4Q 净利率逾 11%,期待一季报超市场预期
- 格式:pdf
- 大小:267.22 KB
- 文档页数:9
2020年春九年级数学下册中考加油!2019年台湾省中考数学试卷一、选择题(本大题共26小题,共78.0分)1.算式--(-)之值为何?( )5316A. B. C. D. ‒32‒43‒116‒492.某城市分为南、北两区,如图为105年到107年该城市两区的人口数量长条图.根据图判断该城市的总人口数量从105年到107年的变化情形为下列何者?( )A. 逐年增加B. 逐年灭少C. 先增加,再减少D. 先减少,再增加3.计算(2x -3)(3x +4)的结果,与下列哪一个式子相同?( )A. B. C. D. ‒7x +4‒7x ‒126x 2‒126x 2‒x ‒124.图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a ,矩形面积为b .若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?( )A. B. C. D. 4a +2b4a +4b 8a +6b 8a +12b 5.若=2,=3,则a +b 之值为何?( )44a 54b A. 13B. 17C. 24D. 406.民国106年8月15日,大潭发电厂因跳电导致供电短少约430万瓩,造成全台湾多处地方停电.已知1瓩等于1千瓦,求430万瓩等于多少瓦?( )A. B. C. D. 4.3×1074.3×1084.3×1094.3×10107.如图的坐标平面上有原点O 与A 、B 、C 、D 四点.若有一直线L 通过点(-3,4)且与y 轴垂直,则L 也会通过下列哪一点?( )第2页,共19页A. AB. BC. CD. D8.若多项式5x 2+17x -12可因式分解成(x +a )(bx +c ),其中a 、b 、c 均为整数,则a +c 之值为何?( )A. 1B. 7C. 11D. 139.公园内有一矩形步道,其地面使用相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道的地砖排列方式,其中正方形地砖为连续排列且总共有40个.求步道上总共使用多少个三角形地砖?( )A. 84B. 86C. 160D. 16210.数线上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d -5|=|d -c |,则关于D 点的位置,下列叙述何者正确?( )A. 在A 的左边B. 介于A 、C 之间C. 介于C 、O 之间D. 介于O 、B 之间11.如图,将一长方形纸片沿着虚线剪成两个全等的梯形纸片.根据图中标示长度与角度,求梯形纸片中较短的底边长度为何?( )A. 4B. 5C. 6D. 712.阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?( )A. 2150B. 2250C. 2300D. 245013.如图,△ABC 中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求∠EAF 的度数为何?( )A. 113B. 124C. 129D.1342020年春九年级数学下册中考加油!14.箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以毎次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?( )A. B. C. D. 121325325515.如图,△ABC 中,AC =BC <AB .若∠1、∠2分别为∠ABC 、∠ACB 的外角,则下列角度关系何者正确( )A. ∠1<∠2B. ∠1=∠2C. ∠A +∠2<180∘D. ∠A +∠1>180∘16.小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x 公克但没有自备容器,需支付y 元,则y 与x 的关系式为下列何者?( )A. B. C. D. y =295250xy =300250xy =295250x +5y =300250x +517.如图,将一张面积为14的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片.根据图中标示的长度,求平行四边形纸片的面积为何?( )A. B. C. D. 21542524748718.图1的摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟.若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟後,9号车厢才会运行到最高点?( )A. 10B. 20C. D. 15245219.如图,直角三角形ABC 的内切圆分别与AB 、BC 相切于D 点、E 点,根据图中标示的长度与角度,求AD 的长度为何?( )第4页,共19页A. 32B. 52C. 43D. 5320.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?( )参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A. 16B. 19C. 22D. 2521.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( )A. B. C. D. 10‒x 10‒y 10‒x +y 10‒x ‒y22.若正整数a 和420的最大公因数为35,则下列叙何者正确?( )A. 20可能是a 的因数,25可能是a 的因数B. 20可能是a 的因数,25不可能是a 的因数C. 20不可能是a 的因数,25可能是a 的因数D. 20不可能是a 的因数,25不可能是a 的因数23.如图,有一三角形ABC 的顶点B 、C 皆在直线L 上,且其内心为I .今固定C点,将此三角形依顺时针方向旋转,使得新三角形A 'B 'C 的顶点A ′落在L 上,且其内心为I ′.若∠A <∠B <∠C ,则下列叙述何者正确?( )#JYA. IC 和平行,和L 平行B. IC 和平行,和L 不平行I 'A 'II 'I 'A 'II 'C. IC 和不平行,和L 平行D. IC 和不平行,和L 不平行I 'A 'II 'I 'A 'II '24.如图表示A 、B 、C 、D 四点在O 上的位置,其中⏜AD=180°,且=,=.若阿超在上取一点P ,在⏜AB⏜BD⏜BC ⏜CD⏜AB⏜BD上取一点Q ,使得∠APQ =130°,则下列叙述何者正确?( )2020年春九年级数学下册中考加油!A. Q 点在上,且⏜BC⏜BQ>⏜QCB. Q 点在上,且⏜BC⏜BQ<⏜QCC. Q 点在上,且⏜CD⏜CQ>⏜QDD. Q 点在上,且⏜CD⏜CQ<⏜QD25.如图的△ABC 中,AB >AC >BC ,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得△APQ 与△PDQ 全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求(乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人的作法,下列判断何者正确?( )A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确26.如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式y =2的图形交于B 、C 两点,△ABC 为正三角形.若A 点坐标为(-3,0),则此抛物线与y 轴的交点坐标为何?( )A. (0,92)B. (0,272)C. (0,9)D. (0,19)二、解答题(本大题共2小题,共16.0分)27.市面上贩售的防晒产品标有防晒指数SPF ,而其对抗紫外线的防护率算法为:防护率=×100%,其中SPF ≥1.SPF ‒1SPF 请回答下列问题:(1)厂商宣称开发出防护率90%的产品,请问该产品的SPF 应标示为多少?(2)某防晒产品文宣内容如图所示.请根据SPF与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.28.在公园有两座垂直于水平地面且高度不一的图柱,两座圆柱后面有一堵与地面互相垂直的墙,且圆柱与墙的距离皆为120公分.敏敏观察到高度90公分矮圆柱的影子落在地面上,其影长为60公分;而高圆柱的部分影子落在墙上,如图所示.已知落在地面上的影子皆与墙面互相重直,并视太阳光为平行光,在不计圆柱厚度与影子宽度的情况下,请回答下列问题:(1)若敏敏的身高为150公分,且此刻她的影子完全落在地面上,则影长为多少公分?(2)若同一时间量得高圆柱落在墙上的影长为150公分,则高图柱的高度为多少公分?请详细解释或完整写出你的解题过程,并求出答案.第6页,共19页2020年春九年级数学下册中考加油!答案和解析1.【答案】A 【解析】解:原式=-+=-+==-=-,故选:A.根据有理数的加减法法则计算即可.本题主要考查了有理数的加减法.有理数的减法法则:减去一个数,等于加上这个数的相反数.2.【答案】A【解析】解:由图中数据可知:105年该城市的总人口数量<106年该城市的总人口数量<107年该城市的总人口数量,∴该城市的总人口数量从105年到107年逐年增加,故选:A.根据图中数据计算可直接得105年该城市的总人口数量<106年该城市的总人口数量<107年该城市的总人口数量,据此作答.本题考查条形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.3.【答案】D【解析】解:由多项式乘法运算法则得(2x-3)(3x+4)=6x2+8x-9x-12=6x2-x-12.故选:D.由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.4.【答案】C【解析】解:∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.根据已知条件即可得到结论.本题考查了等边三角形的性质,矩形的性质,列代数式,正确的识别图形是解题的关键.5.【答案】B【解析】解:∵==2,∴a=11,∵==3,∴b=6,∴a+b=11+6=17.故选:B.根据二次根式的定义求出a、b的值,代入求解即可.本题主要考查了二次根式的定义,熟练掌握定义是解答本题的关键.6.【答案】C【解析】解:430万瓩=4300000瓩,∵1瓩等于1千瓦,∴4300000瓩=4300000千瓦=4.3×106千瓦=4.3×109瓦;故选:C.根据题意将430万瓩化为4.3×109瓦即可解题;本题考查科学记数法;能够将单位进行准确的换算,将大数用科学记数法表示出来是解题的关键.7.【答案】D【解析】第8页,共19页2020年春九年级数学下册中考加油!解:如图所示:有一直线L 通过点(-3,4)且与y 轴垂直,故L 也会通过D 点.故选:D .直接利用点的坐标,正确结合坐标系分析即可.此题主要考查了点的坐标,正确结合平面直角坐标系分析是解题关键.8.【答案】A【解析】解:利用十字交乘法将5x 2+17x-12因式分解, 可得:5x 2+17x-12=(x+4)(5x-3). ∴a=4,c=-3, ∴a+c=4-3=1. 故选:A .首先利用十字交乘法将5x 2+17x-12因式分解,继而求得a ,c 的值.此题考查了十字相乘法分解因式的知识.注意ax 2+bx+c (a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一次项b ,那么可以直接写成结果:ax 2+bx+c=(a 1x+c 1)(a 2x+c 2).9.【答案】A【解析】解:3+40×2+1=84.答:步道上总共使用84个三角形地砖. 故选:A .中间一个正方形对应两个等腰直角三角形,从而得到三角形的个数为3+40×2+1.本题考查了等腰直角三角形:两条直角边相等的直角三角形叫做等腰直角三角形.也考查了规律型问题的解决方法,探寻规律要认真观察、仔细思考,善用联想来解决这类问题.10.【答案】D【解析】解:∵c<0,b=5,|c|<5,|d-5|=|d-c|,∴BD=CD,∴D点介于O、B之间,故选:D.根据O、A、B、C四点在数轴上的位置和绝对值的定义即可得到结论.本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.11.【答案】C【解析】解:过F作FQ⊥AD于Q,则∠FQE=90°,∵四边形ABCD是长方形,∴∠A=∠B=90°,AB=DC=8,AD∥BC,∴四边形ABFQ是矩形,∴AB=FQ=DC=8,∵AD∥BC,∴∠QEF=∠BFE=45°,∴EQ=FQ=8,∴AE=CF=×(20-8)=6,故选:C.根据矩形的性质得出∠A=∠B=90°,AB=DC=8,AD∥BC,根据矩形的判定得出四边形ABFQ是矩形,求出AB=FQ=DC=8,求出EQ=FQ=8,即可得出答案.本题考查了矩形的性质和判定,能灵活运用定理进行推理是解此题的关键.12.【答案】D【解析】解:设阿慧购买x盒桂圆蛋糕,则购买(10-x)盒金爽蛋糕,依题意有,解得2≤x≤3,第10页,共19页2020年春九年级数学下册∵x是整数,∴x=3,350×3+200×(10-3)=1050+1400=2450(元).答:阿慧花2450元购买蛋糕.故选:D.可设阿慧购买x盒桂圆蛋糕,则购买(10-x)盒金爽蛋糕,根据不等关系:①购买10盒蛋糕,花费的金额不超过2500元;②蛋糕的个数大于等于75个,列出不等式组求解即可.本题考查一元一次不等式组的应用,解答此类问题的关键是明确题意,列出相应的一元一次不等式组,注意要与实际相联系.13.【答案】D【解析】解:连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=62°,∠C=51°,∴∠BAC=∠BAD+∠DAC=180°-62°-51°=67°,∴∠EAF=2∠BAC=134°,故选:D.连接AD,利用轴对称的性质解答即可.此题考查轴对称的性质,关键是利用轴对称的性质解答.14.【答案】D【解析】解:∵一个盒子内装有大小、形状相同的53+2=55个球,其中红球2个,白球53个,∴小芬抽到红球的概率是:=.故选:D.让红球的个数除以球的总数即为所求的概率.本题考查了概率公式,熟练掌握概率的概念是解题的关键.15.【答案】C【解析】解:∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选:C.由AC=BC<AB,得∠A=∠ABC<∠ACB,再由三角形的外角性质定理和三角形的内角和可得正确答案.本题考查了等腰三角形的性质定理,三角形的外角性质定理及三角形的内角和,这些都是一些基础知识点,难度不大.16.【答案】B【解析】解:根据题意可得咖啡豆每公克的价钱为:(295+5)÷250=(元),∴y与x的关系式为:.故选:B.根据若小涵购买咖啡豆250公克且自备容器,需支付295元,可得咖啡豆每公克的价钱为(295+5)÷250=(元),据此即可y与x的关系式.本题主要考查了一次函数的应用,根据题意得出咖啡豆每公克的单价是解答本题的关键.17.【答案】D【解析】解:如图,设△ADE,△BDF,△CEG,平行四边形DEGF的面积分别为S1,S2,S3和S,过点D作DH∥EC,则由DFGE为平行四边形,易得四边形DHCE也为平行2020年春九年级数学下册四边形,从而△DFH≌△EGC,∴S△DFH=S3,∵DE∥BC,∴△ADE∽△ABC,DE=3,BC=7,∴=,∵S△ABC=14,∴S1=×14,∴S△BDH:S=(×4):3=2:3,∴S△BDH=S,∴+S=14-×14,∴S=.故选:D.如图,设△ADE,△BDF,△CEG,平行四边形DEGF的面积分别为S1,S2,S3和S,过点D作DH∥EC,则由DFGE为平行四边形,易得四边形DHCE也为平行四边形,从而△DFH≌△EGC,利用面积比等于相似比的平方可求.本题是巧求面积的选择题,综合考查了平行四边形,相似三角形的性质等,难度较大.18.【答案】B【解析】解:=20(分钟).所以经过20分钟後,9号车厢才会运行到最高点.故选:B.先求出从21号旋转到9号旋转的角度占圆大小比例,再根据旋转一圈花费30分钟解答即可.本题主要考查了生活中的旋转现象,理清题意,得出从21号旋转到9号旋转的角度占圆大小比例是解答本题的关键.19.【答案】D【解析】解:设AD=x,∵直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,∴BD=BE=1,∴AB=x+1,AC=AD+CE=x+4,在Rt△ABC中,(x+1)2+52=(x+4)2,解得x=,即AD的长度为.故选:D.设AD=x,利用切线长定理得到BD=BE=1,AB=x+1,AC=AD+CE=x+4,然后根据勾股定理得到(x+1)2+52=(x+4)2,最后解方程即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了切线长定理.20.【答案】A【解析】解:设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意得,,解得,,则总人数为7+9=16(人)故选:A.设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意列出二元一次方程,求出其解.2020年春九年级数学下册本题是二元一次方程组的应用,主要考查了列二元一次方程组解应用题,关键是读懂题意,找出等量关系,列出方程组.21.【答案】D【解析】解:x杯饮料则在B餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10-x-y;故选:D.根据点的饮料和沙拉能确定点了x+y份意大利面,根据题意可得点A餐10-x-y;本题考查列代数式;能够根据题意,以意大利面为依据,准确列出代数式是解题的关键.22.【答案】C【解析】解:正整数a和420的最大公因数为35,则a必须是35的倍数,∵420÷35=12,12=3×4,20=4×5,25=5×5,∴20不可能是a的因数,25可能是a的因数;故选:C.由420÷35=12,12=3×4,20=4×5,25=5×5,即可求解;本题考查有理数的乘法;理解因数的概念,熟练掌握有理数的乘法是解题的关键.23.【答案】C【解析】解:作ID⊥BA'于D,IE⊥AC于E,I'F⊥BA'于F,如图所示:则ID∥I'F,∵△ABC的内心为I,△A'B'C的内心为I′,∴ID=IE=IF,∠ICD-∠ACB,∠I'A'C=∠B'A'C,∴四边形IDFI'是矩形,∴II'∥L,∵∠A<∠B<∠C,∴∠A'<∠B'<∠C,∴∠ICD>∠I'A'C,∴IC和I'A'不平行,故选:C.作ID⊥BA'于D,IE⊥AC于E,I'F⊥BA'于F,由内心的性质得出ID=IE=IF,∠ICD=∠ACB,∠I'A'C=∠B'A'C,证出四边形IDFI'是矩形,得出II'∥L,证出∠ICD>∠I'A'C,得出IC和I'A'不平行,即可得出结论.本题考查了三角形的内心、平行线的判定、旋转的性质;熟练掌握三角形的内心性质和平行线的判定是解题的关键.24.【答案】B【解析】解:连接AD,OB,OC,∵=180°,且=,=,∴∠BOC=∠DOC=45°,在圆周上取一点E连接AE,CE,∴∠E=AOC=67.5°,∴∠ABC=122.5°<130°,取的中点F,连接OF,则∠AOF=67.5°,∴∠ABF=123.25°<130°,∴Q点在上,且<,故选:B.连接AD,OB,OC,根据题意得到∠BOC=∠DOC=45°,在圆周上取一点E连接AE,CE,由圆周角定理得到∠E=AOC=67.5°,求得∠ABC=122.5°<130°,取的中点F,连接OF,得到∠ABF=123.25°<130°,于是得到结论.2020年春九年级数学下册本题考查了圆心角,弧,弦的关系,圆内接四边形的性质,圆周角定理,正确的理解题意是解题的关键.25.【答案】A【解析】解:如图1,∵PQ垂直平分AD,∴PA=PD,QA=QD,而PQ=PQ,∴△APQ≌△DPQ(SSS),所以甲正确;如图2,∵PD∥AQ,DQ∥AP,∴四边形APDQ为平行四边形,∴PA=DQ,PD=AQ,而PQ=QP,∴△APQ≌△DQP(SSS),所以乙正确.故选:A.如图1,根据线段垂直平分线的性质得到PA=PD,QA=QD,则根据“SSS”可判断△APQ≌△DPQ,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形APDQ为平行四边形,则根据平行四边形的性质得到PA=DQ,PD=AQ,则根据“SSS”可判断△APQ≌△DQP,则可对乙进行判断.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.26.【答案】B【解析】解:设B(-3-m,2),C(-3+m,2),(m>0)∵A点坐标为(-3,0),∴BC=2m,∵△ABC 为正三角形,∴AC=2m ,∠DAO=60°,∴m=∴C (-3+,2)设抛物线解析式y=a (x+3)2,a (-3++3)2=2,∴a=,∴y=(x+3)2,当x=0时,y=;故选:B .设B (-3-m ,2),C (-3+m ,2),(m >0),可知BC=2m ,再由等边三角形的性质可知C (-3+,2),设抛物线解析式y=a (x+3)2,将点C 代入解析式即可求a ,进而求解;本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.27.【答案】解:(1)根据题意得,,SPF ‒1SPF ×100%=90%解得,SPF =10,答:该产品的SPF 应标示为10;(2)文宣内容不合理.理由如下:当SPF =25时,其防护率为:;25‒125×100%=96%当SPF =50时,其防护率为:;50‒150×100%=98%98%-96%=2%,∴第二代防晒乳液比第一代防晒乳液的防护率提高了2%,不是提高了一倍.∴文宣内容不合理.【解析】(1)根据公式列出方程进行计算便可;(2)根据公式计算两个的防护率,再比较可知结果.2020年春九年级数学下册本题是分式方程的应用,根据公式列出方程是解第一题的关键,第二题的关键是根据公式正确算出各自的防护率.28.【答案】解:(1)设敏敏的影长为x 公分.由题意:=,150x 9060解得x =100(公分),经检验:x =100是分式方程的解.∴敏敏的影长为100公分.(2)如图,连接AE ,作FB ∥EA .∵AB ∥EF ,∴四边形ABFE 是平行四边形,∴AB =EF =150公分,设BC =y 公分,由题意BC 落在地面上的影从为120公分.∴=,y 1209060∴y =180(公分),∴AC =AB +BC =150+180=330(公分),答:高图柱的高度为330公分.【解析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)如图,连接AE ,作FB ∥EA .分别求出AB ,BC 的长即可解决问题.本题考查相似三角形的应用,平行投影,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
等差数列练习题(含答案)2019年04⽉12⽇数学试卷姓名:___________班级:___________考号:___________⼀、选择题1.在等差数列{}n a 中,已知4816a a +=,则该数列前11项和11S =( ) A.58 B.88 C.143 D.1762.设n S 是等差数列{}n a 的前n 项和,已知263,11a a ==,则7S 等于( ) A.13 B.35 C.49 D.633在数列中,,则=( )A. B. C. D.4.《九章算术》“⽵九节”问题:现有⼀根9节的⽵⼦,⾃上⽽下各节的容积成等差数列,上⾯4节的容积共3升,下⾯3节的容积共4升,则第5节的容积为( ) A. 1升 B.6766升 C.4744升 D.3733升5.若等差数列{}n a 的前5项和525S =,且23a =,则7a = ( )A.12B.13C.14D.156.已知{}n a 是等差数列, 311 40a a +=,则6?7?8 a a a -+等于( ).A.5B.6C.7D.不存在 7.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S 等于( ). A.5 B.7 C.9 D.118.已知{}n a 是等差数列, 311 40a a +=,则6?7?8 a a a -+等于( ).A.20B.48C.60D.72⼆、填空题9.《九章算术》“⽵九节”问题:现有⼀根9节的⽵⼦,⾃上⽽下各节的容积成等差数列,上⾯4节的容积共3升,下⾯3节的容积共4升,220x x m x x n -+-+=的四个根组成⼀个⾸项为14的等差数列, 则m n -=__________.11.已知△A B C 的⼀个内⾓为120,并且三边长构成公差为4的等差数列,则△A B C 的⾯积为__________.12.在等差数列{}n a 中,若4681012240a a a a a ++++=,则91113a a -的值为__________.13.在等差数列{}n a 中, 315,a a 是⽅程2610x x --=的两根,则7891011a a a a a ++++=__________.14.已知数列{}n a 是等差数列,若1591317117a a a a a -+-+=,则315a a +=__________. 三、解答题15.已知等差数列{}n a 的前n 项和为n S ,等⽐数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.1).若335a b +=,求{}n b 的通项公式; 2).若321T =,求3S .16.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等⽐数列. 1).求d ,n a ;2).若0d <,求123n a a a a ++++.17.n S 为等差数列{}n a 的前n 项和,且1=1a ,728S =.记[]=lg n n b a ,其中[]x 表⽰不超过x 的最⼤整数,如[]0.9=0,[]lg 99=1.1).求1b ,11b ,101b ;2).求数列{}n b 的前1000项和.18.已知{}n a 为等差数列,且36a =-,60a = 1).求{}n a 的通项公式;2).若等⽐数列{}n b 满⾜18?b =-,2123b a a a =++,求{}n b 的前n 项和公式19.已知数列{}n a 的⾸项为1, n S 为数列{}n a 的前n 项和, 11n n S q S +=+其中0q >,*n N ∈若232,,2a a a +成等差数列,求n a 的通项公式.20.已知b 是,a c 的等差中项, ()lg 5b -是()lg 1a -与()lg 6c -的等差中项,⼜,,a b c 三数之和为33,求这三个数.21.4个数成等差数列,这4个数的平⽅和为94.第1个数与第4个数的积⽐第2个数与第3个数的积少18.求这四个数.22.已知{}n a 是等差数列,且12312a a a ++=,816a = 1).求数列{}n a 的通项公式2).若从列{}n a 中,⼀次取出第2项,第4项,第6项, 第2n 项,按原来顺序组成⼀个新数列{}n b ,试求出{}n b 的通项公式.23.设{}n a 是公差不为零的等差数列, n S 为其前n 项和,满⾜222223457,7a a a a S +=+=. 1).求数列{}n a 的通项公式及前n 项和n S ; 2).试求所有的正整数m ,使得12⼀、选择题1.答案:B解析:由等差数列性质可知, 4811116a a a a +=+=,所以1111111() 882a a S ?+==.2.答案:C解析:根据等差数列性质及求和公式得:故选C答案: A 解析:因为,数列在中,, ,,所以,, 从⽽有,,……,上述n-1个式⼦两边分别相加得,,所以,故选A 。
第六章完全竞争市场1。
假定某完全竞争市场的需求函数和供给函数分别为D=22-4P,S=4+2P。
求:(1)该市场的均衡价格和均衡数量。
(2)单个完全竞争厂商的需求函数。
解答:(1)完全竞争市场的均衡条件为D(P)=S(P),故有:22-4P=4+2P 解得市场的均衡价格和均衡数量分别为:P e=3,Q e=10(2)单个完全竞争厂商的需求曲线是由给定的市场价格出发的一条水平线,于是,在P=3是单个完全竞争厂商的需求函数,需求曲线如图d.2.请区分完全竞争市场条件下,单个厂商的需求曲线、单个消费者的需求曲线以及市场的需求曲线。
解答:单个厂商的需求曲线是用来表示单个厂商所面临的对他产品的需求情况的。
单个完全竞争厂商的需求曲线是由市场均衡价格出发的一条水平线,如图D F直线,而市场的均衡价格取决于市场的需求D M与供给S,单个完全竞争厂商只是该价格的接受者。
单个消费者的需求曲线产生于消费者追求效用最大化的行为。
利用单个消费者追求效用最大化行为的消费者的价格—消费曲线可以推导出单个消费者的需求曲线D C,单个消费者的需求曲线一般是向右下方倾斜的。
把单个消费者的需求曲线水平加总,便可以得到市场的需求曲线,市场需求曲线一般也是向右下方倾斜的。
单个厂商的需求曲线和单个消费者的需求曲线,两者之间没有直接的联系。
PSD MP0 D FD C3.请分析在短期生产中追求利润最大化的厂商一般会面临哪几种情况?解答:在短期生产中,厂商根据MR=SMC这一利润最大化或亏损最小化的原则进行生产。
在实现MR=SMC原则的前提下,厂商可以获得利润即π>0,也可以收支平衡即π=0,也可以亏损即π<0,其盈亏状况取决于厂商的生产技术、成本以及市场需求情况。
当π>0和π=0时,厂商会继续进行生产,这是毫无问题的。
但是,当π<0时,则需要进一步分析厂商是否应该继续生产这一问题。
需要指出的是,认为在π〈0即亏损情况下,厂商一定会停产以避免亏损,是错误的判断.其关键是,在短期生产中厂商有固定成本。
1.聚四氟乙烯聚四氟乙烯是用于密封的氟塑料之一。
聚四氟乙烯以碳原子为骨架,氟原子对称而均匀地分布在它的周围,构成严密的屏障,使它具有非常宝贵的综合物理机械性能(表14—9)。
聚四氟乙烯对强酸、强碱、强氧化剂有很高的抗蚀性,即使温度较高,也不会发生作用,其耐腐蚀性能甚至超过玻璃、陶瓷、不锈钢以至金、铂,所以,素有“塑料王”之称。
除某些芳烃化合物能使聚四氟乙烯有轻微的溶胀外,对酮类、醇类等有机溶剂均有耐蚀性。
只有熔融态的碱金属及元素氟等在高温下才能对它起作用。
聚四氟乙烯的介电性能优异,绝缘强度及抗电弧性能也很突出,介质损耗角正切值很低,但抗电晕性能不好。
聚四氟乙烯不吸水、不受氧气、紫外线作用、耐候性好,在户外暴露3年,抗拉强度几乎保持不变,仅伸长率有所下降。
聚四氟乙烯薄膜与涂层由于有细孔,故能透过水和气体。
聚四氟乙烯在200℃以上,开始极微量的裂解,即使升温到结晶体熔点327℃,仍裂解很少,每小时失重为万分之二。
但加热至400℃以上热裂解速度逐渐加快,产生有毒气体,因此,聚四氟乙烯烧结温度一般控制在375~380℃。
聚四氟乙烯分子间的范德华引力小,容易产生键间滑动,故聚四氟乙烯具有很低的摩擦系数及不粘性,摩擦系数在已知固体材料中是最低的。
聚四氟乙烯的导热系数小,该性能对其成型工艺及应用影响较大。
其不但导热性差,且线膨胀系数较大,加入填充剂可适当降低线膨胀系数。
在负荷下会发生蠕变现象,亦称作“冷流”,加入填充剂可减轻蠕变程度。
聚四氟乙烯可以添加不同的填充剂,选择的填充剂应基本满足下述要求:能耐380℃高温即四氟制品的烧结温度;与接触的介质不发生反应;与四氟树脂有良好的混入性;能改善四氟制品的耐磨性、冷流性、导热性及线膨胀系数等。
常用的填充剂有无碱无蜡玻璃纤维、石墨、碳纤维、MoS2、A123、CaF2、焦炭粉及各种金属粉。
如填充玻璃纤维或石墨,可提高四氟制品的耐磨、耐冷流性,填充MoS2可提高其润滑性,填充青铜、钼、镍、铝、银、钨、铁等,可改善导热性,填充聚酰亚胺或聚苯酯,可提高耐磨性,填充聚苯硫醚后能提高抗蠕变能力,保证尺寸稳定等。
CAI作业单自由度非线性体系线加速度法电算王帆 09S032004 桥梁专业单自由度非线性体系用线加速度法求解的流程图如下:……matlab程序源代码…………………………………………………………function y=XJSDdt=0.1;t=[0:dt:0.8];y=0;y1=0;kn=0;c=0.2;m=0.1;q=1;a=0;ma=1;for n=1:fix(1.0/dt)p=y(n);w(n+1)=y(n);s=fs(p,q,ma);y2(n)=(fp(n)-s-c*y1(n))/m;K(n)=6*m/(dt^2)+3*c/dt+kn;dfp(n)=fp(n+1)-fp(n)+m*(6*y1(n)/dt+3*y2(n))+c*(3*y1(n)+dt*y2(n)/2);dy(n)=dfp(n)/K(n);dy1(n)=3*(dy(n)-y1(n)*dt-dt^2*y2(n)/6)/dt;y(n+1)=y(n)+dy(n);y1(n+1)=y1(n)+dy1(n);ma=max(w);q=y(n+1);kn=k(p,q,s);n=n+1;endend ……………………………………………………………………………荷载函数fp代码………………………………………………function fp=fp(n)switch ncase 1fp=0;case 2fp=5;case 3fp=8;case 4fp=7;case 5fp=5;case 6fp=3;case 7fp=2;case 8fp=1;case 9fp=0;case 10fp=0;case 11fp=0;endend ………………………………………………………………………………………恢复力fs代码………………………………………………………………function fs=fs(p,q,ma)if p<=q&p<=1.2fs=5*p;elseif p<=q&p>1.2fs=6;elseif p>qf=6-5*(ma-p);if f>=-6fs=f;else f<-6fs=-6;endendend ………………………………………………………………………………………刚度系数k代码…………………………………………………………function k=k(p,q,fs)if q<=1.2k=5;elseif q>1.2&p<qk=0;elseif p>=q&fs>-6;k=5;elseif p>=q&fs<=-6;k=0;elseendend …………………………………………………………………………………用上述程序计算克拉夫《结构动力学(第二版)》P103例题E7-2。
1.2.1一元二次方程的解法-直接开平方法考点一、直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x 的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x 的一元二次方程,可直接开平方求解,两根是.要点:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为()A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==2.若()222a =-,则a 是()A .-2B .2C .-2或2D .43.方程x 2-=0的根为_______.4.有关方程290x +=的解说法正确的是()A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.6.解方程:(1)23270x -=;(2)2(5)360x --=;(3)21(2)62x -=;(4)()()4490+--=y y .7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为()A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =2382x =)A .120,x x ==B .120,x x ==C .12x x =D .12x x ==题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是()A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--10.方程y 2=-a 有实数根的条件是()A .a ≤0B .a ≥0C .a >0D .a 为任何实数11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是()A .①②③B .②③C .②③④D .①②③④12.方程x 2=(x ﹣1)0)A .x=-1B .x=1C .x=±1D .x=013.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是().A .0m >B .7mC .7m >D .任意实数14.已知方程()200ax c a +=≠有实数根,则a 与c 的关系是().A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是()A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-16.方程224(21)25(1)0x x --+=的解为()A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根()A .都相等B .都不相等C .有一个根相等D .无法确定题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2=b(b>0)的根是()A .-aB .C .当b≥0时,D .当a≥0时,20.形如2()(0)ax b p a +=≠的方程,下列说法错误的是()A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是()A .1B .2C .3D .4题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为()A .7B .-3C .7或-3D .21题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=⋅=-=-==-=,从而对于任意正整数n ,我们可以得到()41444nn n i i i i i +=⋅=⋅=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++ 的值为________.一、单选题10.若方程()200ax bx c a ++=≠中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是()A .1,0B .1,0-C .1,1-D .2,2-二、填空题三、解答题19.解下列方程:224(1)x x =-.20.用直接开平方法解下列方程.(1)2160x -=;(2)2(2)9x -=.21.用开平方法解下列方程:(1)2 2.25x =;(2)243x =;(3)27560x -=;(4)()22714x -=.22.解方程:22(1)(12)x x +=-.→→→的顺序运算,请列式并计算结果;(1)嘉嘉说-2,对-2按C A D B答案与解析题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为()A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==【答案】B 【解析】【分析】先移项,再通过直接开平方法进行解方程即可.解:2250x -=,移项得:2=25x ,开平方得:15=x ,25x =﹣,故选B .【点睛】本题主要考查用开平方法解一元二次方程,解题关键在于熟练掌握开平方方法.2.若()222a =-,则a 是()A .-2B .2C .-2或2D .4【答案】C 【解析】【分析】先计算2(2)-,再用直接开平方法解一元二次方程即可.()2224a =-= 2a ∴=±故选C 【点睛】本题考查了有理数的乘方,直接开平方法解一元二次方程,熟练直接开平方法是解题的关键.3.方程x 2-=0的根为_______.【答案】x=±【解析】【分析】,得出x 2=8,利用直接开平方法即可求解.解:x 2-=0,∴x 2=8,∴x =±.故答案为:x =±.【点睛】本题考查直接开平方法解一元二次方程及算术平方根,解题关键是熟练掌握直接开平方法的解题步骤.4.有关方程290x +=的解说法正确的是()A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根【答案】D 【解析】【分析】利用直接开平方法求解即可.∵290x +=,∴290x =-<,∴该方程无实数解.故选:D 【点睛】考查了直接开平方法解一元二次方程.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.【答案】1【解析】【分析】利用直接开平方法得到x =,得到方程的两个根互为相反数,所以4380m m -+-=,解得3m =,则方程的两个根分别是1与1-1=,然后两边平方得到b a 的值.解:∵()20ax b ab =>,∴2b x a=,∴x =,∴方程的两个根互为相反数,∵方程2ax b =的两个根分别是4m -与38m -,∴4380m m -+-=,解得3m =,∴4341m -=-=-,383381m -=⨯-=,∴一元二次方程ax 2=b 的两个根分别是1与1-,1=,∴1ba=.故答案为:1.【点睛】本题考查了解一元二次方程﹣直接开平方法:形如2x p =或()()20nx m p p +=≥的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成2x p =的形式,那么可得x =()()20nx m p p +=≥的形式,那么nx m +=6.解方程:(1)23270x -=;(2)2(5)360x --=;(3)21(2)62x -=;(4)()()4490+--=y y .【答案】(1)123,3x x ==-;(2)1211,1x x ==-;(3)122,2x x ==-;(4)125,5y y ==-.【解析】【分析】(1)先移项,再两边同除以3,然后利用直接开方法解方程即可得;(2)先移项,再利用直接开方法解方程即可得;(3)先两边同乘以2,再利用直接开方法解方程即可得;(4)先利用平方差公式去括号,再移项合并同类项,然后利用直接开方法解方程即可得.(1)23270x -=,2327x =,29x =,3x =±,即123,3x x ==-;(2)2(5)360x --=,2(5)36x -=,56x -=或56x -=-,11x =或1x =-,即1211,1x x ==-;(3)21(2)62x -=,2(2)12x -=,2x -=2x -=-,2x =或2x =-+,即122,2x x ==-;(4)()()4490+--=y y ,21690y --=,225y =,5y =±,即125,5y y ==-.【点睛】本题考查了利用直接开方法解一元二次方程,一元二次方程的主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为()A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =23【答案】D 【解析】【分析】直接开平方与开立方,再解一次方程即可.解:由4(3x +1)2﹣1=0得(3x +1)2=14,所以3x +1=±12,解得x =﹣16或x =﹣12,由3274y ﹣2=0得y 3=827,所以y =23,所以x =﹣16或﹣12,y =23.故选:D .【点睛】本题考查开平方法解一元二次方程与立方根法解三次方程,掌握平方根与立方根性质与区别是解题关键.82x =)A .120,x x ==B .120,x x ==C .12x x =D .12x x ==【答案】A 【解析】【分析】利用直接开方法解一元二次方程即可得.2x =(23x =,利用直接开方法得:x ,解得120,x x ==故选:A .【点睛】本题考查了利用直接开方法解一元二次方程,熟练掌握直接开方法是解题关键.题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是()A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--【答案】C 【解析】【分析】方程整理后,判断即可得到结果230x =-移项得23x =,可用直接开平方法求解;2(10)4x -=-移项得2(14)x =-,可用直接开平方法求解;22()(12)4x ==--,可用直接开平方法求解.故选C.【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键10.方程y 2=-a 有实数根的条件是()A .a ≤0B .a ≥0C .a >0D .a 为任何实数【答案】A 【解析】【分析】根据平方的非负性可以得出﹣a ≥0,再进行整理即可.解:∵方程y 2=﹣a 有实数根,∴﹣a ≥0(平方具有非负性),∴a ≤0;故选:A .【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a ≥0.11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是()A .①②③B .②③C .②③④D .①②③④【答案】C 【解析】【分析】利用因式分解法与直接开平方法判断即可得到结果.①x 2-2x=0,因式分解法;②9x 2-25=0,直接开平方法;③(2x-1)2=1,直接开平方法;④21(x 3)273+=,直接开平方法,则能用直接开平方法做的是②③④.故选:C.【点睛】考查直接开方法解一元二次方程,掌握一元二次方程的几种解法是解题的关键.12.方程x 2=(x ﹣1)0)A .x=-1B .x=1C .x=±1D .x=0【答案】A 【解析】【分析】根据(x-1)0有意义,可得x-1≠0,求出x≠1,通过解方程x 2=1,确定x 的值即可.∵(x-1)0有意义,∴x-1≠0,即x≠1,∵x 2=(x ﹣1)0∴x 2=1,即x=±1∴x=-1.故选A.【点睛】本题考查了解一元二次方程—直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a≥0)的形式,利用数的开方直接求解.同时还考查了零次幂.13.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是().A .0m >B .7mC .7m >D .任意实数【答案】B 【解析】【分析】根据70-≥m 时方程有实数解,可求出m 的取值范围.由题意可知70-≥m 时方程有实数解,解不等式得7m,故选B .【点睛】形如()2+m =a x 的一元二次方程当a≥0时方程有实数解.14.已知方程()200ax c a +=≠有实数根,则a 与c 的关系是().A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍【答案】B 【解析】【分析】将原方程化为2a=c-x 的形式,根据2x 0≥可判断出正确答案.原方程可化为2a =c -x ,∵2x 0≥,∴c0a-≥时方程才有实数解.当c=0时,20=x 有实数根;当a 、c 异号时,c0a-≥,方程有实数解.故选B .【点睛】形如2=a x 的一元二次方程当a≥0时方程有实数解.题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是()A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.16.方程224(21)25(1)0x x --+=的解为()A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=【答案】B 【解析】【分析】移项后利用直接开平方法解答即可.解:移项,得224(21)25(1)x x -=+,两边直接开平方,得2(21)5(1)x x -=±+,即2(21)5(1)x x -=+或2(21)5(1)x x -=-+,解得:17x =-,213x =-.故选:B .【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握直接开平方法是解题的关键.17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.【答案】(1)122,2y y ==-;(2)121,3x x ==.【分析】(1)原方程先整理,再利用直接开平方法解答即可;(2)利用直接开平方法求解即可.解:(1)21(2)602y +-=,整理,得2(2)12y +=.∴2y +=±即122,2y y ==-;(2)22(4)(52)x x -=- ,4(52)x x ∴-=±-,∴452x x -=-或()452x x -=--,解得:121,3x x ==.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握直接开平方法是解题的关键.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根()A .都相等B .都不相等C .有一个根相等D .无法确定【答案】C 【解析】【分析】运用直接开平方法分别求出两个方程的解,然后再进行判断即可得解.2251440t -=,214425t =,∴125t =±;249(1)25x -=,715x -=±,∴1125x =,225x =-;∴两个方程有一个相等的根125.故选C.【点睛】此题主要考查了用直接开平方法解一元二次方程和确定方程的解,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2=b(b>0)的根是()A .-aB .C .当b≥0时,D .当a≥0时,【答案】A 【解析】【分析】由b>0,可两边直接开平方,再移项即可得.∵b>0,∴两边直接开平方,得:,∴-a ,故选A 【点睛】此题考查解一元二次方程-直接开平方法,解题关键在于掌握运算法则20.形如2()(0)ax b p a +=≠的方程,下列说法错误的是()A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =【答案】D 【解析】【分析】根据应用直接开平方法求解的条件逐项判断即得答案.解:A 、当0p >时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B 、当0p =时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C 、当0p <时,原方程无实数根,故本选项说法正确,不符合题意;D 、当0p ≥时,原方程的根为x =故选:D .【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键.题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是()A .1B .2C .3D .4【答案】B 【解析】【分析】移项得416x ==24,然后两边同时开四次方得x-=±2,由此即可解决问题.解:∵4160x -=∴416x ==24,∴x=±2,∴方程4160x -=的根是x=±2.故选B.【点睛】本题考查高次方程的解法,解题的关键是降次,这里通过开四次方把四次降为了一次.题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为()A .7B .-3C .7或-3D .21【答案】A 【解析】【分析】把()222225a b +-=两边开方得到a 2+b 2-2=±5,然后根据非负数的性质确定22a b +的值.解:∵()222225a b +-=,∴a 2+b 2-2=±5,∴a 2+b 2=7或a 2+b 2=-3(舍去),即a 2+b 2的值为7.故选A .【点睛】本题考查解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=⋅=-=-==-=,从而对于任意正整数n ,我们可以得到()41444nn n i i i i i +=⋅=⋅=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++ 的值为________.【答案】1-【解析】【分析】根据()41444nn n i i i i i +=⋅=⋅=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=⋅=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++ =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.一、单选题二、填空题11.方程240x -=的根是______.【答案】12x =-,22x =【分析】根据直接开平方法求解即可.【解析】解:240x -=,18.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=⋅=-=-==-=,从而对于任意正整数n ,我们可以得到()41444n n n i i i i i +=⋅=⋅=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++ 的值为________.【答案】1-【分析】根据()41444n n n i i i i i +=⋅=⋅=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.【解析】解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=⋅=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++ =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.三、解答题【解析】解:原式=m 2﹣1﹣(4m 2+4m +1)+3m 2+6m=m 2﹣1﹣4m 2﹣4m ﹣1+3m 2+6m=2m ﹣2,∵m 2﹣1=0,∴m =±1,当m =1时,原式=2﹣2=0,当m =﹣1时,原式=﹣2﹣2=﹣4,综上所述:原式的值为0或﹣4.【点睛】本题考查整式的化简求值,准确掌握乘法公式是解题的关键,计算中注意符号问题.26.计算(1)化简:2(1)(1)+--m m m (2)小华在解方程2(6)90x +-=时,解答过程如下:解:移项,得2(6)9x +=第一步两边开平方,得63x +=第二步所以3x =-第三步“小华的解答从第_________步开始出错,请写出正确的解答过程.【答案】(1)-1;(2)二;正确的解答过程,见解析【分析】(1)利用平方差公式展开,合并同类项即可;(2)根据直接开平方法求解即可.【解析】(1)解:2(1)(1)+--m m m 221m m =--=-1;(2)解:第二步开始出现错误;正确解答过程:移项,得(x +6)2=9,两边开平方,得x +6=3或x +6=-3,解得x 1=-3,x 2=-9,故答案为:二.【点睛】本题主要考查了整式的混合运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.嘉嘉和琪琪用图中的A 、B 、C 、D 四张带有运算的卡片,做一个“我说你算”的数学游戏,规则如下:嘉嘉说一个数,并对这个数按这四张带有运算的卡片排列出一个运算顺序,然后琪琪根据这个运算顺序列式计算,并说出计算结果.例如,嘉嘉说2,对2按A B C D →→→的顺序运算,则琪琪列式计算得:222[(23)(3)2](152)(17)289+⨯--=--=-=.(1)嘉嘉说-2,对-2按C A D B →→→的顺序运算,请列式并计算结果;(2)嘉嘉说x ,对x 按C B D A →→→的顺序运算后,琪琪得到的数恰好等于12,求x .【答案】(1)2(223)(3)--+⨯-,3-;(2)嘉嘉出的数是1或3.【分析】(1)根据题意,可以写出相应的算式,然后计算即可;(2)根据题意,可以得到关于x 的方程,然后解方程即可.【解析】(1)2(223)(3)--+⨯-1(3)=⨯-3=-.(2)根据题意得2[(2)(3)]312x -⨯-+=,29(2)9x -=,2(2)1x -=,11x =,23x =.x 为整数,∴嘉嘉出的数是1或3.【点睛】本题考查有理数的混合运算、解一元二次方程,解答本题的关键是明确题意,列出相应的算式,。
绝密,传启封并使用完毕前安庆市2023年高二模拟考试(二模)理科综合试题考生注意:1.本试卷分第I卷(选择题)和第E卷(非选择题)两部分,共300分.考试时间150分钟.2.请将各题答案填写在答题卡上.3.可能用到的相对房、子质量:H一l0-16 S-32 K-39 Cr-52 I-127第I卷(选择题共126分〉一、选择题:本大题共13小题,每小题6分,共78分.在每小题给出的四个选项中,只有-项是符合题目要求的.I.下列关于生物学中常用研咒方法的叙述,错误的是A.由不完全归纳法得出的结论是不可信的,不能用来预测和l判断B.沃森和克里克构建的DNA双螺旋结构模型反映了DNA分子结构特征c.梅塞尔森和斯塔尔探究DNA复制的方式运用了假说·演绎法D.艾弗里的肺炎链球菌体外转化实验应用了“减法原理”2.抗原呈递细胞(APC)是指能够摄取、加工和处理抗原,并将处理过的抗原呈递给辅助性T细胞的一类免疫细胞。
如图表示某外源性抗原经APC的呈递过程,下列相关分析错误的是A APC摄取外源性抗原体现了细胞膜的结构特点B.抗原肤-MHC复合物的形成需要溶酶体参与c.辅助性T细胞具有摄取、加工和处理抗原的能力D. MH C的形成需要内质网、高尔基体等分工合作3.如图为果蝇DNA的电镜照片,图中箭头所指的泡状结构是DNA上正在复制的部分,叫做DNA复制泡。
下列相关分析正确的是A.图示过程在减数分裂I和日中各发生1次B.图中箭头处脱氧核营酸连接到引物或DNA子链的3’端c.复制泡的大小不同与解旋酶在DNA上的移动速率有关D.复制地变大的过程,需要解旋酶、RNA聚合酶等物质4.关于生物变异与生物进化,下列叙述正确的是A.表现边传中DNA碱基序列未发生改变,该变异不可遗传B.人类猫叫综合征是5号染色体数目变异的结果c.自然界的各种生物和生态系统都是协同进化的结果D.自然状态下,随机交配的种群中基因频率都可维持不变:-/飞;二.·;.飞;俨.] 1:.t; r ·、·气I l .. :_· ) , ._ •1r-.:·��--',l\·,. ':. -·=、川l;�·;,t i l)个’f II ··-· Jr、飞·1」�,γ飞{!扒f二('·� i一半;J理科综合试题第丁页(共12页)5.在用传统方法生产啤酒时,要用到发芽的大麦粒(实质是利用其中的α·淀粉酶)。
第三节等比数列课程标准1.理解等比数列的概念并掌握其通项公式与前n项和公式.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.3.体会等比数列与指数函数的关系.考情分析考点考法:高考命题常以等比数列为载体,考查基本量的运算、求和及性质的应用.等差数列与等比数列的综合应用是高考的热点,在各个题型中均有出现.核心素养:数学建模、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.等比数列的有关概念定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列通项公式设{a n}是首项为a1,公比为q的等比数列,则通项公式a n=a1q n-1.推广:a n=a m q n-m(m,n∈N*)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时,G2=ab【微点拨】(1)等比数列中不含有0项;(2)同号的两个数才有等比中项,且等比中项有两个,它们互为相反数.2.等比数列的前n项和公式【微点拨】在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.3.等比数列与指数函数的关系等比数列的通项公式可整理为a n=1·q n,而y=1·q x(q≠1)是一个不为0的常数1与指数函数q x的乘积,从图象上看,表示数列1·q n中的各项的点是函数y=1·q x的图象上孤立的点.4.等比数列的性质(1)对任意的正整数m,n,p,q,若m+n=p+q,则a m·a n=a p·a q.特别地,若m+n=2p,则a m·a n=2.(2)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列(公比q≠-1).(3)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是等比数列.(4)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为q k.(5)等比数列{a n}的单调性:当q>1,a1>0或0<q<1,a1<0时,数列{a n}是递增数列;当q>1,a1<0或0<q<1,a1>0时,数列{a n}是递减数列;当q=1时,数列{a n}是常数列.【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论正确的是()A.满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列B.三个数a,b,c成等比数列的必要不充分条件是b2=acC.数列{a n}的通项公式是a n=a n,则其前n项和为S n=(1-)1-D.如果数列{a n}为正项等比数列,则数列{ln a n}是等差数列【解析】选BD.A中q不能为0;B中当a=b=c=0时满足b2=ac,但不是等比数列;C 中a=1时不成立;D中,a n>0,设a n=a1q n-1,则ln a n=ln a1+(n-1)ln q,{ln a n}是等差数列.2.(选择性必修第二册P29例1·变形式)若{a n}是各项均为正数的等比数列,且a1=1,a5=16,则a6-a5=()A.32B.-48C.16D.-48或16【解析】选C.由题意,q>0,则q=2,所以a6-a5=a5(q-1)=16.3.(忽视前n项和的条件致误)等比数列{a n}中,a3=6,前三项和S3=18,则公比q的值为()A.1B.-12C.1或-12D.-1或-12【解析】选C.因为S3=18,a3=6,所以a1+a2=32(1+q)=12,故2q2-q-1=0,解得q=1或q=-12.4.(2023·全国乙卷)已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=________.【解析】设{a n}的公比为q(q≠0),则a2a4a5=a3a6=a2q·a5q,显然a n≠0,则a4=q2,即a1q3=q2,则a1q=1.因为a9a10=-8,则a1q8·a1q9=-8,则q15=(5)3=-8=(-2)3,则q5=-2,则a7=a1q·q5=q5=-2.答案:-2【巧记结论·速算】1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{1},{2},{a n·b n数列.2.当{a n}是等比数列且q≠1时,S n=11--11-·q n=A-A·q n.【即时练】1.设n∈N*,则“数列{a n}为等比数列”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.充分性:若数列为等比数列,公比为q,为公比为12的等比数列,充分性成立;必要性:,公比为q,则-1=±所以数列不是等比数列,必要性不成立.2.已知数列{a n}的前n项和S n=22n+1+a,若此数列为等比数列,则a=________.【解析】因为数列的前n项和S n=22n+1+a=2×4n+a,所以a=-2.答案:-2【核心考点·分类突破】考点一等比数列基本量的计算[例1](1)(一题多法)记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则=()A.2n-1B.2-21-nC.2-2n-1D.21-n-1【解析】选B.方法一:设等比数列{a n}的公比为q,则由5-3=14-12=12,6-4=15-13=24,解得1=1,=2,所以S n=1(1-)1-=2n-1,a n=a1q n-1=2n-1,所以=2-12-1=2-21-n.方法二:设等比数列{a n}的公比为q,因为6-45-3=4(1-2)3(1-2)=43=2412=2,所以q=2,所以=1(1-)1-1-1=2-12-1=2-21-n.(2)已知等比数列{a n}的前n项和为S n,若a3a11=232,且S8+S24=mS16,则m=()A.-4B.4C.-83D.83【解析】选D.因为a3a11=232,且a n≠0,所以a11=2a3即a1q10=2a1q2,解得q8=2或q=0(舍去),因为S 8+S 24=mS 16,所以1(1-8)1-+1(1-24)1-=m ·1(1-16)1-,又因为q 8=2,a 1≠0,所以-8=-3m ,解得m =83.【解题技法】等比数列基本量的计算(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解;(2)注意观察条件转化式的特点,尽量采用整体消元、代入的方法简化运算,如两式相除就是等比数列中常用的运算技巧.【对点训练】1.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=()A .16B .8C .4D .2【解析】选C .设各项均为正数的等比数列{a n }的公比为q ,则1+1+12+13=15,14=312+41,解得1=1=2,所以a 3=a1q 2=4.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,5项和为()A .158或5B .3116或5C .3116D .158【解析】选C .若q =1,则由9S 3=S 6,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6,得9×1(1-3)1-=1(1-6)1-,解得q =2.故a n =a 1q n-1=2n -1,1=(12)n -1.1为首项,以12为公比的等比数列,所以5项和为T 5=1×[1-(12)5]1-12=3116.【加练备选】设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=()A.32B.12C.23D.2【解析】选A.因为在等比数列中,S2=3a2+2,S4=3a4+2,所以S4-S2=a3+a4=3(a4-a2),所以a2(q+q2)=3a2(q2-1),又a2≠0,所以q+q2=3(q2-1),即2q2-q-3=0,又q>0,所以q=32.考点二等比数列的判定与证明[例2]已知数列{a n}中,a1=1且2a n+1=6a n+2n-1(n∈N*),(1)求证:数列+;(2)求数列{a n}的通项公式.【解析】(1)因为2a n+1=6a n+2n-1(n∈N*),所以a n+1=3a n+n-12,所以r1+r12+2=3+-12+r12+2=3+32+2=3,因为a1+12=1+12=32,所以数列+2是首项为32,公比为3的等比数列.(2)由(1)得,a n+2=32×3n-1=12×3n,所以a n=12×3n-2.【解题技法】等比数列的判定方法定义法若a n+1a n=q(q为非零常数,n∈N*)或-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列等比中项法若数列{a n}中,a n≠0且r12=a n·+2(n∈N*),则{a n}是等比数列【对点训练】数列{a n}中,a1=2,a n+1=r12a n(n∈N*).证明数列{}是等比数列,并求数列{a n}的通项公式.【解析】由题设得r1r1=12·,又11=2,所以数列{}是首项为2,公比为12的等比数列,所以=2×(12)n-1=22-n,a n=n·22-n=42.【加练备选】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n}中的b3,b4,b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列{S n+54}是等比数列.【解析】(1)设成等差数列的三个正数分别为a-d,a,a+d,依题意,得a-d+a+a+d=15,解得a=5.所以数列中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去),故数列的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以数列是以54为首项,以2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列的前n 项和S n =54(1-2)1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52,r1+54+54=5·2-15·2-2=2.因此{S n +54}是以52为首项,以2为公比的等比数列.考点三等比数列性质的应用【考情提示】等比数列的性质作为解决等比数列问题的工具,因其考查数列知识较全面而成为高考命题的热点,重点解决基本量运算、条件转化等.角度1等比数列项的性质[例3]已知各项均为正数的等比数列的前n 项和为S n ,a 2a 4=9,9S 4=10S 2,则a 2+a 4的值为()A .30B .10C .9D .6【解析】选B .已知为各项均为正数的等比数列,则a n >0,可得a 1>0,q >0,因为32=a 2a 4=9,所以a 3=3,又因为9S 4=10S 2,则9(a 1+a 2+a 3+a 4)=10(a 1+a 2),可得9(a 3+a 4)=a 1+a 2,所以3+41+2=q 2=19,解得q =13,故a 2+a 4=3+a 3q =10.角度2等比数列前n 项和的性质[例4]已知正项等比数列{a n}的前n项和为S n,且S8-2S4=5,则a9+a10+a11+a12的最小值为()A.10B.15C.20D.25【解析】选C.由题意可得a9+a10+a11+a12=S12-S8,由S8-2S4=5,可得S8-S4=S4+5.又由等比数列的性质知S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2.于是a9+a10+a11+a12=S12-S8=(4+5)24=S4+254+10≥2当且仅当S4=5时等号成立.所以a9+a10+a11+a12的最小值为20.角度3等比数列的单调性[例5]已知{a n}是等比数列,a1>0,前n项和为S n,则“2S8<S7+S9”是“{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.因为数列是等比数列,a1>0,2S8<S7+S9,所以a8<a9,所以q7<q8,所以q7(q-1)>0,所以q<0或q>1,所以2S8<S7+S9的充要条件为q<0或q>1.又a1>0,数列为递增数列的充要条件为q>1,所以“2S8<S7+S9”是“为递增数列”的必要不充分条件.【解题技法】1.应用等比数列性质的两个关注点(1)转化意识:在等比数列中,两项之积可转化为另外两项之积或某项的平方,这是最常用的性质.(2)化归意识:把非等比数列问题转化为等比数列问题解决,例如有关S m,S2m,S3m的问题可利用S m,S2m-S m,S3m-S2m(S m≠0)成等比数列求解.2.等比数列的单调性的应用方法研究等比数列的单调性问题,要综合考虑首项的符号以及公比的取值范围,而涉及等比数列有关的单调性的充分必要条件问题,既要考虑数列的单调性也要善于举反例说明.【对点训练】1.设单调递增的等比数列{a n}满足12+14=1336,a1a5=36,则公比q=()A.32B.94C.2D.52【解析】选A.因为数列{a n}为等比数列,所以a1a5=a2a4=36,所以12+14=2+424=2+436=1336,则a2+a4=13,又数列{a n}单调递增,所以q>1,解得a2=4,a4=9,则q2=94,因为q>1,所以q=32.2.设无穷等比数列{a n}的前n项和为S n,若-a1<a2<a1,则()A.{S n}为递减数列B.{S n}为递增数列C.数列{S n}有最大项D.数列{S n}有最小项【解析】选D.由-a1<a2<a1可得a1>0,所以q=21<1,因为-a1<a2得q=21>-1,所以-1<q<1,因为S n=1(1-)1-,当0<q<1时,{S n}递增,当-1<q<0时,{S n}既有递增又有递减,A,B错误;当0<q<1时,S n有最小项S1,没有最大项,当-1<q<0时,a1>0,a2<0,a3>0,a4<0且a3+a4>0,S n有最小项S2,没有最大项,C错误,D 正确.3.设等比数列{a n}的前n项和为S n.若a n>0,S3=5,a7+a8+a9=20,则S15=________.【解析】由等比数列的性质可知S3,S6-S3,S9-S6,S12-S9,S15-S12是等比数列,由条件可知S3=5,S9-S6=20,则此等比数列的公比q2=205=4,又a n>0,所以q=2,S15=S3+(S6-S3)+(S9-S6)+(S12-S9)+(S15-S12),所以S15=5(1-25)1-2=155.答案:155。
最新数学七年级上册压轴解答题培优测试卷一、压轴题1.如图,已知数轴上两点4 8表示的数分别为-2, 6,用符号“48”来表示点A和点8 之间的距离.II ।AA 0 B(1)求A8的值:(2)若在数轴上存在一点C,使AC=38C,求点C表示的数;(3)在(2)的条件下,点C位于4、8两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达8点处立刻返回沿着数轴的负方向运动,直到点A到达点8,两个点同时停止运动.设点八运动的时间为t,在此过程中存在t使得4C=38C仍成立,求t的值.2 .阅读下列材料:根据绝对值的定义,|x|表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为X1,X2时,点P与点Q之间的距离为PQ=|XI-X2|.根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4,8(A、B两点的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n.A OB "(1)AB=个单位长度;若点M在A、B之间,则|m+4| + |m-8|=:⑵若|m+4| + |m-8|=20,求m 的值;⑶若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m=:n=.3 .点A、B在数轴上分别表示数“口,A、B两点之间的距离记为|A8].我们可以得到(1)数轴上表示2和5的两点之间的距离是_:数轴上表示-2和-5两点之间的距离是_;数轴上表示1和。
的两点之间的距离是_.(2)若点A、B在数轴上分别表示数;和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C对应的数为C .①求电子蚂蚊在点A的左侧运动时|AC| + |Bq的值,请用含。
的代数式表示:②求电子蚂蚁在运动的过程中恰好使得|c+l| + |c-5| = 11, c表示的数是多少?③在电子蚂蚁在运动的过程中,探索1+1| +1-5|的最小值是4 . 一般情况下:+ ? = R是不成立的,但有些数可以使得它成立,例如:2 3 2 + 3a =b = O.我们称使得二十2= :成立的一对数出〃为“相伴数对",记为(。
北京2024—2025学年度第一学段高一年级学段考试试卷数学必修第一册(答案在最后)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的选项中,只有一项是符合题目要求的,请将答案填在答题纸上)1.已知集合A ={}2x x <,B ={−2,0,1,2},则A B = ()A.{0,1}B.{−1,0,1}C.{−2,0,1,2}D.{−1,0,1,2}【答案】A【解析】【详解】分析:先解含绝对值不等式得集合A ,再根据数轴求集合交集.详解:222,x x ,<∴-<<因此A ⋂B ={}{}2,0,1,2(2,2)0,1-⋂-=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.设a ,b ,c ∈R ,且a b >,则()A.ac bc> B.11a b< C.22a b > D.33a b >【答案】D【解析】【详解】当0c =时,选项A 错误;当1,2a b ==-时,选项B 错误;当2,2a b ==-时,选项C 错误;∵函数3y x =在R 上单调递增,∴当a b >时,33a b >.本题选择D 选项.点睛:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便.3.函数()12f x x =-的定义域为()A.[)0,2B.()2,∞+C.()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭ D.()(),22,-∞+∞ 【答案】C【解析】【分析】根据被开方数是非负数,以及分母不为零,即可容易求得结果.【详解】由21020x x -≥⎧⎨-≠⎩,解得x ≥12且x ≠2.∴函数()12f x x =+-的定义域为()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭.故选:C .【点睛】本题考查具体函数定义域的求解,属简单题.4.设全集U =R ,集合{}2230A x x x =--<,{}10B x x =-≥,则图中阴影部分所表示的集合为()A.{1x x ≤-或}3x ≥B.{1x x <-或}3x ≥C.{}1x x ≤ D.{}1x x ≤-【答案】D【解析】【分析】根据图可知,阴影表示A B 的补集,即可根据集合交并补的定义求解.【详解】由{}2230A x x x =--<可得=−1<<3,{}{}101B x x x x =-≥=≥,故∪=>−1,进而(){}1A B x x ⋃=≤-R ð.故选:D5.已知0x >,则12x x +-有()A.最大值0B.最小值0C.最大值-2D.最小值-2【答案】B【解析】【分析】利用基本不等式即可求解.【详解】0x >,1220x x ∴+-≥-=,当且仅当1x x =,即1x =时等号成立,即12x x+-有最小值为0.故选:B .6.设x R ∈,则“250x x -<”是“|1|1x -<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】分别求出两不等式的解集,根据两解集的包含关系确定.【详解】化简不等式,可知05x <<推不出11x -<;由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件,故选B.【点睛】本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件.7.若集合2{|60}A x x x =+-<,2{|0}3x B x x +=≤-,则A B ⋂等于A.(3,3)- B.(2,2)- C.[2,2)- D.[2,3)-【答案】C【解析】【分析】解不等式,可得集合A 与集合B,根据交集运算即可得解.【详解】集合2{|60}A x x x =+-<,2{|0}3x B x x +=≤-解不等式,可得{|32}A x x =-<<,{|23}B x x =-≤<所以[){|32}{|23}2,2A B x x x x =-<<⋂-≤<=- 所以选C【点睛】本题考查了一元二次不等式、分式不等式解法,集合交集运算,注意分式不等式分母不为0的限制要求,属于基础题.8.已知p :210x -≤≤,q :110m x m m -≤≤+>(),若p 是q 的必要不充分条件,则实数m 的取值范围为()A.03m <≤ B.03m ≤≤C.3m < D.3m ≤【答案】A【解析】【分析】将p 是q 的必要不充分条件转化为B A ,然后根据集合间的包含关系列不等式求解即可.【详解】设{}210A x x =-≤≤,=1−≤≤1+,因为p 是q 的必要不充分条件,所以B A ,所以012110m m m >⎧⎪-≥-⎨⎪+≤⎩,解得03m <≤,当3m =时,=−2≤≤4,成立,所以03m <≤.故选:A.9.已知0,0x y >>,且141x y+=,则x y +的最小值为()A.6 B.7 C.8 D.9【答案】D【解析】【分析】由题意得14()x y x y x y ⎛⎫+=++ ⎪⎝⎭,化简后利用基本不等式可求出其最小值.【详解】因为0,0x y >>,且141x y+=,所以144()559y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4y x x y=,即3,6x y ==时取等号,所以x y +的最小值为9,故选:D10.若关于x 的不等式20ax bx c ++>的解集是()2,3-,则关于x 的不等式250bx ax c ++>的解集是()A.()2,3 B.()(),23,-∞⋃+∞C.()1,6- D.()(),16,-∞-⋃+∞【答案】B【解析】【分析】由题意可得0a <,且方程20ax bx c ++=的根为2,3-,利用韦达定理求出,b c ,再根据一元二次不等式的解法即可得解.【详解】因为关于x 的不等式20ax bx c ++>的解集是()2,3-,所以0a <,且方程20ax bx c ++=的根为2,3-,故23,23b c a a-+=--⨯=,则0b a =->,60c a =->,故不等式250bx ax c ++>等价于2560ax ax a -+->,即2560x x -+>,解得2x <或3x >,所以关于x 的不等式250bx ax c ++>的解集是()(),23,-∞⋃+∞.故选:B.11.若“x ∃∈R ,使得不等式23208kx kx ++≤成立”是假命题,则实数k 的取值范围为()A.0k ≤<3B.03k <<C.30k -<≤D.30k -<<【答案】A【解析】【分析】由“x ∃∈R ,使得不等式23208kx kx ++≤成立”是假命题,则其否命题为真命题,再根据不等式恒成立进行求解即可.【详解】由“x ∃∈R ,使得不等式23208kx kx ++≤成立”是假命题,则其否命题为真命题,即“x ∀∈R ,使得不等式23208kx kx ++>成立”是真命题,即x ∀∈R ,使得不等式23208kx kx ++>恒成立,当0k =时,308>恒成立,当0k ≠时,要使x ∀∈R ,不等式23208kx kx ++>恒成立,则>0Δ=2−4×2×38<0,解得03k <<,综上知0k ≤<3,故选:A 12.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转(1,2,3,4)i i =次,每次转动90︒,记(1,2,3,4)i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++.若1234++0x x x x +<,1234+++0y y y y <,则以下结论正确的是A.1234,,,T T T T 中至少有一个为正数B.1234,,,T T T T 中至少有一个为负数C.1234,,,T T T T 中至多有一个为正数D.1234,,,T T T T 中至多有一个为负数【答案】A【解析】【详解】根据题意可知:(1234 1234+++++x x x x y y y y +)()>0,又(1234 1234+++++x x x x y y y y +)()去掉括号即得:22121314x y x y x y x y +++22222324+x y x y x y x y +++22333334+x y x y x y x y +++22444344+x y x y x y x y +++=1234T T T T +++>0,所以可知1234,,,T T T T 中至少有一个为正数,故选A点睛:借此题关键是要根据题意明白1234,,,T T T T 所表达的意思,然后容易发现(1234 1234+++++x x x x y y y y +)()=1234T T T T +++>0从而得出结论二、填空题(本大题共6小题,每小题5分,共30分.请将答案填在答题纸上)13.命题“230x ,x x ∀∈-+>R ”的否定是___________【答案】2000,30x R x x ∃∈-+≤【解析】【分析】全称命题的否定是特称命题.【详解】2x R,x x 30∀∈-+>否定是:2000x R,x x 30∃∈-+≤【点睛】全称命题的否定是特称命题,注意要将全称量词否定为存在量词,结论也要否定.14.若函数,0()31,0x x f x x x ->⎧=⎨+≤⎩,则15f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭_________.【答案】25-##0.4-.【解析】【分析】本题考查了分段函数的函数值的求法,解题过程中要注意定义域,属于基础题.根据定义域首先求出1255f ⎛⎫-= ⎪⎝⎭,然后求25f ⎛⎫ ⎪⎝⎭即为结果.【详解】∵函数,0()31,0x x f x x x ->⎧=⎨+≤⎩,∴1255f ⎛⎫-= ⎪⎝⎭,∴122555f f f ⎛⎫⎛⎫⎛⎫-==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故填:25-.15.已知集合{}2,1A =-,{}2B x ax ==,若A B B = ,则实数a 值集合为______.【答案】{}0,1,2-【解析】【分析】由A B B = 得到B A ⊆,则{}2,1A =-的子集有∅,{}2-,{}1,{}2,1-,分别求解即可.【详解】因为A B B = ,故B A ⊆;则{}2,1A =-的子集有∅,{}2-,{}1,{}2,1-,当B =∅时,显然有0a =;当{}2B =-时,221a a -=⇒=-;当{}1B =,122a a ⋅=⇒=;当{}2,1B =-,a 不存在,所以实数a 的集合为{}0,1,2-;故答案为{}0,1,2-.16.若()1,x ∈+∞,则131y x x =+-的最小值是_____.【答案】3+【解析】【分析】由已知可知()11y 3x 3x 13x 1x 1=+=-++--,然后利用基本不等式即可求解.【详解】解:x 1> ,()11y 3x 3x 13x 1x 1∴=+=-++--33≥+=,(当且仅当13x =+取等号)故答案为3+.【点睛】本题主要考查了利用基本不等式求最值,解题的关键是配凑积为定值,属于基础试题.17.一般地,把b a -称为区间(),a b 的“长度”已知关于x 的不等式220x kx k -+<有实数解,且解集区间长度不超过3个单位,则实数k 的取值范围为___________.【答案】[)(]1,08,9- 【解析】【分析】不等式220x kx k -+<有实数解等价于220x kx k -+=有两个不相等的实数根,结合根的判别式,韦达定理进行求解.【详解】不等式220x kx k -+<有实数解等价于220x kx k -+=有两个不相等的实数根,则()280k k ∆=-->,解得:8k >或0k <设220x kx k -+=的两根为1x ,2x ,不妨令12x x <,则12x x k +=,122x x k=由题意得:213x x -==≤,解得:19k -≤≤,结合8k >或0k <,所以实数k 的取值范围为[)(]1,08,9- 故答案为:[)(]1,08,9- 18.设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ⋂≠∅,则12A A ⋂具有性质P ;③若12,A A 具有性质P ,则12A A ⋃具有性质P ;④若A 具有性质P ,且A ≠R ,则R A ð不具有性质P .其中所有真命题的序号是___________.【答案】①②④【解析】【分析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法判断④,元素0是关键.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈⋂,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈⋂⋂,所以12A A ⋂具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A ∈,23A ∈,但1223A A +∉⋃,故③错误;对于④,若A 具有性质P ,且A ≠R ,假设R A ð也具有性质P ,设0A ∈,在R A ð中任取一个,0x x ≠,此时可证得x A -∈,否则若R x A -∈ð,由于R A ð也具有性质P ,则()0R x x A +-=∈ð,与0A ∈矛盾,故x A -∈,由于A 具有性质P ,R A ð也具有性质P ,所以()22,R x A x A -∈∈ð,而()22x x -=,这与R A A ⋂=∅ð矛盾,故当0A ∈且A 具有性质P 时,则R A ð不具有性质P ,同理当0R A ∈ð时,也可以类似推出矛盾,故④正确.故答案为:①②④【点睛】集合新定义题目,关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于难题.三、解答题(本大题共60分,请将答案填在答题纸上)19.已知函数()2f x x ax b =-+的图象过点()1,0A 和()2,0B .(1)求函数()f x 的解析式;(2)若函数()()2f xg x x+=,当0x >时,求()g x 的最小值.【答案】(1)()232f x x x =-+(2)1【解析】【分析】(1)代入()1,0A 和()2,0B 即可求解;(2)由(1)得到()g x ,再结合基本不等式即可求解.【小问1详解】由题意可得:10420a b a b -+=⎧⎨-+=⎩解得:32a b =⎧⎨=⎩,所以函数()f x 的解析式为()232f x x x =-+.【小问2详解】由(1)可得()()243f x g x x x x+==+-因为0x >,所以4331x x +-≥=,当且仅当2x =时,取到等号,所以()g x 的最小值为1.20.已知函数()()224g x x kx k k =-+-∈R .(1)当5k =时,求不等式()0g x ≥的解集;(2)当2x >时,关于x 的不等式()9g x ≥-恒成立,求k 的取值范围.【答案】(1)(][),23,-∞⋃+∞(2)(],10-∞【解析】【分析】(1)把5k =代入()()224g x x kx k k =-+-∈R ,解不等式2560x x -+≥即可;(2)把恒成立的问题转化为分离参数求值的问题,再利用基本不等式求ℎ=>2的最小值即可.【小问1详解】当5k =时,()256g x x x =-+,则不等式()0g x ≥,即()()2560230x x x x -+≥⇔--≥,解得2x ≤,或3x ≥,因此当5k =时,不等式()0g x ≥的解集为(][),23,∞∞-⋃+.【小问2详解】当2x >时,关于x 的不等式()9g x ≥-恒成立,即当2x >时,关于x 的不等式()2249g x x kx k =-+-≥-恒成立,⇔在2x >时,252x k x +≤-恒成立,令ℎ=>2,令2,0t x t =->,则2x t =+,故ℎ=>2⇔=>0,又()22254994410t t t y t tt t ++++===++≥+=,当且仅当9t t=,即3t =时等号成立,故当3t =,即5x =时,()()min 510h x h ==,因此可得10k ≤,即当2x >时,关于x 的不等式()9g x ≥-恒成立,k 的取值范围为(],10∞-.21.已知p :232x -≤,q :()224400x x a a -+-≤>,q 是p 的必要不充分条件,求实数a 的取值范围.【答案】[)8,+∞【解析】【分析】分别求出条件p ,q ,由题意可得出[]2,10-⫋[]2,2a a -+,解不等式即可得出答案.【详解】由232x -≤可得:3232x -≤-≤,则210x -≤≤,由2−4+4−2≤0>0可得:()()220x a x a ⎡⎤⎡⎤---+≤⎣⎦⎣⎦,因为0a >,所以22a a +>-,解得:22a x a -≤≤+,因为q 是p 的必要不充分条件,所以[]2,10-⫋[]2,2a a -+,所以2−≤−22+≥10>0且不能同时取等,解得:8a ≥.所以实数a 的取值范围为:[)8,+∞22.已知关于x 的不等式()2330ax a x -++>的解集为A .(1)若3A ∉,求实数a 的取值范围;(2)当0a <时,集合A 中有且仅有两个整数,求实数a 的取值范围;(3)若集合{}112B x x x =或,满足A B =,求实数a 的值.【答案】(1)1a ≤(2)32a -3<≤-(3)14a =【解析】【分析】(1)因为3A ∉,所以将3x =代入不等式不成立;(2)当0a <时,二次函数2(3)3y ax a x =-++开口向下,要使集合A 中有且仅有两个整数,需要分析函数的零点和取值情况;(3)A B =意味着两个集合中的不等式等价.解集一样,构造方程即可.【小问1详解】因为3A ∉,所以当3x =时,2(3)30ax a x -++≤.将3x =代入得93(3)30a a -++≤,即93930a a --+≤,解得1a ≤.【小问2详解】由2(3)30ax a x -++>,因式分解得(3)(1)0ax x -->,因为0a <,所以31a <,不等式的解为31x a<<.因为集合A 中有且仅有两个整数,这两个整数只能是1-,0.所以321a -≤<-,当32a -≤时,23a -≥,解得32a ≤-;当31a <-时,3a >-,解得3a >-.所以32a -3<≤-.【小问3详解】因为{|1B x x =<或12}x >,A B =,由2(3)30ax a x -++>,因式分解得(3)(1)0ax x -->.因为A B =,所以方程2(3)30ax a x -++=的两个根为1和12.将12x =代入方程2(3)30ax a x -++=得14412(3)30a a -++=,144123630a a --+=,即132330a -=,13233a =,解得14a =.23.设k 是正整数,A 是*N 的非空子集(至少有两个元素),如果对于A 中的任意两个元素x ,y ,都有||x y k -≠,则称A 具有性质()P k .(1)试判断集合{1,2,3,4}B =和{1,4,7,10}C =是否具有性质(2)P ?并说明理由.(2)若{}1212,,,{1,2,,20}A a a a =⋯⊆⋯.证明:A 不可能具有性质(3)P .(3)若{1,2,,2023}A ⊆⋯且A 具有性质(4)P 和(7)P .求A 中元素个数的最大值.【答案】(1)B 不具有性质(2)P ,C 具有性质(2)P ,理由见解析(2)证明见解析(3)920【解析】【分析】(1)根据定义判断,B C 是否具有性质()2P 即可;(2)将{}1,2,,20 分为11个子集,结合抽屉原理证明结论;(3)先证明连续11个自然数中至多有5个元素属于A ,由此可得集合A 中元素个数不超过920个,再举例说明存在含有920个元素的满足要求的集合A .【小问1详解】因为{}1,2,3,4B =,又1N ,2N ,3N ,4N ****∈∈∈∈,但422-=,所以集合B 不具有性质()2P ,因为{}1,4,7,10C =,又1N ,4N ,7N ,10N ****∈∈∈∈,但413,716,1019,743,1046,1073-=-=-=-=-=-=,所以集合C 具有性质()2P .【小问2详解】将集合{}1,2,,20 中的元素分为如下11个集合,{}{}{}{}{}{}{}{}{}{}{}1,4,2,5,3,6,7,10,8,11,9,12,13,16,14,17,15,18,19,20,所以从集合{}1,2,,20 中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P .【小问3详解】先说明连续11项中集合A 中最多选取5项,以1,2,3,11⋅⋅⋅为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质(4)P 和(7)P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3,11⋅⋅⋅中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3,11⋅⋅⋅中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3,11⋅⋅⋅中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3,11⋅⋅⋅中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3,11⋅⋅⋅中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有1845920⨯=个.给出如下选取方法:从1,2,3,11⋅⋅⋅中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A 的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;⋅⋅⋅⋅⋅⋅;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.【点睛】关键点点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.。
离散数学(第四版) (((( 耿素云屈婉玲张立昂著)))) 清华大学出版社第第第第1111章章章章习题解答习题解答习题解答习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句, 所以它们都不是命题。
其次,(4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们 都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题, (12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来 的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或 “与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2(1)是无理数,p为真命题。
2:p (2)能被2整除,p 为假命题。
5:p (6)。
其中,是素数,q :三角形有三条边。
由于p 与q 都是真 qp →2: p 命题,因而为假命题。
qp→ (7),其中,p :雪是黑色的,q :太阳从东方升起。
由于p 为假命 qp → 题,q 为真命题,因而为假命题。
qp → (8)年10月1日天气晴好,今日(1999年2月13日)我们还不2000:p www . khd aw. com课后答 案网知道p 的真假,但p 的真值是确定的(客观存在的),只是现在不知道而已。
2025届青岛市58中高三数学上学期期中考试卷本卷满分150分,考试时间120分钟2024.11第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N ,{}15Q x x =-≤<,则P Q = ()A.{}1,2,3 B.{}0,1,2 C.{}1,2,5 D.{}0,1,2,52.已知i22iz =-,则z =()A.2B.1C.4D.23.已知1a b == .若()2a b a +⊥ ,则cos ,a b =()A.3-B.2-C.3D.24.已知等比数列{}n a 的前n 项和为n S ,且31S ma =,则“7m =”是“{}n a 的公比为2”的()A.必要不充分条件B.充分不必要条件C 充要条件D.既不充分也不必要条件5.体积为()A.B.C.D.6.已知函数()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩则()f x 图象上关于原点对称的点有()A.1对B.2对C.3对D.4对7.已知函数()2211cos sin cos 222222x x x xf x =-+,函数的图象各点的横坐标缩小为原来的12(纵坐标不变),再向左平移π12个单位长度,得到函数=的图象.若方程()21g x m -=在7π0,12x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解1x ,2x ,则12x x +的值为()A.π6B.π3C.π2D.π8.若关于x 不等式()ln ax x b ≤+恒成立,则当1e ea ≤≤时,1e lnb a +-的最小值为()A.11e+ B.e 1- C.1 D.e 二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9.已知3515a b ==,则下列结论正确的是()A.lg lg a b> B.a b ab+= C.1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D.49a b +>10.若数列满足11a =,21a =,12n n n a a a --=+(3n ≥,n +∈N ),则称数列为斐波那契数列,又称黄金分割数列,则下列结论成立的是()A.713a = B.222n n n a a a -+=+(3n ≥,n +∈N )C.135********a a a a a ++++= D.24620242025a a a a a ++++= 11.如图,在边长为4的正方体1111ABCD A B C D -中,E ,F 分别是棱11B C ,11C D 的中点,P 是正方形1111D C B A 内的动点,则下列结论正确的是()A.若//DP 平面CEF ,则点P 的轨迹长度为B.若AP =,则点P 的轨迹长度为2πC.若P 是正方形1111D C B A 的中心,Q 在线段EF 上,则PQ CQ +的最小值为D.若P 是棱11A B 的中点,则三棱锥P CEF -的外接球的表面积是41π第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12.曲线32374y x x x =+++的所有切线中,斜率最小的切线的方程是_______.13.为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且50AB BC ==米,则塔的高度OP =________米.14.已知121A A =,当2n ≥,*N n ∈时,1n A +是线段1n n A A -的中点,点P 在所有的线段1n n A A +上,若1A P λ≤,则λ的最小值是________.四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.已知数列{}n a 的前n 项和为n S ,且22n n S a +=.(1)求2a 及数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使得这()2+n 个数依次组成公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .16.设ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,且有π2cos 3b A a c ⎛⎫-=+ ⎪⎝⎭,(1)求角B :(2)若AC 边上的高34h =,求cos cos A C .17.如图1,在平行四边形ABCD 中,24AB BC ==,60ABC ∠=︒,E 为CD 的中点,将ADE V 沿AE 折起,连结BD ,CD ,且4BD =,如图2.(1)求证:图2中的平面ADE ⊥平面ABCE ;(2)在图2中,若点F 在棱BD 上,直线AF 与平面ABCE 所成的角的正弦值为3010,求点F 到平面DEC 的距离.18.已知函数()sin ln(1)f x x x ax =++-,且()y f x =与x 轴相切于坐标原点.(1)求实数a 的值及()f x 的最大值;(2)证明:当π,π6x ⎡⎤∈⎢⎥⎣⎦时,1()22f x x +>;(3)判断关于x 的方程()0f x x +=实数根的个数,并证明.19.对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为n a ;若n 为奇数,则对31n +不断地除以2,直到得出一个奇数,记这个奇数为n a .若1n a =,则称正整数n 为“理想数”.(1)求20以内的质数“理想数”;(2)已知9m a m =-.求m 的值;(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列{}n b ,记{}n b 的前n 项和为n S ,证明:()*7N 3n S n <∈.2025届青岛市58中高三数学上学期期中考试卷第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N ,{}15Q x x =-≤<,则P Q = ()A.{}1,2,3 B.{}0,1,2 C.{}1,2,5 D.{}0,1,2,5【答案】B【解析】【分析】首先把集合P 用列举法表示出来,再运用交集的运算进行求解即可.【详解】若61y x =+,y ∈N ,则1x +是6的正因数,而6的正因数有1,2,3,6,所以{}6,0,1,2,51P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N ,因为{}15Q x x =-≤<,所以{}0,1,2P Q ⋂=,故选:B.2.已知i22iz =-,则z =()A.2B.1C.4D.2【答案】C 【解析】【分析】根据复数的运算法则计算出复数z ,再计算复数的模.【详解】由题意知()()()i 22i i 22i 22i 22i z +==--+2i 28-=11i 44=-+,所以4z ==,故选:C.3.已知1a b == .若()2a b a +⊥ ,则cos ,a b =()A.33-B.2-C.3D.32【答案】B 【解析】【分析】根据向量垂直可得32a b ⋅=- ,代入向量夹角公式即可得结果.【详解】因为()2a b a +⊥,且1a b ==,则()2220a a a a b b +⋅=+⋅= ,可得21322a b a ⋅=-=-r r r ,所以32cos ,2a b a b a b-⋅===-⋅r r r r r r .故选:B.4.已知等比数列{}n a 的前n 项和为n S ,且31S ma =,则“7m =”是“{}n a 的公比为2”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】利用等比数列的性质,分别判断充分性与必要性即可.【详解】设等比数列{}n a 的公比为q ,由()223123111111S a a a a a q a q a q qma =++=++=++=,得21q qm ++=,当7m =时,217q q ++=,解得2q =或3q =-,充分性不成立;当2q =时,217q q m ++==,必要性成立.所以“7m =”是“{}n a 的公比为2”的必要不充分条件.故选:A5.体积为()A.B.C.D.【答案】B 【解析】【分析】根据正四棱柱及正四棱锥的体积公式可得正四棱锥的高与斜高的关系式,进而可得解.【详解】如图所示,正四棱柱为1111ABCD A B C D -,正四棱锥1O ABCD -,设底边边长AB a =,高1OO =则1O E ==,又正四棱柱的侧面积114S AB OO =⋅=,正四棱锥的侧面积21142S AB O E a =⋅⋅=,则a =,解得a =,所以正四棱锥体积21133ABCD V S OO a =⋅==,故选:B.6.已知函数()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩则()f x 图象上关于原点对称的点有()A.1对B.2对C.3对D.4对【答案】C 【解析】【分析】作出()f x 的图象,再作出函数1,0,2xy x ⎛⎫=≥ ⎪⎝⎭关于原点对称的图象,进而数形结合判断即可.【详解】作出()f x 的图象,再作出函数1,0,2xy x ⎛⎫=≥ ⎪⎝⎭关于原点对称的图象如图所示.因为函数1,0,2xy x ⎛⎫=≥ ⎪⎝⎭关于原点对称的图象与22,0,y x x x =-+<图象有三个交点,故()f x 图象上关于原点对称的点有3对.故选:C7.已知函数()2211cos sin cos 222222x x x xf x =-+,函数的图象各点的横坐标缩小为原来的12(纵坐标不变),再向左平移π12个单位长度,得到函数=的图象.若方程()21g x m -=在7π0,12x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解1x ,2x ,则12x x +的值为()A.π6B.π3 C.π2D.π【答案】A 【解析】【分析】先化简()f x ,根据图象变换求出()g x ,将方程()21g x m -=转化为()12m g x +=,由函数()g x 图象的对称性求出答案.【详解】根据题意可得()1πcos sin sin 226f x x x x ⎛⎫=+=+ ⎪⎝⎭,所以()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,7π012x ≤≤Q ,ππ3π2332x ∴≤+≤,所以()g x 在π0,12⎡⎤⎢⎥⎣⎦上单调递增,在π7π,1212⎡⎤⎢⎥⎣⎦上单调递减,()g x 关于π12x =对称,且()π062g g ⎛⎫==⎪⎝⎭,π112g ⎛⎫= ⎪⎝⎭,7π112g ⎛⎫=- ⎪⎝⎭,方程()21g x m -=等价于()12m g x +=有两个不同的解12,x x ,12ππ2126x x ∴+=⨯=.故选:A.8.若关于x 不等式()ln ax x b ≤+恒成立,则当1e ea ≤≤时,1e lnb a +-的最小值为()A.11e+ B.e 1- C.1D.e【答案】C 【解析】【分析】构建()()ln f x ax x b =--,分析可知()f x 的定义域为0,+∞,且()0f x ≤在0,+∞内恒成立,利用导数可得ln 1a b ≤+,整理可得1e ln ln b a a a +-≥-,构建()1ln ,e eg a a a a =-≤≤,利用导数求其最值即可.【详解】设()()ln f x ax x b =--,因为1e ea ≤≤,可知()f x 的定义域为0,+∞,所以()0f x ≤在0,+∞内恒成立,又因为()111xf x x x-=-=',令′>0,解得01x <<;令′<0,解得1x >;可知()f x 在0,1内单调递增,在1,+∞内单调递减,则()()1ln 10f x f a b ≤=--≤,可得ln 1a b ≤+,则1ln e e b a a +≥=,可得1e ln ln b a a a +-≥-,当且仅当ln 1a b =+时,等号成立,令()1ln ,e e g a a a a =-≤≤,则()111a g a a a'-=-=,令()0g a '>,解得1e a <≤;令()0g a '<,解得11ea <≤;可知()g a 在(]1,e 内单调递增,在1,1e ⎡⎫⎪⎢⎣⎭内单调递减,则()()11g a g ≥=,即1e ln ln 1b a a a +-≥-≥,当且仅当1,1a b ==-时,等号成立,所以1e ln b a +-的最小值为1.故选:C.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9.已知3515a b ==,则下列结论正确的是()A.lg lg a b> B.a b ab+= C.1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D.49a b +>【答案】ABD 【解析】【分析】根据指对互化与运算以及指数函数、对数函数单调性即可判断ABC ,利用基本不等式即可判断D.【详解】由题可得33log 15log 310a =>=>,55log 15log 510b =>=>,1515110log 3log 5a b∴<=<=,即110a b <<,所以0a b >>,对于A ,因为0a b >>,所以lg lg a b >,故A 正确;对于B ,15151511log 3log 5log 151a b+=+==Q,a b ab ∴+=,故B 正确;对于C ,因为0a b >>,所以1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 错误;对于D ,因为0a b >>,111a b+=,所以()11444559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b aa b=,即2a b =时等号成立,这与已知35a b =矛盾,所以49a b +>,故D 正确.故选:ABD.10.若数列满足11a =,21a =,12n n n a a a --=+(3n ≥,n +∈N ),则称数列为斐波那契数列,又称黄金分割数列,则下列结论成立的是()A.713a = B.222n n n a a a -+=+(3n ≥,n +∈N )C.135********a a a a a ++++= D.24620242025a a a a a ++++= 【答案】AC 【解析】【分析】利用斐波那契数列的定义结合递推关系一一判定选项即可.【详解】对于A ,由题可得32a =,43a =,55a =,68a =,713a =,故A 正确;对于B ,因为21112n n n n n n n n a a a a a a a a ++--=+=++=+,又12n n n a a a --=+,所以21213n n n n n a a a a a +---++=+,即223n n n a a a +-=+,故B 错误;对于C ,2024202320222023202120202023202132a a a a a a a a a a =+=++==++++L L 2023202131a a a a =++++L ,故C 正确;对于D ,2025202420232024202220212024202243a a a a a a a a a a =+=++=++++L 20242022421a a a a a =+++++L ,故D 错误.故选:AC.11.如图,在边长为4的正方体1111ABCD A B C D -中,E ,F 分别是棱11B C ,11C D 的中点,P 是正方形1111D C B A 内的动点,则下列结论正确的是()A.若//DP 平面CEF ,则点P 的轨迹长度为B.若AP =,则点P 的轨迹长度为2πC.若P 是正方形1111D C B A 的中心,Q 在线段EF 上,则PQ CQ +的最小值为D.若P 是棱11A B 的中点,则三棱锥P CEF -的外接球的表面积是41π【答案】ACD【解析】【分析】作出相应图形,先证明平面//BDNM 平面CEF ,再结合给定条件确定动点轨迹,求出长度即可判断A ;建立空间直角坐标系,根据题意确定动点轨迹,求解长度即可判断B ,将平面CEF 翻折到与平面1111D C B A 共面,连接PC ,与EF 交于点Q ,此时PQ CQ +取到最小值,利用勾股定理求出,PQ CQ 即可判断C ,先找到球心,利用勾股定理得出半径,求出外接球的表面积即可判断D .【详解】如图,取11A D ,11A B 的中点为,N M ,连接,,,,MN DN BD BM NE ,11B D ,所以11//MN B D ,又E ,F 分别是棱11B C ,11C D 的中点,所以11//EF B D ,所以//MN EF ,MN ⊄平面CEF ,EF ⊂平面CEF ,//MN ∴平面CEF ,因为,N E 分别是棱11A D ,11B C 的中点,所以//NE CD ,且NE CD =,所以四边形CDNE 为平行四边形,所以//ND CE ,又ND ⊄平面CEF ,CE ⊂平面CEF ,//ND ∴平面CEF ,又MN ND N = ,,MN ND ⊂平面BDNM ,所以平面//BDNM 平面CEF ,点P 是正方形1111D C B A 内的动点,且//DP 平面CEF ,所以点P 的轨迹为线段MN ,由勾股定理得MN ==,故A 正确;如图,以A 为原点,以1,,AB AD AA 所在直线为x 轴,y 轴,z 轴,由题意得(0,0,0)A ,设(,,4)P x y ,AP ==,所以221x y +=,所以点P 的轨迹为1A 为圆心,半径为1的14个圆,所以点P 的轨迹长度为1π2π42⋅=.故B 错误;如图,将平面CEF 翻折到与平面1111D C B A 共面,连接PC ,与EF 交于点Q ,此时PQ CQ +取到最小值,CE CF ===2PE PF ==,所以点Q 为EF 的中点,所以PQ EQ ===所以CQ ===,即PQ CQ +的最小值为C 正确;如图,连接PF ,交11B D 于点1O ,连接PE ,若P 是棱11A B 的中点,则90FEP ∠= ,所以FP 是PEF !外接圆的一条直径,所以1O 是PEF !外接圆的圆心,过点1O 作平面ABCD 的垂线,则三棱锥P CEF -的外接球的球心O 一定在该垂线上,连接OP ,设1OO t =,则2222t R +=,连接OC ,12AC ==,所以()(2224t R -+=,所以()(222224t t +=-+,解得52=t ,所以222541244R =+=,所以三棱锥P CEF -的外接球的表面积为24π41πS R ==,故D 正确.故选:A CD .【点睛】方法点睛:三棱锥外接球的半径的求法:(1)先找两个面的外心;(2)过外心作所在平面的垂线,两垂线的交点即为球心;(3)构造直角三角形,利用勾股定理求出半径.有时无须确定球心的具体位置,即只用找一个面的外心,则球心一定在过该外心与所在平面的垂线上.第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12.曲线32374y x x x =+++的所有切线中,斜率最小的切线的方程是_______.【答案】430x y -+=.【解析】【分析】首先求函数的导数,再根据二次函数求最小值,即可求切线的斜率,以及代入切线方程,即可求解.【详解】由题意223673(1)4y xx x '=++=++,所以1x =-时,min4y '=,又1x =-时,1y =-,所以所求切线的方程为14(1)y x +=+,即430x y -+=.故答案为:430x y -+=.13.为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且50AB BC ==米,则塔的高度OP =________米.【答案】【解析】【分析】设PO h =,在Rt POA △,Rt POB △,Rt POC △分别根据锐角三角函数定义求出,,OA OB OC ,最后利用余弦定理进行求解即可.【详解】设塔的高PO h =,在Rt POA △中,otan 30OP OA ==,同理可得3OB h =,OC h =,在OAC 中,πOBA OBC ∠+∠=,则cos cos OBA OBC ∠=-∠,22222222OB AB OA OB BC OC OB AB OB BC+-+-∴=-⋅⋅,22222211503503333h h h h +-+-=h =所以塔的高度为.故答案为:.14.已知121A A =,当2n ≥,*N n ∈时,1n A +是线段1n n A A -的中点,点P 在所有的线段1n n A A +上,若1A P λ≤,则λ的最小值是________.【答案】23【解析】【分析】根据中点坐标公式可得()*122n n n a a a n +++=∈N ,进而可得{}1n n a a +-为等比数列,即可利用累加法求解121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由极限即可求解.【详解】不妨设点()10,0A 、()21,0A ,设点()(),0n n A a n *∈N ,则数列满足10a =,21a =,()*122n n n a a a n +++=∈N ,所以,1212n nn n a a a a +++--=-,所以,数列{}1n n a a +-是首项为211a a -=,公比为12-的等比数列,所以,11111122n n n n a a --+⎛⎫⎛⎫-=⨯-=- ⎪ ⎪⎝⎭⎝⎭,当2n ≥时,()()()2121321110122n n n n a a a a a a a a --⎛⎫⎛⎫=+-+-++-=++-++- ⎪ ⎪⎝⎭⎝⎭ 1111212113212n n --⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+,10a =也满足121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,故对任意的n *∈N ,121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.所以,11212lim 1323n n A P ∞-→+⎧⎫⎡⎤⎪⎪⎛⎫=--=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭,故23λ≥故答案为:23.四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.已知数列{}n a 的前n 项和为n S ,且22n n S a +=.(1)求2a 及数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使得这()2+n 个数依次组成公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)24a =,2n n a =,*N n ∈(2)332n nn T +=-【解析】【分析】(1)先将1n =代入题干表达式计算出12a =,再将2n =代入题干表达式即可计算出2a 的值,当2n ≥时,由22n n S a +=,可得1122n n S a --+=,两式相减进一步推导即可发现数列{}n a 是以2为首项,2为公比的等比数列,从而计算出数列{}n a 的通项公式;(2)先根据第()1题的结果写出n a 与1n a +的表达式,再根据题意可得()11n n n a a n d +-=+,通过计算出n d 的表达式即可计算出数列1n d ⎧⎫⎨⎬⎩⎭的通项公式,最后运用错位相减法即可计算出前n 项和n T .【小问1详解】由题意,当1n =时,111222S a a +=+=,解得12a =,当2n =时,2222S a +=,即12222a a a ++=,解得24a =,当2n ≥时,由22n n S a +=,可得1122n n S a --+=,两式相减,可得122n n n a a a -=-,整理,得12n n a a -=,∴数列{}n a 是以2为首项,2为公比的等比数列,∴1222n n n a -=⋅=,*N n ∈.【小问2详解】由(1)可得,2n n a =,112n n a ++=,在n a 与1n a +之间插入n 个数,使得这()2+n 个数依次组成公差为n d 的等差数列,则有()11n n n a a n d +-=+,∴1211nn n n a a d n n +-==++,∴112n nn d +=,∴1231211123412222n n n n T d d d +=++⋅⋅⋅+=+++⋅⋅⋅+,()2311111123122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得2112311111121111133221122222222212n n n n n n n n n T ++++-+++=+++⋅⋅⋅+-=+-=-,∴332n n n T +=-.16.设ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,且有π2cos 3b A a c ⎛⎫-=+ ⎪⎝⎭,(1)求角B :(2)若AC边上的高4h =,求cos cos A C .【答案】(1)π3B =(2)18-【解析】【分析】(1)由正弦定理及两角和的正弦公式可得角B 的大小;(2)由等面积法可得22b ac =,再由正弦定理可得sin sin A C 的值,再由cos cos()B A C =-+,可得cos cos A C 的值.【小问1详解】因为π2cos 3b A a c ⎛⎫-=+ ⎪⎝⎭,由正弦定理可得12sin cos sin sin sin 22B A A A C ⎛⎫+=+ ⎪ ⎪⎝⎭,即sin cos sin sin sin()B A A B A A B +=++即sin cos sin sin sin cos cos sin B A A B A A B A B +=++,sin sin sin cos B A A A B =+,在三角形中,sin 0A >,cos 1B B -=,即π1sin 62B ⎛⎫-= ⎪⎝⎭,因为(0,)B π∈,则ππ5π,666B ⎛⎫-∈- ⎪⎝⎭可得ππ66B -=,则π3B =.【小问2详解】因为AC 边上的高4h =,所以2112248ABC S b h b b b =⋅=⋅= ①又11sin 2224ABC S ac B ac ==⨯= ②由①②可得22b ac =,由正弦定理可得2sin 2sin sin B A C =,结合(1)中π3B =可得3sin sin 8A C =,因为()1cos cos cos cos sin sin 2B AC A C A C =-+=-+=,所以1311cos cos sin sin 2828A C A C =-=-=-.17.如图1,在平行四边形ABCD 中,24AB BC ==,60ABC ∠=︒,E 为CD 的中点,将ADE V 沿AE 折起,连结BD ,CD ,且4BD =,如图2.(1)求证:图2中的平面ADE ⊥平面ABCE ;(2)在图2中,若点F 在棱BD 上,直线AF 与平面ABCE所成的角的正弦值为10,求点F 到平面DEC 的距离.【答案】(1)证明见解析(2)15【解析】【分析】(1)连接BE ,利用勾股定理证明,BE DE BE AE ⊥⊥,再根据线面垂直的判定定理证得BE ⊥平面ADE ,再根据面面垂直的判定定理即可得证;(2)以点E 为原点,建立空间直角坐标系,利用向量法求解即可.【小问1详解】连接BE ,由题意2,60,120AD DE ADE BCE ==∠=︒∠=︒,则ADE V 为等边三角形,由余弦定理得2144222122BE ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,所以BE =,则222222,DE BE BD AE BE BD +=+=,所以,BE DE BE AE ⊥⊥,又,,AE DE E AE DE ⋂=⊂平面ADE ,所以BE ⊥平面ADE ,又BE ⊂平面ABCE ,所以平面ADE ⊥平面ABCE ;【小问2详解】如图,以点E 为原点,建立空间直角坐标系,则()()()(()2,0,0,0,,1,,1,0,,0,0,0A B C D E -,设()01DF DB λλ=≤≤,故()((,1,0,,1,EC ED DB =-==--,((()1,1,,AD AD DF λλ=+=-+-=--,因为z 轴垂直平面ABCE ,故可取平面ABCE 的一条法向量为()0,0,1m =,所以cos ,10m AF m AF m AF⋅==,化简得23830λλ+-=,解得13λ=或3λ=-(舍去),所以11,,3333DF DB ⎛⎫==-- ⎪ ⎪⎝⎭,设平面DEC 的法向量为(),,n x y z =,则有0n EC x n ED x ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,可取)1n =- ,所以点F 到平面DEC的距离为21515DF n n ⋅=.18.已知函数()sin ln(1)f x x x ax =++-,且()y f x =与x 轴相切于坐标原点.(1)求实数a 的值及()f x 的最大值;(2)证明:当π,π6x ⎡⎤∈⎢⎥⎣⎦时,1()22f x x +>;(3)判断关于x 的方程()0f x x +=实数根的个数,并证明.【答案】(1)2a =,最大值为0(2)证明见解析(3)2个,证明见解析【解析】【分析】(1)由(0)0f '=求出a 的值,即可得到()f x 解析式,再利用导数求出函数的单调区间,从而求出函数的最大值;(2)依题意即证当π,π6x ⎡⎤∈⎢⎥⎣⎦时1sin ln(1)2x x ++>,记1()sin ln(1)2m x x x =++-,π,π6x ⎡⎤∈⎢⎥⎣⎦,当π5π,66x ⎡⎤∈⎢⎥⎣⎦时直接说明即可,当5π,π6x ⎛⎤∈ ⎥⎝⎦,利用导数说明函数的单调性,即可得证;(3)设()()h x f x x =+,()1,x ∞∈-+,当(1,0)x ∈-时,由(1)知()(0)0f x f <=,则()0f x x +<,当π()0,x ∈时,利用导数说明函数的单调性,结合零点存在性定理判断函数的零点,当[π,)x ∈+∞时,()1ln(1)h x x x ≤++-,令()1ln(1)(π)l x x x x =++-≥,利用导数说明()l x 在区间[π,)+∞上单调递减,即可得到()0l x <,从而说明函数在[π,)+∞无零点,即可得解.【小问1详解】由题意知,(0)0f =且(0)0f '=,1()cos 1f x x a x '=+-+ ,(0)20f a '∴=-=,解得2a =,()sin ln(1)2f x x x x ∴=++-,()1,x ∞∈-+,则1()cos 21f x x x '=+-+,当0x ≥时,cos 1≤x ,111x ≤+.故()0f x '≤,所以()f x 在区间[0,)+∞上单调递减,所以()(0)0f x f £=.当10x -<<时,令1()cos 21g x x x =+-+,则21()sin (1)g x x x '=--+,sin (0,1)x -∈ ,211(1)x >+,()0g x '∴<,()f x '∴在区间(1,0)-上单调递减,则()(0)0f x f ''>=,()f x ∴在区间(1,0)-上单调递增,则()(0)0f x f <=,则()()max 00f x f ==.综上所述,2a =,()f x 的最大值为0.【小问2详解】因为()sin ln(1)2f x x x x =++-,要证当π,π6x ⎡⎤∈⎢⎥⎣⎦时1()22f x x +>,即证1sin ln(1)2x x ++>,记1()sin ln(1)2m x x x =++-,π,π6x ⎡⎤∈⎢⎥⎣⎦,当π5π,66x ⎡⎤∈⎢⎥⎣⎦时,1sin 12x ≤≤,ln(1)0x +>,1()sin ln(1)02m x x x ∴=++->;当5π,π6x ⎛⎤∈ ⎥⎝⎦时,1()cos 1m x x x '=++,记1()()cos 1n x m x x x '==++,则21()sin 0(1)n x x x '=--<+,()m x '∴在区间5π,π6⎛⎤ ⎥⎝⎦上单调递减,则5π6()0625π6m x m ⎛⎫<=-+< '+⎝'⎪⎭,则()m x 在区间5π,π6⎛⎤ ⎥⎝⎦上单调递减,()11()(π)sin πln(π1)ln π1022m x m ∴≥=++-=+->,综上所述,当π,π6x ⎡⎤∈⎢⎥⎣⎦时,1()22f x x +>.【小问3详解】设()()sin ln(1)h x f x x x x x =+=++-,()1,x ∞∈-+,1()cos 11h x x x '∴=+-+,当(1,0)x ∈-时,由(1)知()(0)0f x f <=,故()()0f x x f x +<<,故()0f x x +=在区间(1,0)-上无实数根.当0x =时,(0)0h =,因此0为()0f x x +=的一个实数根.当π()0,x ∈时,1()cos 11h x x x '=+-+单调递减,又(0)10h '=>,1(π)20π1h '=-<+,∴存在0(0,π)x ∈,使得()00h x '=,所以当00x x <<时ℎ′>0,当0πx x <<时ℎ′<0,()h x ∴在区间()00,x 上单调递增,在区间()0,πx 上单调递减,()0(0)0h x h ∴>=,又(π)ln(π1)π2π0h =+-<-<,()0f x x ∴+=在区间()0,πx 上有且只有一个实数根,在区间(]00,x 上无实数根.当[π,)x ∈+∞时,()1ln(1)h x x x ≤++-,令()1ln(1)(π)l x x x x =++-≥,1()1011x l x x x -'∴=-=<++,故()l x 在区间[π,)+∞上单调递减,()(π)ln(1π)π13π0l x l ≤=+-+<-<,于是()0f x x +<恒成立.故()0f x x +=在区间[π,)+∞上无实数根,综上所述,()0f x x +=有2个不相等的实数根.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.19.对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为n a ;若n 为奇数,则对31n +不断地除以2,直到得出一个奇数,记这个奇数为n a .若1n a =,则称正整数n 为“理想数”.(1)求20以内的质数“理想数”;(2)已知9m a m =-.求m 的值;(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列{}n b ,记{}n b 的前n 项和为n S ,证明:()*7N 3n S n <∈.【答案】(1)2和5为两个质数“理想数”(2)m 的值为12或18(3)证明见解析【解析】【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道9m a m =-必为奇数,则m 必为偶数,结合整除知识得解;(3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】20以内的质数为2,3,5,7,11,13,17,19,212=,故21a =,所以2为“理想数”;33110⨯+=,而1052=,故3不是“理想数”;35116⨯+=,而41612=,故5是“理想数”;37122⨯+=,而22112=,故7不是“理想数”;311134⨯+=,而34172=,故11不是“理想数”;313140⨯+=,而4058=,故13不是“理想数”;317152⨯+=,而52134=,故17不是“理想数”;319158⨯+=,而58292=,故19不是“理想数”;2∴和5为两个质数“理想数”;【小问2详解】由题设可知9m a m =-必为奇数,m ∴必为偶数,∴存在正整数p ,使得92p m m =-,即9921p m =+-:921p ∈-Z ,且211p -≥,211p ∴-=,或213p -=,或219p -=,解得1p =,或2p =,1991821m ∴=+=-,或2991221m =+=-,即m 的值为12或18.【小问3详解】显然偶数"理想数"必为形如()*2k k ∈N 的整数,下面探究奇数"理想数",不妨设置如下区间:((((022*******,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦ ,若奇数1m >,不妨设(2222,2k k m -⎤∈⎦,若m 为"理想数",则(*3112s m s +=∈N ,且)2s >,即(*213s m s -=∈N ,且)2s >,①当(*2s t t =∈N ,且)1t >时,41(31)133t t m -+-==∈Z ;②当()*21s t t =+∈N 时,2412(31)133tt m ⨯-⨯+-==Z ;(*413tm t -∴=∈N ,且)1t >,又22241223t k k --<<,即1344134k t k -⨯<-≤⨯,易知t k =为上述不等式的唯一整数解,区间(2222,2k k -]存在唯一的奇数"理想数"(*413k m k -=∈N ,且)1k >,显然1为奇数"理想数",所有的奇数"理想数"为()*413k m k -=∈N ,∴所有的奇数"理想数"的倒数为()*341k k ∈-N ,1133134144441k k k ++<=⨯--- 1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭21111171111124431124⎛⎫<⨯++++<+⨯= ⎪⎝⎭-- ,即()*73n S n <∈N .【点睛】知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。
2024—2025高三省级联测考试数学试卷注意事项:1.答卷前,考生务必将自已的学校、班级、姓名及考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}21,2,3,4,ln 9A B x y x =-=∈=-Z ∣,则A B = ()A.{}1,2,3 B.{}1,2-C.{}2,3 D.{}0,1,2,3,42.已知复数()221233i,24i,z a a z a a a =-+=+-∈R ,若12z z +为纯虚数,则a =()A.1或2B.1C.2D.33.已知向量,a b满足()2,2,0a b == ,且2a b += ,则a 在b 上的投影向量的坐标为()A.()1,0- B.()1,0 C.()2,0- D.()2,04.已知()πcos 2cos 3π2αα⎛⎫+=+ ⎪⎝⎭,则221sin sin22cos ααα+=()A.14-B.34C.2D.65.某中学开展劳动实习,学习制作模具,有一个模具的毛坏直观图如图所示,它是由一个圆柱体与一个半球对接而成的组合体,已知该几何体的下半部分圆柱的轴截面(过圆柱上、下底面圆的圆心连线的平面)ABCD 是面积为16的正方形,则该几何体的体积为()A.16π3B.16πC.64π3D.72π6.设n S 为正项等比数列{}n a 的前n 项和,213332,8S a a a =+=,则数列{}21n a n +-的前5项和为()A.55B.57C.87D.897.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,将函数()f x 的图象先向右平移π4个单位长度,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象,若关于x 的方程()0g x m -=在,126⎡⎤∈-⎢⎣⎦ππx 上有两个不等实根,则实数m 的取值范围为()A.(]2,2-B.(2,-C.2⎤⎦D.(8.已知定义域为R 的函数()f x 不是常函数,且满足()()()()f x y f x y f x f y ++-=,()10f =,则20261()i f i ==∑()A.2- B.2C.2026- D.2026二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量()()1,4,2,1X N Y N ~~,则下列说法正确的是()A.若(0)0.2P X <=,则()20.4P X ≤=B.若()()0.20.1P X a P X ≥=≤=,则10.49a P X ⎛⎫<<= ⎪⎝⎭C.()()12P X P Y >>>D.()()44P X P Y ≤<≤10.已知函数()322f x x x x =-+-,若()()22g x f x x x a =-++,则下列说法正确的是()A.函数()f x 的单调递增区间为()1,3B.函数()f x 的极大值点为1C.若[]1,2x ∈,则()f x 的值域为[]2,0-D.若0x ∀≥,都有()0g x ≤成立,则a 的取值范围为(],1-∞-11.已知曲线:4G x x y y +=,则下列说法正确的是()A.点()1,1在曲线G 上B.直线:l y x =-与曲线G 无交点C.设直线:2l y kx =+,当()1,0k ∈-时,直线l 与曲线G 恰有三个公共点D.直线:2l x y +=与曲线G 所围成的图形的面积为π2-三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()()2ln 31,,f x a x x b a b =+-+∈R ,若曲线()y f x =在0x =处的切线方程为32y x =+,则a b +=__________.13.已知双曲线G22−22=1>0,>0的左、右焦点分别为12,F F ,过坐标原点O 的直线与双曲线C 交于,M N 两点,且点M 在第一象限,满足120MF MF ⋅=.若点P 在双曲线C 上,且112F P NF = ,则双曲线C 的离心率为______.14.某市为了传承中华优秀传统文化,组织该市中学生进行了一次文化知识答题竞赛.已知某同学答对每道题的概率均为23,且每次答题相互独立,若该同学连续作答20道试题后结束比赛,记该同学答对m 道试题的概率为()f m ,则当m =__________时,()f m 取得最大值.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且满足2cos cos cos A A Cac ab bc-=.(1)求角A ;(2)若a ABC = ,求ABC V 的周长.16.已知椭圆()2222Γ:10x y a b a b +=>>的左焦点为1F ,上、下顶点分别为,A B ,且1π2AF B ∠=,点1,2⎛⎫⎪ ⎪⎝⎭在Γ上.(1)求椭圆Γ的方程;(2)过左焦点1F 的直线交椭圆Γ于,M N 两点,交直线2x =-于点P ,设1PM MF λ= ,1PN NF μ=,证明:λμ+为定值.17.如图,在四棱锥P ABCD -中,平面PCD ⊥平面,ABCD PDC 为钝角三角形且DP DC =,2290,DAB ABC ADB DCB E ∠∠∠∠==== 是PA 的中点.(1)证明:BD PD ⊥;(2)若直线PD 与底面ABCD 所成的角为60o ,求平面BDE 与平面CDE 夹角的正弦值.18.已知函数()()21(0)f x x a x a =++<.(1)证明:函数()f x 的极大值大于1;(2)若函数()f x 有3个零点,求实数a 的取值范围;(3)已知(),,0,1,2,3i i i A x y i =是()f x 图象上四个不重合的点,直线03A A 为曲线=在点0A 处的切线,若123,,A A A 三点共线,证明:1202x x x +=.19.已知有限集{}()123,,,,2n A a a a a n =≥ ,若A 中的元素()1,2,,i a i n =L 满足1212n n a a a a a a =+++ ,则称A 为“n 元重生集”.(1)集合1212,22⎧---+⎪⎨⎪⎪⎩⎭是否为“2元重生集”,请说明理由;(2)是否存在集合中元素均为正整数的“3元重生集”?如果有,请求出有几个,如果没有,请说明理由;(3)若*i a ∈N ,证明:“n 元重生集”A 有且只有一个,且3n =.2024—2025高三省级联测考试数学试卷注意事项:1.答卷前,考生务必将自已的学校、班级、姓名及考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}21,2,3,4,ln 9A B x y x =-=∈=-Z ∣,则A B = ()A.{}1,2,3 B.{}1,2-C.{}2,3 D.{}0,1,2,3,4【答案】B 【解析】【分析】结合对数型复合函数的定义域化简集合B ,再由交集的定义求A B ⋂.【详解】集合(){}{}{}{}22ln 990332,1,0,1,2B x y xx xx x =∈=-=∈->=∈-<<=--Z Z Z ,而{}1,2,3,4A =-,所以{}1,2A B ⋂=-.故选:B.2.已知复数()221233i,24i,z a a z a a a =-+=+-∈R ,若12z z +为纯虚数,则a =()A.1或2B.1C.2D.3【答案】C 【解析】【分析】计算出()22123243i z z a a a a +=-++-+,根据纯虚数的概念得到方程和不等式,求出答案.【详解】由()221233i,24i,z a a z a a a =-+=+-∈R 可知,()()22221233i 24i 3243i z z a a a a a a a a +=-+++-=-++-+,因为12z z +为纯虚数,所以22430320a a a a ⎧-+≠⎨-+=⎩,解得2a =.故选:C.3.已知向量,a b满足()2,2,0a b == ,且2a b += ,则a 在b 上的投影向量的坐标为()A.()1,0- B.()1,0 C.()2,0- D.()2,0【答案】A 【解析】【分析】根据已知条件求得2a b ⋅=-,结合投影向量的坐标公式即可求解.【详解】已知2,2a b == ,所以222()24244a b a a b b a b +=+⋅+=+⋅+= ,可得2a b ⋅=- ,所以()()212,01,02||a b b b ⋅=-⨯=-,故选:A.4.已知()πcos 2cos 3π2αα⎛⎫+=+ ⎪⎝⎭,则221sin sin22cos ααα+=()A.14-B.34C.2D.6【答案】D 【解析】【分析】根据已知条件得tan 2α=,然后将目标式子用tan α表示,由此即可得解.【详解】由()πcos 2cos 3π2αα⎛⎫+=+ ⎪⎝⎭,得sin 2cos αα=,则tan 2α=,所以221sin sin22cos ααα+=222sin sin cos tan tan 426cos αααααα+=+=+=,故选:D.5.某中学开展劳动实习,学习制作模具,有一个模具的毛坏直观图如图所示,它是由一个圆柱体与一个半球对接而成的组合体,已知该几何体的下半部分圆柱的轴截面(过圆柱上、下底面圆的圆心连线的平面)ABCD 是面积为16的正方形,则该几何体的体积为()A.16π3B.16πC.64π3D.72π【答案】C 【解析】【分析】得到4AB BC ==,确定球的半径和圆柱的底面圆半径和高,利用球和圆柱体积公式进行求解.【详解】因为四边形ABCD 是面积为16的正方形,则4AB BC ==,由题意可知半球的半径2R =,圆柱的底面圆半径2r =,高4h =,由球的体积公式可得半球的体积311416ππ233V R =⨯=,由圆柱的体积公式可得圆柱的体积22π16πV Sh r h ===,故该几何体的体积1216π64π16π33V V V =+=+=.故选:C.6.设n S 为正项等比数列{}n a 的前n 项和,213332,8S a a a =+=,则数列{}21n a n +-的前5项和为()A.55B.57C.87D.89【答案】C 【解析】【分析】先由已知条件算出公比,然后得n a 表达式,结合分组求和、等差数列以及等比数列求和公式即可求解.【详解】因为是正项等比数列,所以10a >,公比0q >.因为21332S a a =+,所以()121332a a a a +=+,则3212023a a a --=,即21112320a q a q a --=,则22320q q --=,解得2q =或12q =-(舍),又因为231148a a q a ===,所以12a =,所以数列的通项公式为2n n a =,所以21221nn a n n +-=+-,设数列{}21n a n +-的前n 项和为n T ,则()()()()123212325221nn T n =++++++++- ()()123222213521n n =+++++++++- ()()1221212122122n n n n n +-+-=+=+--,所以62525287T =+-=,故选:C.7.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象先向右平移π4个单位长度,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象,若关于x 的方程()0g x m -=在,126⎡⎤∈-⎢⎣⎦ππx上有两个不等实根,则实数m 的取值范围为()A.(]2,2-B.(2,-C.2⎤⎦D.(【答案】B 【解析】【分析】首先根据三角函数的图象与性质计算即可得()f x 表达式,先根据三角函数的图像变换得()π2sin 43g x x ⎛⎫=- ⎪⎝⎭,结合正弦函数的单调性、对称性可判定m 的取值范围.【详解】由函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象可知,2A =,因为11ππ31264T -=,所以2ππ,2T Tω===,又π26f ⎛⎫= ⎪⎝⎭,所以ππ22π,62k k ϕ⨯+=+∈Z ,解得π2π,6k k ϕ=+∈Z ,由π2ϕ<可得π6ϕ=,所以()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,将()f x 的图象向右平移π4个单位长度,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到()π2sin 43g x x ⎛⎫=- ⎪⎝⎭的图象,令3π4t x =-,由ππ,126x ⎡⎤∈-⎢⎥⎣⎦,可得2ππ,33t ⎡⎤∈-⎢⎥⎣⎦,函数2sin y t =在2ππ,32⎡⎤--⎢⎣⎦上单调递减,在ππ,23⎡⎤-⎢⎥⎣⎦上单调递增,且ππ2π2sin 2,2sin 2sin 233⎛⎫⎛⎫-=-=-= ⎪ ⎪⎝⎭⎝⎭因为关于x 的方程()0g x m -=在ππ,126x ⎡⎤∈-⎢⎥⎣⎦上有两个不等实根,即y m =与()y g x =的图像在ππ,126x ⎡⎤∈-⎢⎥⎣⎦上有两个交点,即y m =与2sin y t =在2ππ,33t ⎡⎤∈-⎢⎥⎣⎦上有两个交点,所以实数m 的取值范围为(2,-,故选:B.8.已知定义域为R 的函数()f x 不是常函数,且满足()()()()f x y f x y f x f y ++-=,()10f =,则20261()i f i ==∑()A.2-B.2C.2026- D.2026【答案】A 【解析】【分析】依次算得()02f =,()f x 的周期为4,进一步结合已知得()()()()()()310,202,402f f f f f f =-==-=-==,由此得1+2+3+4=0,然后利用周期性即可求解.【详解】由题意,令0y =,得()()()20f x f x f =,又=不是常函数,所以()02f =,再令1y =,得()()()()111f x f x f x f ++-=,即()()110f x f x ++-=,则+2=−,即()()2f x f x -=-,故()()4f x f x =+,所以函数=的周期为4,由+2=−,令1x =,得()()()()()()310,202,402f f f f f f =-==-=-==,所以1+2+3+4=0,所以20261()506[(1)(2)(3)(4)](2025)(2026)(2025)(2026)i f i f f f f f f f f ==+++++=+=∑()()122f f +=-.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量()()1,4,2,1X N Y N ~~,则下列说法正确的是()A.若(0)0.2P X <=,则()20.4P X ≤=B.若()()0.20.1P X a P X ≥=≤=,则10.49a P X ⎛⎫<<= ⎪⎝⎭C.()()12P X P Y >>>D.()()44P X P Y ≤<≤【答案】BD 【解析】【分析】根据正态分布函数的性质逐一判断各个选项即可求解.【详解】对于选项A ,因为()(0)20.2P X P X <=>=,所以()()21210.2P X P X ≤=->=-=0.8,故A 错误;对于选项B ,因为()1,4X N ~,且()()0.20.1P X a P X ≥=≤=,则0.212a +=,即a =1.8,则()1(0.21)(1)0.20.50.10.49a P X P X P X P X ⎛⎫<<=<<=<-≤=-=⎪⎝⎭,故B 正确;对于选项C ,()()120.5P X P Y >=>=,故C 错误;对于选项D ,因为随机变量()()1,4,2,1X N Y N ~~,所以11221,2,2,1μσμσ====,因为()()()()()1122452,42P X P X P X P Y P Y μσμσ≤<≤=≤+≤=≤+,又()()112222P X P Y μσμσ≤+=≤+,所以()()44P X P Y ≤<≤,故D 正确,故选:BD.10.已知函数()322f x x x x =-+-,若()()22g x f x x x a =-++,则下列说法正确的是()A.函数()f x 的单调递增区间为()1,3B.函数()f x 的极大值点为1C.若[]1,2x ∈,则()f x 的值域为[]2,0-D.若0x ∀≥,都有()0g x ≤成立,则a 的取值范围为(],1-∞-【答案】BCD 【解析】【分析】A 选项,求导,解不等式求出函数单调性;B 选项,在A 选项基础上得到函数的极大值点;C 选项,()f x 在[]1,2上单调递减,从而求出值域;D 选项,参变分离,得到32a x x x ≤--,构造函数()32h x x x x =--,求导得到其单调性,求出()h x 的最小值为()11h =-,故1a ≤-.【详解】对于选项A ,因为()322f x x x x =-+-,所以()()()2341311f x x x x x =-+-=---',所以当()1,1,3x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '<;当1,13x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,所以()f x 的单调递增区间为1,13⎛⎫ ⎪⎝⎭,故A 错误;对于选项B ,如下表:x1,3⎛⎫-∞ ⎪⎝⎭131,13⎛⎫ ⎪⎝⎭1()1,+∞()f x '-+-()f x 单调递减极小值单调递增极大值单调递减所以1为函数()f x 的极大值点.故B 正确;对于选项C ,()f x 在[]1,2上单调递减,所以()f x 的最小值为()22f =-,最大值为()10f =,所以当[]1,2x ∈时,()f x 的值域为[]2,0-,故C 正确;对于选项D ,()()2322g x f x x x a x x x a =-++=-+++.因为()0g x ≤.即32a x x x ≤--,令()32h x x x x =--,则()()()2321311h x x x x x =--=+-',因为[)0,x ∈+∞,所以当()1,x ∈+∞时,()()0,h x h x '>单调递增,当[)0,1x ∈时,()()0,h x h x '<单调递减,所以当1x =时取到极小值,所以()h x 的最小值为()11h =-,所以1a ≤-,故D 正确.故选:BCD.11.已知曲线:4G x x y y +=,则下列说法正确的是()A.点()1,1在曲线G 上B.直线:l y x =-与曲线G 无交点C .设直线:2l y kx =+,当()1,0k ∈-时,直线l 与曲线G 恰有三个公共点D.直线:2l x y +=与曲线G 所围成的图形的面积为π2-【答案】BCD 【解析】【分析】直接将点()1,1代入曲线方程即可判断A ;分,x y 的正负四种情况去掉绝对值符号得到曲线方程后,当斜率为1-时结合渐近线可得B 正确;由四分之一圆面积减去三角形面积可得D 正确;由图形可得C 正确.【详解】222222224,0,04,0,044,0,04,0,0x y x y x y x y x x y y y x x y x y x y ⎧+=≥≥⎪-=><⎪+=⇒⎨-=⎪⎪--=<<⎩,因为当0,0x y <<时,224x y --=无意义,无此曲线,故舍去,所以曲线G 表示为2222224,0,04,0,04,0,0x y x y x y x y y x x y ⎧+=≥≥⎪-=><⎨⎪-=⎩,作出曲线图象如图所示,对于选项A ,将点(1,1)代入4x x y y +=,得到24=,显然不成立,故A 错误;对于选项B ,将y x =-代入曲线G 得,04x x x x -=≠,无解,故B 正确;对于选项C ,由于直线2y kx =+恒过点0,2,当0k =时,直线与x 轴平行,与曲线G 有一个交点;当1k =-时,直线与曲线G 的渐近线平行,此时与曲线G 有两个交点.当10k -<<时.结合斜率的范围可得直线与曲线G 有三个交点(如图),故C 正确;对于选项D ,设直线l 与,x y 轴的交点分别为,A B .因为圆的半径为2.且点()()2,0,0,2A B ,所以直线与曲线G 围成的图形的面积为211π222π242⨯⨯-⨯⨯=-,故D 正确.故选:BCD.【点睛】关键点点睛:本题关键是能根据,x y 的正负去掉绝对值符号得到曲线方程,作出图象,数形结合分析.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()()2ln 31,,f x a x x b a b =+-+∈R ,若曲线()y f x =在0x =处的切线方程为32y x =+,则a b +=__________.【答案】3【解析】【分析】由切线方程可知切点坐标和切线斜率,利用导数几何意义,建立方程,可求,a b 的值,进而得到所求和.【详解】由函数()()2ln 31f x a x x b =+-+,有()0f b =,由()3231af x x x =-+',可得()03f a '=,因为曲线=在0x =处的切线方程为32y x =+,所以33,302,a b =⎧⎨=⨯+⎩解得1,2a b ==,则3a b +=.故答案为:3.13.已知双曲线G22−22=1>0,>0的左、右焦点分别为12,F F ,过坐标原点O 的直线与双曲线C 交于,M N 两点,且点M 在第一象限,满足120MF MF ⋅=.若点P 在双曲线C 上,且112F P NF = ,则双曲线C 的离心率为______.【答案】173【解析】【分析】作出辅助线,根据数量积为0得到垂直关系,设1NF m =,则12PF m =,由双曲线定义可得2222,2PF a m NF a m =+=+,由勾股定理得到方程,求出23m a =,进而求出3c a ==.【详解】如图,连接1222,,,MF MF NF PF ,因为120MF MF ⋅= ,所以12π2F MF ∠=,由对称性可得12π2F NF ∠=,由112F P NF =,可设1NF m =,则12PF m =,由双曲线的定义可知,212PF PF a -=,212NF NF a -=,则2222,2PF a m NF a m =+=+,由12π2F NF ∠=得,22222||PF PN NF =+,即222(22)9(2)a m m a m +=++,解得23m a =,又由12π2F NF ∠=得,2221212F F F N NF =+,即222221228684339a a F F a c ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,解得3c a ==,所以双曲线C 的离心率173e =.故答案为:17314.某市为了传承中华优秀传统文化,组织该市中学生进行了一次文化知识答题竞赛.已知某同学答对每道题的概率均为23,且每次答题相互独立,若该同学连续作答20道试题后结束比赛,记该同学答对m 道试题的概率为()f m ,则当m =__________时,()f m 取得最大值.【答案】13或14【解析】【分析】先得到()202022C 133m mm f m -⎛⎫⎛⎫=⨯⨯- ⎪ ⎪⎝⎭⎝⎭,利用()()()()11f m f m f m f m ⎧≥-⎪⎨≥+⎪⎩解不等式即可.【详解】由题意得()202022C 133mmm f m -⎛⎫⎛⎫=⨯⨯- ⎪ ⎪⎝⎭⎝⎭,020≤≤m 且m ∈N ,则()()()()11f m f m fm f m ⎧≥-⎪⎨≥+⎪⎩,即201211202020119120202222C 1C 1,33332222C 1C 1,3333m m m mm m m m m mm m -----+-+⎧⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-≥⨯⨯-⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪⨯⨯-≥⨯⨯- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩故()()()()()()20!220!1,!20!31!21!320!120!2,!20!31!19!3m m m m m m m m ⎧⨯≥⨯⎪---⎪⎨⎪⨯≥⨯⎪-+-⎩又m ∈N ,所以13m =或14m =,故当13m =或14m =时,()f m 取得最大值.故答案为:13或14.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且满足2cos cos cos A A Cac ab bc-=.(1)求角A ;(2)若a ABC =,求ABC V 的周长.【答案】(1)π3(2)【解析】【分析】(1)根据正弦定理、三角恒等变换得2cos 1A =,进一步即可求解;(2)根据三角形面积公式得4bc =,进一步结合余弦定理可得b c +=.【小问1详解】由题意,因为2cos cos cos A A Cac ab bc-=,所以2cos cos cos b A c A a C -=,由正弦定理可得2sin cos sin cos sin cos B A C A A C -=,即()2sin cos sin cos sin cos sin sin B A A C C A A C B =+=+=,因为sin 0B ≠,所以2cos 1A =,所以1cos 2A =,又0πA <<,所以π3A =.【小问2详解】由(1)可知,π3A =,则31sin ,cos 22A A ==,因为ABC V 的面积113sin 222ABC S bc A bc ==⨯= 4bc =,由余弦定理可得22222cos ()3a b c bc A b c bc =+-=+-,即212()34b c =+-⨯,可得b c +=,所以ABC V 的周长为a b c ++=.16.已知椭圆()2222Γ:10x y a b a b +=>>的左焦点为1F ,上、下顶点分别为,A B ,且1π2AF B ∠=,点21,2⎛⎫⎪ ⎪⎝⎭在Γ上.(1)求椭圆Γ的方程;(2)过左焦点1F 的直线交椭圆Γ于,M N 两点,交直线2x =-于点P ,设1PM MF λ= ,1PN NF μ=,证明:λμ+为定值.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由1π2AF B ∠=,得a =,再把点21,2⎛⎫ ⎪ ⎪⎝⎭代入椭圆方程求出,a b 即可;(2)设出直线MN 的方程,代入椭圆方程,设()()1122,,,M x y N x y ,由1PM MF λ= ,1PN NF μ=,表示出λμ+,利用韦达定理化简得定值.【小问1详解】由题意可知,1π2AF B ∠=,所以a =,因为点1,2⎛⎫ ⎪ ⎪⎝⎭在Γ上,所以2211122b b +=,解得1b =,故a =,所以椭圆Γ的方程为2212x y +=.【小问2详解】由已知得直线MN 的斜率必存在,可设直线MN 的方程为()1y k x =+,代入椭圆方程,整理得()2222124220kxk x k +++-=,2880k ∆=+>,设()()1122,,,M x y N x y ,则()22121222214,1212k k x x x x k k-+=-=++,又()()12,,1,0P k F ---,由11,PM MF PN NF λμ== 得121222,11x x x x λμ++=-=-++.所以()()()121212*********1111x x x x x x x x x x λμ++++++=--=-++++,因为()()2212122221423423401212k k x x x x k k -⎛⎫+++=⋅+⋅-+= ⎪++⎝⎭,所以0λμ+=为定值.17.如图,在四棱锥P ABCD -中,平面PCD ⊥平面,ABCD PDC 为钝角三角形且DP DC =,2290,DAB ABC ADB DCB E ∠∠∠∠==== 是PA 的中点.(1)证明:BD PD ⊥;(2)若直线PD 与底面ABCD 所成的角为60o ,求平面BDE 与平面CDE 夹角的正弦值.【答案】(1)证明见解析(2)427【解析】【分析】(1)根据面面垂直的性质得到BD ⊥平面PCD ,再根据线面垂直的性质即可得证.(2)根据已知条件建立适当的空间直角坐标系,表示出,,,B C D E 的坐标,求出两个平面的法向量,再结合向量夹角的坐标公式以及同角三角函数关系即可求解.【小问1详解】由2290DAB ABC ADB DCB ∠∠∠∠==== ,得,AD AB AD =//BC ,则45DBC DCB ∠∠== ,所以,90BD CD BDC ∠== ,即BD CD ⊥,因为平面PCD ⊥平面ABCD ,平面PCD 平面,ABCD CD BD =⊂平面ABCD ,所以BD ⊥平面PCD ,又PD ⊂平面PCD ,所以BD PD ⊥.【小问2详解】如图,过点P 作CD 的垂线,交CD 的延长线于点H ,连接AH ,因为平面PCD ⊥平面ABCD ,平面PCD 平面,ABCD CD PH =⊂平面,PCD PH CD ⊥,所以PH ⊥平面ABCD ,则DH 为PD 在底面ABCD 内的射影,所以PDH ∠为直线PD 与底面ABCD 所成的角,即60PDH ∠= .设1AD =,得2BD DC DP BC ====,在PHD △中,,22DH PH ==,在ADH 中,45ADH ∠= ,由余弦定理得22AH =,所以222AH DH AD +=,所以AH CD ⊥,如图,过点D 作DF //PH ,则DF ⊥底面ABCD ,以,,DB DC DF 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,则)()2622226,,0,,,,,0,,,2222424B C P A E ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以)()226,,,,424DB DE DC ⎛⎫==-= ⎪ ⎪⎝⎭ ,设平面BDE 和平面CDE 的法向量分别为()()111222,,,,,n x y z m x y z ==,则111100424n DB n DE x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,222200424m DC m DE x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令121,1z z ==,则11220,0x y x y ====,所以()0,,2n m ⎛⎫== ⎪ ⎪⎝⎭ ,则7cos ,7n m n m n m ⋅=== ,设平面BDE 与平面CDE 的夹角为θ,则cos ,sin 77θθ===,故平面BDE 与平面CDE夹角的正弦值为7.18.已知函数()()21(0)f x x a x a =++<.(1)证明:函数()f x 的极大值大于1;(2)若函数()f x 有3个零点,求实数a 的取值范围;(3)已知(),,0,1,2,3i i i A x y i =是()f x 图象上四个不重合的点,直线03A A 为曲线=在点0A 处的切线,若123,,A A A 三点共线,证明:1202x x x +=.【答案】(1)证明见解析(2)32,2⎛⎫-∞- ⎪ ⎪⎝⎭(3)证明见解析【解析】【分析】(1)求导,得到函数单调性,确定当x =时,()f x 取得极大值,由单调性得到()01f f ⎛>= ⎝;(2)在(1)的基础上,得到函数()f x 有3个零点,应满足0f <,即103a a ⎛-+< ⎝,解得322a <-;(3)表达出直线03A A 的斜率03223300i A A k x x x x a =+++,同理可得1321222211331122,A A A A k x x x x a k x x x x a =+++=+++,根据三点共线得到方程,得到123x x x +=-,又()030A A k f x =',所以()()303020x x x x +-=,求出302x x -=,故1202x x x +=.【小问1详解】证明:由题,()23f x x a ='+,令()0f x '=,解得x =,当x <或x >()()0,f x f x '>单调递增,当x <<()()0,f x f x '<单调递减,所以当x =()f x 取得极大值,由单调性可知()01f f ⎛>= ⎝,所以函数()f x 的极大值大于1.【小问2详解】由(1)可知,当x =时,()f x有极大值,且极大值为10f ⎛>> ⎝,因为()(),;,x f x x f x ∞∞∞∞→-→-→+→+,且当x =()f x 有极小值,所以要使得函数()f x 有3个零点,应满足0f <,即103a a ⎛-+< ⎝,解得322a <-,所以实数a 的取值范围为32,2∞⎛⎫-- ⎪ ⎪⎝⎭.【小问3详解】直线03A A 的斜率()()()0333223300303300303011A A x ax x ax x x x x x x a k x x x x ++-++-+++==--,因为30x x ≠,所以03223300i A A k x x x x a =+++,同理可得1321222211331122,A A A A k x x x x a k x x x x a =+++=+++,因为123,,A A A 三点共线,则有222211331122x x x x a x x x x a +++=+++,整理得()()()3232123x x x x x x x -+=-,因为32x x ≠,所以321x x x +=-,即123x x x +=-,又()030A A k f x =',所以222330003x x x x a x a +++=+,整理得()()303020x x x x +-=,因为30x x ≠,所以3020x x +=,即302x x -=,所以1202x x x +=.【点睛】方法点睛:导函数处理零点个数问题,由于涉及多类问题特征(包括单调性,特殊位置的函数值符号,隐零点的探索、参数的分类讨论等),需要学生对多种基本方法,基本思想,注意思路是通过极值的正负和函数的单调性判断函数的走势,从而判断零点个数19.已知有限集{}()123,,,,2n A a a a a n =≥ ,若A 中的元素()1,2,,i a i n =L 满足1212n n a a a a a a =+++ ,则称A 为“n 元重生集”.(1)集合1212,22⎧---+⎪⎨⎪⎪⎩⎭是否为“2元重生集”,请说明理由;(2)是否存在集合中元素均为正整数的“3元重生集”?如果有,请求出有几个,如果没有,请说明理由;(3)若*i a ∈N ,证明:“n 元重生集”A 有且只有一个,且3n =.【答案】(1)不是,理由见解析(2)存在,1个(3)证明见解析【解析】【分析】(1)121212122222--+--+⨯≠+,故1212,22⎧---+⎪⎨⎬⎪⎪⎩⎭不为“2元重生集”;(2)设正整数集{}123,,A a a a =为“3元重生集”,设123a a a <<,利用不等式关系推出123a a <,故121,2a a ==,求出{}1,2,3A =;(3)设123n a a a a <<<< ,得到121n a a a n -< ,当2n =时,推出矛盾,当3n =时,由(2)可知,有且只有1个“3元重生集”,即{}1,2,3,当4n ≥时,推出()1!n n >-,但()1!n n ->在4n ≥上恒成立,故当4n ≥时,不存在“n 元重生集”,从而证明出结论.【小问1详解】1112111,1224422-----+⨯==-+=-,因为121212122222--+--+⨯≠+,所以集合1212,22⎧---+⎪⎨⎪⎪⎩⎭不是“2元重生集”.【小问2详解】设正整数集{}123,,A a a a =为“3元重生集”,则123123a a a a a a =++,不妨设123a a a <<,则12312333a a a a a a a =++<,解得123a a <,因为*12,a a ∈N ,故只有121,2a a ==满足要求,综上,{}1,2,3A =满足要求,其他均不符合要求,故存在1个集合中元素均为正整数的“3元重生集”,即{}1,2,3A =.【小问3详解】不妨设123n a a a a <<<< ,由1212n n n a a a a a a na =+++< ,得121n a a a n -< ,当2n =时,12a <,故11a =,则221a a +=,无解,若*12,a a ∈N ,则{}12,a a 不可能是“2元重生集”,所以当2n =时,不存在“2元重生集”;当3n =时,由(2)可知,有且只有1个“3元重生集”,即{}1,2,3,当4n ≥时,()1211231n a a a n -≥⨯⨯⨯⨯- ,又121n a a a n -< ,故()1!n n >-,事实上,()()()221!1232(2)2n n n n n n n n -≥--=-+=--+>在4n ≥上恒成立,故当4n ≥时,不存在“n 元重生集”,所以若*,i a ∈N “n 元重生集”A 有且只有一个,且3n =.【点睛】思路点睛:新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.。