布直方图得:(0.020.0420.01)50.151n +++⨯+=0.05n ∴=(2)①根据题意得到列联表:技术工 非技术工总计月工资不高于平均数193150月工资高于平均数3119 50总计 50 50 1002 5.7610.82850505050K ==<⨯⨯⨯ 不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关.【点睛】本题主要考查了独立性检验和频率分布直方图的应用问题,也考查了计算能力及频率应用问题,是基础题.。
一、选择题1.下列四个命题中,正确的有( )①两个变量间的相关系数r 越小,说明两变量间的线性相关程度越低;②命题“x ∃∈R ,使得210x x ++<”的否定是:“对x ∀∈R ,均有210x x ++>”; ③命题“p g ∧为真”是命题“p q ∨为真”的必要不充分条件;④若函数322()3f x x ax bx a =+++在1x =-有极值0,则2a =,9b =或1a =,3b =.A .0B .1C .2D .32.为检测某药品服用后的多长时间开始有药物反应,现随机抽取服用了该药品的1000人,其服用后开始有药物反应的时间(分钟)与人数的数据绘成的频率分布直方图如图所示.若将直方图中分组区间的中点值设为解释变量x (分钟),这个区间上的人数为y (人),易见两变量x ,y 线性相关,那么一定在其线性回归直线上的点为( )A .()1.5,0.10B .()2.5,0.25C .()2.5,250D .()3,3003.为研究某两个分类变量是否有关系,根据调查数据计算得到k≈15.968,因为P(K 2≥10.828)=0.001,则断定这两个分类变量有关系,那么这种判断犯错误的概率不超过( ). A .0.1B .0.05C .0.01D .0.0014.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示: 序号 12345678910 11 12 13 14 15 16 17 18 19 20数学成95 75 80 94 92 65 67 84 98 7167 93 64 787790 57 83 72 83若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀,则有多少把握认为学生的数学成绩与物理成绩有关系( ) A .95%B .97.5%C .99.5%D .99.9%5.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%6.为了考查两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2,已知两个人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( ) A .l 1和l 2有交点(s ,t )B .l 1与l 2相交,但交点不一定是(s ,t )C .l 1与l 2必定平行D .l 1与l 2必定重合7.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:不秃发 5 450根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0018.假设有两个分类变量X 和Y 的22⨯列联表如下:注:2K 的观测值2()()()()()()()n ad bc a b a ck n a b c d a c b d a c b d a b c d-==--++++++++.对于同一样本,以下数据能说明X 和Y 有关系的可能性最大的一组是( ) A .45,15a c ==B .40,20a c ==C .35,25a c ==D .30,30a c ==9.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:冷漠 不冷漠 总计 多看电视 68 42 110 少看电视 20 38 58 总计8880168则认为多看电视与人冷漠有关系的把握大约为( ) 附:K 2=. P (K 2≥k 0) 0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828A .99%B .97.5%C .95%D .90%10.有下列数据: x123y35.9912.01下列四个函数中,模拟效果最好的为( ) A .B .C .D .11.某家具厂的原材料费支出x 与销售量y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为ˆ8ˆy x b =+,则^b为( ) x 2 4 5 6 8 y2535605575A .5B .15C .10D .2012.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,统计数据如下表 数学 物理 85~100分 85分以下 合计 85~100分 37 85 122 85分以下 35 143 178 合计722283002()P K k ≥ 0.050 0.010 0.001 k 3.8416.63510.828附:经计算2 4.514K ≈,现判断数学成绩与物理成绩有关系,则判断出错的概率不会超过 A .0.5%B .1%C .2%D .5%二、填空题13.若两个分类变量X 与Y 的列联表为:y 1 y 2 x 1 10 15 x 24016则“X 与Y 之间有关系”这个结论出错的可能性为________.14.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:参照附表,在犯错误的概率最多不超过______(填百分比)的前提下,可认为“该种疫苗有预防埃博拉病毒感染的效果”.参考公式:K 2=2()()()()()n ad bc a b c d a c b d -++++15.已知方程是根据女大学生的身高预报她的体重的回归方程,其中的单位是,的单位是,那么针对某个体的残差是______.16.给出下列四个结论:(1)如图Rt ABC ∆中,2,90,30.AC B C =∠=︒∠=︒是斜边上的点,.以为起点任作一条射线交于点,则点落在线段上的概率是3;(2)设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为,则若该大学某女生身高增加,则其体重约增加;(3)若()f x 是定义在上的奇函数,且满足,则函数()f x 的图像关于对称;(4)已知随机变量ξ服从正态分布()()21,,40.79,N Pσξ≤=则.其中正确结论的序号为________________17.已知下列说法:①分类变量A与B的随机变量越大,说明“A与B有关系”的可信度越大;②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为,若,,,则.其中说法正确的为_____________.(填序号)18.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cossinxyθθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y+=;③极坐标系中,22,3Aπ⎛⎫⎪⎝⎭与()3,0B19④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误.19.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作不太积极参加班级工作合计学习积极性高18725学习积极性一般61925合计242650则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表()2P K k≥0.0250.0100.0050.001k 5.024 6.6357.87910.82820.下列说法中,正确的有_______.①回归直线ˆˆˆy bx a =+恒过点(),x y ,且至少过一个样本点;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系;③2k 是用来判断两个分类变量是否相关的随机变量,当2k 的值很小时可以推断两个变量不相关;三、解答题21.网购是当前人们购物的新方式,某公司为了改进营销方式,随机调查了100名市民,统计了不同年龄的人群网购的人数如下表:(1)若把年龄在2060,的人称为“网购迷”,否则称为“非网购迷”,请完成下面的22⨯列联表,并判断能否在犯错误的概率不超过1%的前提下,认为网购与性别有关?附:()()()()()2n ad bc K a b c d a c b d -=++++.两人年龄都小于20岁的概率.22.为了解某企业生产的某产品的年利润与年广告投入的关系,该企业对最近一些相关数据进行了调查统计,得出相关数据见下表:根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程:方程甲,2(1)(1) 2.75yb x =-+^^;方程乙,(2)1.6yc x =-^^.(1)求b ^(结果精确到0.01)与c ^的值.(2)为了评价两种模型的拟合效果,完成以下任务.①完成下表(备注:i i ie y y =-^^,i e ^称为相应于点(x i ,y i )的残差); 年广告投入x (万元) 2 3 4 5 6 年利润y (十万元)346811模型甲估计值(1)iy^ 残差(1)i e ^模型乙估计值(2)iy^ 残差(2)ie^②分别计算模型甲与模型乙的残差平方和Q 1及Q 2,并通过比较Q 1,Q 2的大小,判断哪个模型拟合效果更好.23.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50kg箱产量≥50kg 合 计(2)在新养殖法养殖的网箱中,按照分层抽样的方法从箱产量少于50kg 和不少于50kg 的网箱中随机抽取5箱,再从中抽取3箱进行研究,这3箱中产量不少于50kg 的网箱数为X ,求X 的分布列和数学期望.()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++24.某中学在2020年元旦校运动会到来之前,在高三年级学生中招募了16名男性志愿者和14名女性志愿者,其中男性志愿者,女性志愿者中分别有10人和6人喜欢运动会,其他人员均不喜欢运动会.(1)根据题设完成下列22⨯列联表:(2)在犯错误的概率不超过0.050的前提下能否有95%的把握认为喜欢运动会与性别有关?并说明理由.(3)如果喜欢运动会的女性志愿者中只有3人懂得医疗救护,现从喜欢运动会的女性志愿者中随机抽取2人负责医疗救护工作,求“抽取得2名志愿者都懂得医疗救护”的概率.注:()()()()()()22n ad bc K n a b c d a b c d a c b d -==+++++++临界值表k 3.841 5.024 6.63510.82825.某公司(人数众多)为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,按照男员工和女员工1:3的比例分层抽样,得到200名员工的月使用流量L(单位:M)的数据,其频率分布直方图如图所示.求a的值,并估计这200名员工月使用流量的平均值x(同一组中的数据用中点值代表);(2)若将月使用流量在800M以上(含800M)的员工称为“手机营销达人”,填写下面的22⨯列联表,能否有超过0095的把握认为“成为手机营销达人与员工的性别有关”;男员工女员工合计手机营销达人5非手机营销达人合计200(3)若这200名员工中有2名男员工每月使用流量在[]900,1000,从每月使用流量在[]900,1000的员工中随机抽取名3进行问卷调查,记女员工的人数为X,求X的分布列和数学期望.参考公式及数据:()()()()()22n ab bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.150.100.050.0250.0100.005k 2.072 2.706 3.841 5.024 6.6357.87926.云南是世界茶树的原产地之一,也是中国四大茶产区之一,独特的立体气候为茶叶的种质资源多样性创造了良好的自然条件,茶叶产业是云南高原特色农业的闪亮名片.某大型茶叶种植基地为了比较A、B两品种茶叶的产量,某季采摘时,随机选取种植A、B两品种茶叶的茶园各30亩,得到亩产量(单位:kg/亩)的茎叶图如下(整数位为茎,小数位为叶,如55.4的茎为55,叶为4):亩产不低于60kg的茶园称为“高产茶园”,其它称为“非高产茶园”.(1)请根据已知条件完成以下22⨯列联表,并判断是否有95%的把握认为“高产茶园”与茶叶品种有关?A品种茶叶(亩数)B品种茶叶(亩数)合计高产茶园非高产茶园合计(2)用样本估计总体,将频率视为概率,现从该种植基地A品种的所有茶园中随机抽取4亩,且每次抽取的结果相互独立,设被抽取的4亩茶园中“高产茶园”的亩数为X,求X 的分布列和数学期望()E X.附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++ ()2P K k≥0.0500.0100.001k 3.841 6.63510.828【参考答案】***试卷处理标记,请不要删除一、选择题1.A【分析】根据相关系数的定义可知①错误;根据特称命题(又叫存在性命题)的否定可知②错误;根据真值表即可判断“p q ∧为真”是命题“p q ∨为真”的充分不必要条件,故③错误;由条件可得,(1)0,(1)0,f f '-=-= 解得a=2,b=9或a=1,b=3,经检验,当a=1,b=3时,22()3633(1)0f x x x x '=++=+≥恒成立,此时()f x 没有极值点,故④错误。
一、选择题1.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .42.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1154.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .125.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .406.在一次独立性检验中,得出列表如下:合计 190 400a + 590a +且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720 B .360C .180D .907.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .48.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .149.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131510.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .1911.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828A .97.5%B .99%C .99.5%D .99.9%12.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.15.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)16.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 17.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.18.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.三、解答题21.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员 乡土直播达人 合计 男 10 40 50 女 20 30 50 合计3070100(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.00122.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.23.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++25.支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有12,13,16的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X 为这一天他获得的奖励金数,求X 的概率分布和数学期望.26.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表) 月份2020.012020.022020.032020.042020.05(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.4.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 5.D解析:D 【解析】由表中数据知,199.51010.511105x =⨯++++=(),1111086585y =⨯++++=(),代入回归直线方程 3.ˆ2yx a =-+中,求得实数 3.28 3.21040a y x =+=+⨯=,故选D. 6.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.7.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.8.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.9.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.10.B解析:B 【分析】先计算“这个问题至少被一个人正确解答”和“甲、乙两位同学都能正确解答该问题”概率,再利用条件概率公式计算即可. 【详解】由已知,不妨设A =“这个问题至少被一个人正确解答”,B =“甲、乙两位同学都能正确解答该问题”,因为甲、乙两位同学各自独立正确解答该问题的概率分别是23和12, 故215()111326P A ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭,121()233P B =⨯=,易知1()()3P AB P B ==.故()1()235()56P AB P BA P A ===∣. 故选:B. 【点睛】本题考查了条件概率的应用,属于中档题.11.C解析:C 【分析】根据2×2列联表,求出k 的观测值2K ,结合题中表格数据即可得出结论. 【详解】 由题意,可得:222()50(2015105)258.3337.879()()()()302025253n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响. 故选C. 【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.【分析】设甲乙两台机床生产正品的概率分别为则根据题意列方程组解得甲乙同时生产这种零件至少一台获得正品为甲获得正品乙不是正品乙获得正品甲不是正品以及甲乙均获得正品根据概率加法公式求解即可【详解】设甲乙 解析:1112【分析】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤,根据题意列方程组()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩,“甲乙同时生产这种零件,至少一台获得正品”为甲获得正品乙不是正品,乙获得正品甲不是正品,以及甲乙均获得正品,根据概率加法公式求解即可. 【详解】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤. 甲获得正品乙不是正品的概率为14()114p q ∴-=① 又乙获得正品甲不是正品的概率为16()116q p ∴-=② ①②联立得()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩则甲乙均获得正品的概率为321432p q ⋅=⨯= 即甲乙同时生产这种零件,至少一台获得正品的概率是1111146212++= 故答案为:1112【点睛】本题考查概率的加法与乘法公式,属于中档题.14.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.15.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2. 因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+,∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.16.51【解析】由于两套方案互不影响故至少有一套方案通过的概率是解析:51 【解析】由于两套方案互不影响,故至少有一套方案通过的概率是2120.3C 0.3(10.3)0.51+⋅⋅-=.17.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.18.【解析】表示在已经发生事件的情况下事件发生的概率又事件恰有一次出现正面包含于事件至少一次出现反面所以所以解析:37【解析】(/)P B A 表示在已经发生事件A 的情况下,事件B 发生的概率,又事件B = “恰有一次出现正面”包含于事件A =“至少一次出现反面”,所以()()(/)()()P AB P B P B A P A P A ==,37(),()88P B P A ==,所以()3()7P B P A =. 19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】由题意求得一个周期内就停止训练的概率再结合相互独立事件的概率计算公式即可求解【详解】由题意小白每天不能参加训练的概率为若一个训练周期内出现2次不能参加训练可得一个周期内就停止训练的概率为这个 解析:811024【分析】由题意,求得一个周期内就停止训练的概率,再结合相互独立事件的概率计算公式,即可求解.【详解】由题意,小白每天不能参加训练的概率为14,若一个训练周期内出现2次不能参加训练,可得一个周期内就停止训练的概率为221135244432⎛⎫⎛⎫+⨯⨯=⎪ ⎪⎝⎭⎝⎭,这个训练计划持续两个周期的概率为2513811232441024⎛⎫⎛⎫-⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭.故答案为:81 1024.【点睛】本题主要考查了相互独立事件的概率的计算,其中解答中正确理解题意,结合独立事件的概率计算公式求得一个周期内就停止训练的概率是解答的关键,着重考查分析问题和解答问题的能力.三、解答题21.(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)8 15.【分析】(1)由题中22⨯列联表中的数据代入()()()()()22n ad bcKa b c d a c b d-=++++然后与所给表值进行比较可得答案;(2)列出从这6人中随机抽取2人的所有可能情况,选中的2人中恰有一男一女的所有可能情况可得答案.【详解】(1)由题中22⨯列联表,可得()22100103020404.762 3.84150503070K⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系.(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,男性人数为106230⨯=人,记为A,B;女性人数为206430⨯=人,记为a,b,c,d.则从这6人中随机抽取2人的所有可能情况有以下“A,B;A,a;A,b;A,c;A,d;B ,a ; B ,b ; B ,c ; B ,d ;a ,b ; a ,c ; a ,d ; b ,c ; b ,d ; c ,d ”共15种.其中,选中的2人中恰有一男一女的所有可能情况有以下“A ,a ; A ,b ; A ,c ; A ,d ; B ,a ; B ,b ; B ,c ; B ,d ”共8种. ∴选中的2人中恰有一男一女的概率815P =. 【点睛】古典概型的概率的计算方法,首先计算所有基本事件数,再计算事件A 包含的基本事件数,应用古典概率公式计算求解.22.(1)0.95r ≈,y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系;(2)35102y x =+,当7x =时, 4.6y =;(3)要介入进行治理. 【分析】(1)由已知数据可得,x y ,利用公式,求得相关系数r ,即可作出判断,得到结论;(2)由(1),求得b 和ˆa,求得回归直线的方程,代入7x =,即可求得回归方程; (3)由(3,3)(1,11)x s x s -+=-,而1311>,即可得到结论. 【详解】(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5()x x y y r --=0.95==≈. 因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()51521()632ˆ010()i i i i i x x y y b x x ==--===-∑∑,354ˆ2ˆ510a y bx =-=-⨯=, 所以y 与x 之间线性回归方程为35102ˆy x =+. 当7x =时,3576102ˆ 4.y=⨯+=. (3)()()3,31,11x s x s -+=-,而1311>,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理. 【点睛】本题主要考查了回归直线方程的求解及应用问题,其中解答中,认真审题,正确理解题意,利用公式准确计算是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.23.(1)各组分别为5人,6人,4人;(2)35;(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 【解析】试题分析:(1)三组一共有30人,抽取15人,故两个人抽一人,由此得到抽取的人数分别为5,6,4人.(2)利用列举法列举出所有可能性有15种,其中符合题意的有9种,故概率为35.(3)根据题意填写好表格后,计算29.979 6.635K ≈>,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 试题解:(1)因为1012815=5,15=615=4303030,⨯⨯⨯,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:,,,,,,,,,,,,,,,AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab 共15个结果,其中至少有1人愿意选择此款“流量包”,,,,,,,,,Aa Ab Ba Bb Ca Cb Da Db ab 共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率93155P ==. (3)2×2列联表∴()()()()25010310279.979 6.63510271031010273K ⨯⨯-⨯=≈>++++∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 24.(1)平均数为6,“长潜伏者”的人数为250人(2)列联表见解析, 有97.5%的把握认为潜伏期长短与年龄有关 (3)分布列见解析,()1750E X = 【分析】(1)由频率分布直方图可计算出潜伏期的均值,再由频率分布直方图可得“长潜伏者”的频率,从而得人数;(2)由所给数据计算出2K 后可得结论;(3)由题意知所需要的试验费用X 所有可能的取值为1000,1500,2000,分别计算出概率得概率分布列,再由期望公式得期望.。
第一章 统计案例 测试题一、选择题1.下列属于相关现象的是( ) A.利息与利率B.居民收入与储蓄存款 C.电视机产量与苹果产量D.某种商品的销售额与销售价格2.已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为 ( )A.310B.29C.78D.79 3.如图所示,图中有5组数据,去掉组数据后(填字母代号),剩下的4组数据的线性相关性最大( )A.E B.C C.D D.A4.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人, 得到如下结果(单位:人)根据表中数据,你认为吸烟与患肺癌有关的把握有( ) A.90% B.95% C.99% D.100%5.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99%6.已知有线性相关关系的两个变量建立的回归直线方程为y a bx =+,方程中的回归系数b ( ) A.可以小于0 B.只能大于0 C.可以为0 D.只能小于7.每一吨铸铁成本c y (元)与铸件废品率x %建立的回归方程568c y x =+,下列说法正确的是( ) A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元8.下列说法中正确的有:①若0r >,则x 增大时,y 也相应增大;②若0r <,则x 增大时,y 也相应增大;③若1r =,或1r =-,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上( ) A.①② B.②③ C.①③ D.①②③9.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:摄氏 温度 5-0 4 7 12 15 19 23 27 31 36热饮 杯数156 150 132 128 130 116 104 89 93 76 54如果某天气温是2℃,则这天卖出的热饮杯数约为( ) A.100 B.143 C.200 D.243 不患肺病 患肺病 合计 不吸烟 7775 42 7817 吸烟 2099 49 2148 合计 9874 91 9965 晚上 白天 合计 男婴 24 31 55女婴 8 26 34合计 32 57 8910.甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:优秀 不优秀 合计 甲班 10 35 45 乙班 7 38 45 合计 17 73 90利用独立性检验估计,你认为推断“成绩与班级有关系”错误的概率介于( ) A.0.3~0.4 B.0.4~0.5 C.0.5~0.6 D.0.6~0.7 二、填空题11.某矿山采煤的单位成本Y 与采煤量x 有关,其数据如下: 则Y 对x 的回归系数 . 12.对于回归直线方程4.75257y x =+,当28x =时,y 的估计值为 . 13.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不=是因为患心脏病而住院的男性病人中有175人秃顶,则2χ .14.设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________________. 15.由一个 2*2 列联表中数据计算得 2χ = 4.013 ,有__________ 把握认为两个变量有关系.三、解答题 16.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,求这段时间内至少有1人去北京旅游的概率17.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:对于教育机构的研究项目,根据上述数据能得出什么结论. 采煤量 (千吨)289 298 316 322 327 329 329 331 350单位成本 (元)43.5 42.9 42.1 39.6 39.1 38.5 38.0 38.0 37.0积极支持教育改革 不太赞成教育改革 合计大学专科以上学历 39 157 196 大学专科以下学历 29 167 196合计 68 324 39218.1907年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?19.假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:年龄/周3 4 5 6 7 8 9岁身高/cm 90.8 97.6 104.2 110.9 115.6 122.0 128.5年龄/周10 11 12 13 14 15 16岁身高/cm 134.2 140.8 147.6 154.2 160.9 167.6 173.0(1)作出这些数据的散点图;(2)求出这些数据的回归方程;(3)对于这个例子,你如何解释回归系数的含义?(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从3~16岁身高的年均增长数.(5)解释一下回归系数与每年平均增长的身高之间的联系.20.某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:已知721280i i x ==∑,72145309i i y ==∑,713487i i i x y ==∑.(1)求x y ,;(2)画出散点图;(3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程.21.甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)假设某人连续2次未击中目标,则中止其射击.问:乙恰好射击5次后,被中止射击的概率是多少? x3 4 5 6 7 8 9 y66 69 73 81 89 90 91第一章 统计案例检测题答案一、选择题1-5 BDACB 6-10 ACCBB 二、填空题11.0.1229- 12. 390 13. 16.373 14.35 15. 95% 四、解答题16.解:因甲、乙、丙去北京旅游的概率分别为13,14,15.因此,他们不去北京旅游的概率分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35.17.解:22392(3916715729) 1.7819619668324K ⨯⨯-⨯=≈⨯⨯⨯.因为1.78 2.706<,所以我们没有理由说人具有大学专科以上学历(包括大学专科)和对待教育改革态度有关.18. 解:由题意知:(1)船员平均人数之差=0.006×吨位之差=0.006×1000=6, ∴船员平均相差6人;(2)最小的船估计的船员数为:9.1+0.006×192=9.1+1.152=10.252≈10(人).最大的船估计的船员数为:9.1+0.006×3246=9.1+19.476=28.576≈28(人).19.解:(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为y =6.317x +71.984;增加的高度;(4)每年身高的增长数略.3~16岁身高的年均增长数约为6.323cm ;(5)回归系数与每年平均增长的身高之间近似相等. 20. 解:(1)345678967x ++++++==,6669738189909179.867y ++++++=≈;(2)略;(3)由散点图知,y 与x 有线性相关关系, 设回归直线方程:y bx a =+, 5593487761337 4.7528073628b -⨯⨯===-⨯,79.866 4.7551.36a =-⨯=. ∴回归直线方程4.7551.36y x =+. 21.解:(1)记“甲连续射击4次至少有1次未击中目标”为事件A 1.由题意,射击4次,相当于作4次独立重复试验.故P (A 1)=1-P (A 1)=1-(23)4=6581,所以甲连续射击4次至少有一次未击中目标的概率为6581. (2)记“乙恰好射击5次后被中止射击”为事件A 3,“乙第i 次射击未击中”为事件D i (i =1,2,3,4,5),则A 3=D 5D 4·D 3·(D 2D 1),且P (D i )=14.由于各事件相互独立,故P (A 3)=P (D 5)·P (D 4)·P (D 3)·P (D 2D 1) =14×14×34×(1-14×14)=451 024. 所以乙恰好射击5次后被中止射击的概率为451 024.。
2021年新高考数学总复习第十一章《统计与统计案例》
测试卷及答案解析
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是( )
A .系统抽样
B .分层抽样
C .简单随机抽样
D .各种方法均可
答案 B
解析 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,因为社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应用分层抽样法,故选B.
2.某学校的教师配置及比例如图所示,为了调查各类教师的薪资状况,现采用分层抽样的方法抽取部分教师进行调查,在抽取的样本中,青年教师有30人,则样本中的老年教师人数为
( )
A .10
B .12
C .18
D .20
答案 B
解析 设样本中的老年教师人数为x ,由分层抽样的特征得30x =50%20%
,所以x =12,故选B. 3.九江联盛某超市为了检查货架上的奶粉是否合格,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )
A .6,12,18,24,30
B .2,4,8,16,32
C .2,12,23,35,48
D .7,17,27,37,47
答案 D
解析 因为系统抽样是确定出第一个数据后等距抽取的,因此只有D 符合,故选D.
4.如图所示,茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为( )
A .3,6
B .3,7
C .2,6
D .2,7
答案 B
解析 x =9+12+10+x +24+275
=17,解得x =3. 乙组数据的中位数为17,则y =7.故选B.
5.(2019·佛山禅城区调研)下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归方程为y ^=0.8x -155,后因某未知原因第五组数据的y 值模糊不清,此位置数据记为m (如表所示),则利用回归方程可求得实数m 的值为( )
x
196 197 200 203 204 y
1 3 6 7 m
A.8.3 B .8 C .8.1 D .8.2
答案 B
解析 根据题意可得
x =15
×(196+197+200+203+204)=200, y =15×(1+3+6+7+m )=17+m 5
. ∵线性回归方程为y ^ =0.8x -155,
∴17+m 5=0.8×200-155=5,∴m =8,故选B. 6.(2018·长沙适应性考试)某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a 1,a 2,则一定有( )
A .a 1>a 2
B .a 2>a 1
C .a 1=a 2
D .a 1,a 2的大小与m 的值有关
答案 B。