数字图像处理报告(含anaconda配置python)
- 格式:docx
- 大小:4.06 MB
- 文档页数:11
数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。
在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。
2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。
3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。
以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。
4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。
《数字图像处理上机》实验报告班级:电信1101姓名:XXXXXX学号:0703110107数字图像处理上机实验1、实验目的了解matlab软件/语言,学会使用matlab的图像处理工具箱(Image Processing Toolbox),使学生初步具备使用该软件处理图像信息的能力,并能够利用该软件完成本课程规定的其他实验和作业。
熟悉常用的图像文件格式与格式转换;熟悉图像矩阵的显示方法(灰度、索引、黑白、彩色);熟悉图像矩阵的格式转换。
,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。
了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力.2、实验要求学生应当基本掌握matlab的操作,掌握matlab图像处理工具箱中最常用的函数用法。
练习图像读写命令imread和imwrite并进行图像文件格式之间的转换。
学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
3、实验内容及步骤1、图像的显示与格式转换(1)学习matlab的基本操作;(2)使用imread函数读入图像;(3)使用figure函数创建窗口;(4)使用image或imshow函数显示图像;(5)使用colorbar函数在图像的右侧显示图像的亮度条。
2、图像的滤波(1) 考察平均滤波器对高斯噪声污染的图象去噪效果;(2) 考察中值滤波器对高斯噪声污染的图象去噪效果;(3) 考察平均滤波器对椒盐噪声污染的图象去噪效果;(4) 考察中值滤波器对椒盐噪声污染的图象去噪效果。
(5) 考察滤波器模板大小对平均滤波器滤波效果的影响;(6) 考察滤波器模板大小对中值滤波器滤波效果的影响;3、图像的频域变换在Matlab workspace中生成一幅大小为256×256像素的8位灰度图, 背景为黑色,中心有一个宽80像素高40像素的白色矩形。
数字图像处理实习报告
本次实习主要任务是进行数字图像处理相关工作,包括图像的预处理、特征提取、图像分割和图像识别等方面的工作。
实习过程中,我主要负责了图像处理算法的编写与优化,以及实验数据的收集与分析。
通过这次实习,我对数字图像处理技术有了更深入的了解,并且提升了自己的编程能力和团队协作能力。
在图像处理算法的编写与优化过程中,我主要使用了Python
语言和常用的图像处理库,如OpenCV和PIL等。
我研究了不同的图像处理算法,并对其进行了实验验证,优化了算法的性能和效果。
通过这些工作,我深入了解了图像处理算法的实现原理和优化方法,提升了自己在图像处理领域的技术水平。
在实验数据的收集与分析过程中,我主要负责了实验数据的采集和整理工作。
我使用了各种图像采集设备,包括相机、摄像头等,对不同场景下的图像进行了采集和整理。
然后我利用Python和Matlab等工具对实验数据进行了分析和结果展示,
为后续的图像处理算法提供了重要的支持和参考。
总的来说,这次实习让我对数字图像处理有了更深入的了解,提升了自己的技术能力和实践能力。
我在实习过程中遇到了不少困难和挑战,但通过团队合作和自我努力,最终都得以克服,取得了一定的成果。
通过这次实习,我深刻地感受到了数字图像处理技术的重要性和广阔的应用前景,也对自己未来的发展方向有了更清晰的认识。
希望通过这次实习的经历,我能够为将来的学习和工作打下坚实的基础。
数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。
2.掌握数字图像处理的基本方法。
3.掌握常用数字滤波器的性质和使用方法。
4.熟练应用数字图像处理软件进行图像处理。
实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。
% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。
图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。
在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。
RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。
% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。
数字图像处理中的滤波是一种常用的图像增强方法。
滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。
% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。
这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。
下面是数字图像处理在人脸识别应用中的一个简单例子。
% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。
数字图像处理实验报告实验⼀、图像的显⽰与格式变换1、实验⽬的1)熟悉常⽤的图像⽂件格式与格式转换;2)熟悉图像矩阵的显⽰⽅法(灰度、索引、⿊⽩、彩⾊);3)熟悉图像矩阵的格式转换2、实验内容练习图像读写命令imread和imwrite并进⾏图像⽂件格式间的转换。
特别是索引图像与1,4,8,16⽐特图像的存储与转换。
3、实验步骤a.⽤图像读命令(imread)从你的硬盘中读取图像(cameramen.tif);b.⽤图像显⽰功能(imshow)将刚读⼊的图像显⽰在⼀图像窗中;c.显⽰颜⾊条功能(colorbar)在图像的左边画⼀条颜⾊亮度显⽰条;d.⽤(imfinfo)功能得到(gray.bmp)图像的相关信息;e.⽤(colormap )获取当前图像的调⾊板,观察调⾊板中的颜⾊设置;f.⽤(getimage)功能从坐标轴取得当前图像数据;g.⽤(imagesc)功能显⽰图像从64-128的灰度值;h. ⽤(immovie)功能将⼀个4-D 图像创建多帧索引图的电影动画;i. ⽤(warp)功能将图像('testpat1.tif)显⽰到纹理映射柱⾯;思考:怎样让(cameraman.tif)图像如下图⼀样显⽰?四.实验结果及代码a.代码:>>X=imread(‘cameraman.tif’)b.代码:>>y=imshow(X)显⽰的图像为:c、代码:>>I = colorbar('cameraman.tif')H=imshow('cameraman.tif')显⽰的图像为d、代码:>>info=imfinfo(‘gray.bmp')显⽰结果为:Filename: [1x71 char]FileModDate: '16-Apr-2010 11:23:52'FileSize: 107786Format: 'bmp'FormatV ersion: 'V ersion 3 (Microsoft Windows 3.x)' Width: 409Height: 259BitDepth: 8ColorType: 'indexed'FormatSignature: 'BM'NumColormapEntries: 256Colormap: [256x3 double]RedMask: []GreenMask: []BlueMask: []ImageDataOffset: 1078BitmapHeaderSize: 40NumPlanes: 1CompressionType: 'none'BitmapSize: 106708HorzResolution: 0V ertResolution: 0NumColorsUsed: 0NumImportantColors: 0e、代码:>>x=imread(‘256.bmp’)color1=colormap %获取当前图象的调⾊板image (x)info=imfinfo(’256.bmp’)color2=info.Colormap %注意观察调⾊板有多少种颜⾊colormap(color2)f、代码:>>I=getimageg、代码:>> imagesc(x,[64 128])h、代码:>> load mri;mov = immovie(D,map); movie(mov,3)显⽰图像为:i.源代码:>>[x,y,z]=cylinder;I= imread('testpat1.tif');warp(x,y,z,I),图像显⽰为:思考:代码:>>X=inread('cameramen.tif'); Y=[X X];[x,-y,z]=cylinder;I=imread(Y);warp(x,y,z,I)显⽰图像为:实验⼆、图像增强⼀、实验⽬的1.理解图像直⽅图的含义;2.了解直⽅图的应⽤;3.掌握直⽅图均衡化的实现⽅法。
实验1直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备:1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果:观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码:I=imread('coins.png');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验2 均值滤波一.实验目的1.熟悉matlab图像处理工具箱及均值滤波函数的使用;2.理解和掌握3*3均值滤波的方法和应用;二.实验设备:1.PC机一台;2.软件matlab三.程序设计在matlab环境中,程序首先读取图像,然后调用图像增强(均值滤波)函数,设置相关参数,再输出处理后的图像。
《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
数字图像处理实验报告(完整版)数字图像处理实验⼀ MATLAB数字图像处理初步⼀、显⽰图像1.利⽤imread( )函数读取⼀幅图像,假设其名为lily.tif,存⼊⼀个数组中;2.利⽤whos 命令提取该读⼊图像flower.tif的基本信息;3.利⽤imshow()函数来显⽰这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)⼆、压缩图像4.利⽤imfinfo函数来获取图像⽂件的压缩,颜⾊等等其他的详细信息;5.利⽤imwrite()函数来压缩这幅图象,将其保存为⼀幅压缩了像素的jpg⽂件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利⽤imwrite()函数将最初读⼊的tif图象另存为⼀幅bmp图像,设为flily.bmp。
7.⽤imread()读⼊图像Sunset.jpg和Winter.jpg;8.⽤imfinfo()获取图像Sunset.jpg和Winter.jpg的⼤⼩;9.⽤figure,imshow()分别将Sunset.jpg和Winter.jpg显⽰出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上⾯两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、⼆值化图像10.⽤im2bw将⼀幅灰度图像转化为⼆值图像,并且⽤imshow显⽰出来观察图像的特征。
数字图像处理实验报告 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-数字图像处理试验报告实验二:数字图像的空间滤波和频域滤波姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日1.实验目的1. 掌握图像滤波的基本定义及目的。
2. 理解空间域滤波的基本原理及方法。
3. 掌握进行图像的空域滤波的方法。
4. 掌握傅立叶变换及逆变换的基本原理方法。
5. 理解频域滤波的基本原理及方法。
6. 掌握进行图像的频域滤波的方法。
2.实验内容与要求1. 平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。
2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。
3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。
4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显示均值处理后的图像(提示:利用 fspecial 函数的’average’类型生成均值滤波器)。
5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。
2. 锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1,1, 1]对其进行滤波。
2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 13) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,并利用式g(x, y)f (x, y) 2 f (x, y) 完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。
数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。
本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。
实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。
实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。
在Python中,我们可以使用OpenCV库来实现图像的读取和显示。
以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。
常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。
以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。
数字图像办理实验报告数字图像办理实验报告1一. 实验内容:主假如图像的几何变换的编程实现,详细包含图像的读取、改写,图像平移,图像的镜像,图像的转置,比率缩放,旋转变换等.详细要求以下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比率缩放,要求分别用双线性插值和近来邻插值两种方法来实现,并比较两种方法的缩放成效;5.编程实现以随意角度对图像进行旋转变换,要求分别用双线性插值和近来邻插值两种方法来实现,并比较两种方法的旋转成效.二.实验目的和意义:本实验的目的是使学生熟习并掌握图像办理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能经过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软企业供给的鉴于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大批的扩展库,使用它能有效的创立高性能的Windows应用程序和Web应用程序.VC除了供给高效的C/C++编译器外,还供给了大批的可重用类和组件,包含有名的微软基础类库(MFC)和活动模板类库(ATL),所以它是软件开发人员屈指可数的开发工具.VC丰富的功能和大批的扩展库,类的重用特征以及它对函数库、DLL 库的支持能使程序更好的模块化,并且经过导游程序大大简化了库资源的使用和应用程序的开发,正因为VC拥有显然的优势,因此我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、信息映照体制、对话框控件编程等都获取了生动的表现和灵巧的应用.3.2 实验办理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:详细构成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType="BM" bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素依据每行每列的次序摆列每一行的字节数一定是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件构成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分构成.2. BMP文件头BMP文件头数据结构含有BMP文件的种类(一定为BMP)、文件大小(以字节为单位)、位图文件保存字(一定为0)和位图开端地点(以相关于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平易垂直分辨率以每米像素数为单位) ,目标设施的级别,每个像素所需的位数, 位图压缩种类(一定是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD种类的结构,定义一种颜色.详细包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表构成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录次序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数一定是 4的倍数(即以long 为单位),不足的以0填补.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于寄存位图文件2. 位图文件读入所申请内存空间中3. 在函数顶用创立显示用位图, 用函数创立兼容DC,用函数选择显示删除位图但以上方法的弊端是: 1)显示速度慢; 2) 内存占用大; 3) 位图在减小显示时图形失真大,(可经过安装字体光滑软件来解决); 4) 在低颜色位数的设施上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,并且还能够对图形进行淡化(Dithering )办理.淡化办理是一种图形算法,能够用来在一个支持比图像所用颜色要少的设施上显示彩色图像.BMP位图显示方法以下:1. 翻开视频函数,一般放在在结构函数中2. 申请内存空间用于寄存位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 封闭视频函数 ,一般放在在析构函数中以上方法的长处是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设施上显示高颜色位数的图形图形时失真小; 5) 经过直接办理位图数据,能够制作简单动画.3.4 程序顶用到的接见函数Windows支持一些重要的DIB接见函数,可是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数能够直接在显示器或打印机上显示DIB. 在显示时不进行缩放办理.2. StretchDIBits函数:该函数能够缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来结构DIB.经过该函数,能够对DIB的格式进行控制,能够指定每个像素颜色的位数,并且能够指定能否进行压缩.4. CreateDIBitmap函数:利用该函数能够从DIB出发来创立GDI 位图.5. CreateDIBSection函数:该函数能创立一种特别的DIB,称为DIB项,而后返回一个GDI位图句柄.6. LoadImage函数:该函数能够直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows供给了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个能够代替StretchDIBits的函数.它的最主要的长处是能够使用颤动颜色,并且提升显示DIB的速度,弊端是一定将VFW代码连结到进度中.3.5 图像的几何变换图像的几何变换,往常包含图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像办理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生经过用VC等高级语言编写数字图像办理的一些基本算法程序,来稳固和掌握图像办理技术的基本技术,提升实质着手能力,并经过实质编程认识图像办理软件的实现的基来源理。
数字图像处理实验报告图像处理课程的目标是培养学生的试验综合素质与能力。
使学生通过实践,理解相关理论学问,将各类学问信息进行新的组合,制造出新的方法和新的思路,提高学生的科学试验与实际动手操作能力[1]。
从影像科筛选有价值的图像,建成影像学数字化试验教育平台,系统运行正常;具备图像上传、图像管理、图像检索与扫瞄、试验报告提交、老师批阅等功能;能满意使用要求[2]。
1.试验内容设计思路1.1项目建设内容和方法数字图像处理的内容:完整的数字图像处理大体上分为图像信息的猎取,存储,传送,处理,输出,和显示几个方面。
数字图像信息的猎取主要是把一幅图像转换成适合输入计算机和数字设备的数字信号,包括摄取图像,光、电转换及数字化。
数字图像信息的存储,数字图像信息的突出特点是数据量巨大,为了解决海量存储问题,数字图像的存储主要研究图像压缩,图像格式及图像数据库技术。
数字图像信息的传送数字图像信息的传送可分为系统内部传送与远距离传送[4]数字图像信息处理包括图像变换,图像增加,图像复原,彩色与多光谱处理图像重建,小波变换,图像编码,形态学,目标表示与描述。
数字图像输出和显示,最终目的是为人和机器供应一幅便于解释和识别的图像,数字图像的输出和显示也是数字图像处理的重要内容之一。
1.2数字图像处理的方法大致可以分为两大类,既空域法和频域法空域法:是把图像看做平面中各个像素组成的集合,然后直接对一维和二维函数进行相应处理,依据新图像生成方法的不同,空域处理法可为点处理法,区处理法,叠代处理法,跟踪处理法,位移不变与位移可变处理法。
点处理法的优点,点处理的典型用途a)灰度处理b)图像二值处理点处理方法的优点a)可用LUT方法快速实现b)节省存储空间。
区处理法,邻域处理法。
它依据输入图像的小邻域的像素值,按某些函数得到输出像素。
区处理法主要用于图象平滑和图像的锐化。
叠代处理法:叠代就是反复进行某些处理运算,图像叠代处理也是如此,拉普拉斯算子或平滑处理的结果是物体轮廓,该图像轮廓边缘太宽或粗细不一,要经过多次叠代把它处理成单像素轮廓——图像细化。
数字图像处理实验报告实验一数字图像基本操作及灰度调整一、实验目得1)掌握读、写图像得基本方法。
2)掌握MATLAB语言中图像数据与信息得读取方法。
3)理解图像灰度变换处理在图像增强得作用。
4)掌握绘制灰度直方图得方法,理解灰度直方图得灰度变换及均衡化得方法。
二、实验内容与要求1.熟悉MATLAB语言中对图像数据读取,显示等基本函数特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。
1)将MA TLAB目录下work文件夹中得forest、tif图像文件读出、用到imread,imfinfo等文件,观察一下图像数据,了解一下数字图像在MATLAB中得处理就就是处理一个矩阵。
将这个图像显示出来(用imshow)。
尝试修改map颜色矩阵得值,再将图像显示出来,观察图像颜色得变化。
2)将MATLAB目录下work文件夹中得b747、jpg图像文件读出,用rgb2gray()将其转化为灰度图像,记为变量B。
2.图像灰度变换处理在图像增强得作用读入不同情况得图像,请自己编程与调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应得处理效果。
3.绘制图像灰度直方图得方法,对图像进行均衡化处理请自己编程与调用Matlab函数完成如下实验。
1)显示B得图像及灰度直方图,可以发现其灰度值集中在一段区域,用imadjust函数将它得灰度值调整到[0,1]之间,并观察调整后得图像与原图像得差别,调整后得灰度直方图与原灰度直方图得区别。
2)对B进行直方图均衡化处理,试比较与源图得异同。
3)对B进行如图所示得分段线形变换处理,试比较与直方图均衡化处理得异同。
图1、1分段线性变换函数三、实验原理与算法分析1.灰度变换灰度变换就是图像增强得一种重要手段,它常用于改变图象得灰度范围及分布,就是图象数字化及图象显示得重要工具。
1)图像反转灰度级范围为[0,L-1]得图像反转可由下式获得2)对数运算:有时原图得动态范围太大,超出某些显示设备得允许动态范围,如直接使用原图,则一部分细节可能丢失。
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理实验报告通用数字图像处理实验报告通用数字图像处理是现代科学技术发展过程中的一个重要方向,它广泛地涉及到了计算机、数学、物理、电子等多个学科。
数字图像处理实验是数字图像处理领域中不可或缺的重要研究手段之一。
为了更好地展示实验结果和数据,以下是数字图像处理实验报告通用模板,以供参考。
1. 实验目的本次实验的目的是掌握数字图像处理的基本概念、算法以及其应用,在实践中学习数字图像处理的基础操作和技巧。
通过实验,学生可以更深入地理解数字图像处理的原理,并掌握数字图像处理应用的方法和技术。
2. 实验原理数字图像处理是将数字信号处理和图像处理结合起来的技术。
主要基于数字通信和数字信号处理原理,将二维图像进行数字化,并对其进行处理,实现图像的获取、传输、分析和显示等功能。
3. 实验流程(1) 图像获取和预处理:获取需要处理的图像,并进行基本的预处理,包括降噪、锐化、自适应增强等。
(2) 图像增强:通过滤波、直方图均衡化、灰度拉伸等操作,增强图像的亮度、对比度等特征。
(3) 图像变换:包括几何变换(旋转、平移、缩放等)、色彩空间变换(RGB空间、HSV空间等)等。
(4) 特征提取和分类:从图像中提取出感兴趣的特征,进行分类判别、目标检测等。
(5) 结果展示和分析:将处理后的图像结果进行展示和分析,分析图像特征和处理效果。
4. 实验结果(1) 原始图像(2) 预处理后的图像(3) 增强后的图像(4) 变换后的图像(5) 提取出的特征及分类结果(6) 结果展示和分析5. 实验总结通过本次实验,我们对数字图像处理的基本概念、算法和应用有了更深的理解,并掌握了数字图像处理的基础操作和技巧。
对于未来的科学研究和工程技术领域,数字图像处理具有广泛的应用前景,我们有信心在这个领域不断深耕,为社会的发展进步做出更大的贡献。
数字图像处理实验报告数字图像处理实验报告第一章总论数字图像处理是计算机图形学、数字信号处理等学科交叉的一门学科。
它是基于数字计算机对图像信号进行数字处理的一种方法。
数字图像处理技术已广泛应用于医学影像诊断、遥感图像处理、图像识别、安防监控等领域,在当今社会中具有不可替代的重要作用。
本次实验主要介绍了数字图像处理的基本方法,包括图像采集、图像增强、图像恢复、图像分割、图像压缩等几个方面。
在实验过程中,我们采用了一些常用的数字图像处理方法,并通过 Matlab 图像处理工具箱进行实现和验证。
第二章实验过程2.1 图像采集在数字图像处理中,图像采集是一个重要的步骤。
采集到的图像质量直接影响到后续处理结果的准确性。
本次实验使用的图像是一张 TIF 格式的彩色图像,通过 Matlab 读取图像文件并显示,代码如下:```Matlabim = imread('test.tif');imshow(im);```执行代码后,可以得到如下图所示的图像:2.2 图像增强图像增强是指利用某些方法使图像具有更好的视觉效果或者变得更适合某种应用。
本次实验我们主要采用直方图均衡化、灰度变换等方法进行图像增强。
2.2.1 直方图均衡化直方图均衡化是一种常用的增强方法,它可以增加图像的对比度和亮度,使图像更加清晰。
代码实现如下:```Matlabim_eq = histeq(im);imshow(im_eq);```执行代码后,会得到直方图均衡化后的图像,如下图所示:可以看出,经过直方图均衡化处理后,图像的对比度和亮度得到了明显提高。
2.2.2 灰度变换灰度变换是一种用于调整图像灰度级别的方法。
通过变换某些像素的灰度级别,可以增强图像的视觉效果。
本次实验我们采用对数变换和幂函数变换两种方法进行灰度变换。
竭诚为您提供优质文档/双击可除数字图像处理实验报告篇一:数字图像处理实验报告实验一数字图像的获取一、实验目的1、了解图像的实际获取过程。
2、巩固图像空间分辨率和灰度级分辨率、邻域等重要概念。
3、熟练掌握图像读、写、显示、类型转换等matlab函数的用法。
二、实验内容1、读取一幅彩色图像,将该彩色图像转化为灰度图像,再将灰度图像转化为索引图像并显示所有图像。
2、编程实现空间分辨率变化的效果。
三、实验原理1、图像读、写、显示I=imread(‘image.jpg’)Imview(I)Imshow(I)Imwrite(I,’wodeimage.jpg’)2、图像类型转换I=mat2gray(A,[amin,amax]);按指定的取值区间[amin,amax]将数据矩阵A转化为灰度图像I,amin对应灰度0,amax对应1,也可以不指定该区间。
[x,map]=gray2ind(I,n);按指定的灰度级n将灰度图像转化为索引图像,n默认为64I=ind2gray(x,map);索引图像转化为灰度图像I=grb2gray(Rgb);真彩色图像转化为灰度图像[x,map]=rgb2ind(Rgb);真彩色图像转化为索引图像Rgb=ind2rgb(x,map);索引图像转化为真彩色图像bw=im2bw(I,level);将灰度图像转化为二值图像,level取值在[0,1]之间bw=im2bw(x,map,level);将索引图像转化为二值图像,level取值在[0,1]之间bw=im2bw(Rgb,level);将真彩色图像转化为二值图像,level取值在[0,1]之间四、实验代码及结果1、in=imread(peppers.png);i=rgb2gray(in);[x,map]=gray2ind(i,128); subplot(131),imshow(in)subplot(132),imshow(i)subplot(133),imshow(x),colormap(map) 、%空间分辨率变化的效果clc,closeall,cleari=imread(cameraman.tif);i=imresize(i,[256,256]);i1=i(1:2:end,1:2:end);[m1,n1]=size(i)i2=i1(1:2:end,1:2:end);[m2,n2]=size(i2)i3=i2(1:2:end,1:2:end);[m3,n3]=size(i3)subplot(221),imshow(i),xlabel(256x256) subplot(222),imshow(i1),xlabel(128x128) subplot(223),imshow(i2),xlabel(64x64) subplot(224),imshow(i3),xlabel(32x32) 256x25664x64128x12832x322实验二图像的几何变换一、实验目的掌握图像的基本几何变换的方法1、图像的平移2、图像的旋转二、实验内容练习用matalb命令实现图像的平移、旋转操作1、.编写实现图像平移的函数2、用imread命令从你的硬盘读取一幅256×256灰度图;3、调用平移函数,将256×256灰度图平移100行200列,在同一个窗口中显示平移前和平移后的图像。
课程名称现代数字图像处理与分析教师姓名姓名学号专业所在院系计算机学院类别: A.博士B.硕士 C.进修生日期: 2019年5月29 日评语注:1、无评阅人签名成绩无效;2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效;3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。
计算遥感图中长江的流域面积一、前言数字图像处理是一种通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像树立技术目前已经在各个领域上都有了比较广泛的应用。
下文主要讲了的是通过图像分割算法将遥感图中长江的流域面积分割出来,再计算其流域面积。
分辨率为30m的遥感图如图1所示:图1 遥感图二、常用的图像分割算法图像分割方法的研究一直受到很多学者的关注,四十多年里,图像分割的研究一直受到人们高度的重视。
迄今为止。
研究者们已经提出了上千种各种类型的分割算法,而且近年来每年都有上百篇相关研究成果发表。
但是,现有的方法多是为特定应用设计的,有很大的针对性和局限性,对图像分割的研究还缺乏一个统一的理论体系。
Fu和Mui从细胞学图像处理的角度将图像分割技术分为三大类:特征阀值或聚类、边缘检测和区域提取。
一个更加细致的分类里,Haraliek and Shapiro将所有算法分为6类:测度空间导向的空间聚类、单一连接区域生长策略、混合连接区域生长策略、中心连接区域生长策略、空间聚类策略和分裂合并策略。
依据算法所使用的技术或针对的图像,Pal and Pal也把图像分割算法分成了6类:阀值分割、像素分割、深度图像分割、彩色图像分割、边缘检测和基于模糊集的方法。
但是,该分类方法中,各个类别的内容是有重叠的。
为了涵盖不断涌现的新方法,有的研究者将图像分割算法分类以下类:并行边界分割技术、串行边界分割技术、并行区域分割技术、串行区域分割技术、结合特定理论工具的分割技术和特殊图像分割技术。
而在较近的一篇综述中,更有学者将图像分割简单的分成基于数据驱动的分割和基于模型驱动的分割两类。
下面,我们将图像分割算法分为以下5类:基于阀值化的分割、基于边缘的分割、基于区域的分割、基于聚类的分割、基于形态学及其他分割方法。
由于该课程报告采用基于阈值化的分割算法分割图1所示的遥感图,下面只详细讲述基于阈值化的分割算法。
阈值化分割是最常见的直接检测区域的分割方法,它就是简单地用一个或几个阈值将图像的灰度直方图分成几个类,如果只需选取一个阈值称为单阈值分割,它将图像分为目标和背景两大类;如果选取多个阈值分割称为多阀值方法,图像将被分割为多个目标区域和背景。
阈值化分割的结果依赖于阈值的选取,确定阈值是阈值化分割方法的关键,阈值化分割实质上就是按照某个准则求出最佳阈值的过程。
常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其他一些方法。
阈值化分割方法计算简单,运算效率较高,速度快。
全局阀值对于灰度相差较大的不同目标和背景能进行有效的分割,当图像的灰度差异不明显或不同目标的灰度值范围有重叠时,应采用局部阀值或动态阈值分割法。
但这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。
在实际应用中,阈值法通常与其他方法结合使用。
三、实际应用在实际应用中,采用python语言编程,需要安装opencv的包。
首先下载Anaconda软件,Anaconda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换。
安装好后,点击Environments,选择anaconda3.0.5(3.0.5为版本号),将搜索栏中缺省的搜索条件installed更改为all,之后搜索opencv下载即可,具体如图2所示:图2 安装python以及opencv之后,使用pycharm集成开发环境,依赖项选择anaconda3.0.5下的python.exe。
1、导入CV2和numpy,读取TIF图像,代码如图3所示:图3 读取遥感图像2、获取图中水域的RGB值,对应三个数值,可以利用photoshop软件提取,本例中获取的水域的RGB值分别为10,10,10。
经过多次实验,提取在该值上下浮动分别为8和2区间的值分割效果最佳,作为影像二值化的依据。
(补充:影像必须先进行灰度化,然后才进行二值化处理。
)对于在水域RGB区间内的影像部分赋值为白色(255),其余部分赋值为黑色(0),代码如图4所示:图4 图像二值化其结果命名为掩膜数据,结果如图5所示:图5 掩膜数据将TIF图像放大,可看到图中长江流域被横过的大桥分割开来,被分为6块,具体如图6所示:图6长江流域被二值化情况3、OpenCV提供了cv2.findContours()函数提取二值化图像的轮廓。
对上面生成图片上执行这个函数就可以返回该图片的区域轮廓。
由于执行该函数时会直接修改图像,因此我们复制一份图像之传给cv2.findContours();同时,OpenCV提供了cv2.drawContour()函数绘可以把轮廓叠加到另一张图片上。
具体如图7所示:图7 提取轮廓利用findCountours()函数,得到169182个轮廓,结果如图8所示:图8 轮廓图将图像放大,发现长江如掩膜数据中二值化效果一致,具体如图9所示:图9 分割情况4、在获取的轮廓结果图中我们可以看到,存在众多的细小板块,其中contours.sort(key=len,reverse=True)可以对细小斑块的面积进行排序,图中长江被分割为6个部分,经过多次实验,6个部分的排序顺序小标分别为0、4、7、27、58和81,具体如图10所示:图10分割模块将六个分割轮廓拼接在一起得到目标分割图,即遥感图中长江的流域面积分割图,如图11所示:图11 目标分割图虽然已经将长江流域分割出来了,但放大图片之后会发现有些地方会分割不开,如图12所示:图12 缺陷5、利用cv2.contourArea()函数,分别计算六块分割图的像素点个数,已知遥感图的分辨率为30m,故一个像素点对应的实际面积为30*30=900m2,具体代码如图13所示:图13 计算长江流域面积计算得出六块分割图的总像素点个数为606807个,流域面积为546.1263平方公里。
计算结果如图14所示:图14 计算结果6、完整代码:import cv2import numpyimage=cv2.imread("p4.tif")RGB = numpy.array([10,10,10])upper = RGB+8lower = RGB - 2mask = cv2.inRange(image,lower,upper)cv2.imshow("Mask",mask)cv2.imwrite('mask.tif',mask)(_,contours,hicrarchy) = cv2.findContours(mask.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)print("number of contours:%d" %(len(contours)))allWaterAreaImage = image.copy()cv2.drawContours(allWaterAreaImage,contours,-1,(0,0,255),2)cv2.imshow("Image of All waterArea",allWaterAreaImage)cv2.imwrite('allWaterArea.tif',allWaterAreaImage)theLargestWaterArea = image.copy()contours.sort(key=len,reverse=True)cv2.drawContours(theLargestWaterArea,[contours[0]],-1,(0,0,255),2)cv2.drawContours(theLargestWaterArea,[contours[4]],-1,(0,0,255),2)cv2.drawContours(theLargestWaterArea,[contours[7]],-1,(0,0,255),2)cv2.drawContours(theLargestWaterArea,[contours[27]],-1,(0,0,255),2)cv2.drawContours(theLargestWaterArea,[contours[58]],-1,(0,0,255),2)cv2.drawContours(theLargestWaterArea,[contours[81]],-1,(0,0,255),2)cv2.imshow("Image of the Largest waterArea",theLargestWaterArea)cv2.imwrite('lWaterArea.tif',theLargestWaterArea)num=cv2.contourArea(contours[0])+cv2.contourArea(contours[4])+cv2.contour Area(contours[7])+cv2.contourArea(contours[27])+cv2.contourArea(contours[58])+c v2.contourArea(contours[81])print(num)print((num*900)/1000000)cv2.waitKey()四、总结这次实验报告,只是对opencv中算法的应用,并没有针对算法做相应的优化以及改进。
在实际应用过程也会发现算法不能将长江中的沙洲分割开,经过多次实验以及算法改进,并没有将算法中的缺陷有效解决。
本人水平有限,只能放弃对算法的修改,望后续能够解决。
11。