北京市西城区2014年高三5月二模数学文试卷(word版)
- 格式:doc
- 大小:514.50 KB
- 文档页数:12
北京市西城区2014届高三数学二模文科数学试卷(带解析)1.设集合{|20}A x x =-<,集合{|1}B x x =>,则( ) (A )A B ⊆ (B )B A ⊆ (C )A B =∅ (D )A B ≠∅【答案】D 【解析】试题分析:{|20}{|2}A x x x x =-<=<,{|1}B x x =>,{|12}A B x x =<<≠∅,故选D .考点:集合与集合之间关系.2.在复平面内,复数=(12i)(1i)z +-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A 【解析】试题分析:=(12i)(1i)=3+i z +-,在复平面内对应的点位于第一象限. 考点:复数的运算,复数的几何意义.3.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A (B )2 (C (D )2【答案】C 【解析】试题分析:由题意可得2b a =,即22222241b c a e a a-===-,所以25e =,即e = 考点:双曲性的几何意义.4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( )(A )2A ∈,且4A ∈ (BA ,且4A ∈ (C )2A ∈,且A (DAA【答案】D 【解析】试题分析:由三视图可知,该四棱锥是底面对角线长为2,高为4的正四棱锥,因此它的底考点:三视图.5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件 【答案】B 【解析】试题分析:由b c =得,0b c -=,得()0a b c ⋅-=;反之不成立,故()0a b c ⋅-=是b c =的必要而不充分条件. 考点:充要条件的判断.6.在△ABC 中,若4a =,3b =,1cos 3A =,则B =( ) (A )π4 (B )π3 (C )π6 (D )2π3正(主)视图俯视图侧(左)视图【答案】A 【解析】试题分析:由1cos 3A =得,sin A =,由43>,得B 是锐角,有正弦定理得,sin sin a bA B=,即3sin 3sin 4b A B a ===,所以4B π=. 考点:正弦定理.7.设函数2244, ,()log , 4.x x x f x x x ⎧-+=⎨>⎩≤ 若函数()y f x =在区间(,1)a a +上单调递增,则实数a 的取值范围是( )(A )(,1]-∞ (B )[1,4](C )[4,)+∞ (D )(,1][4,)-∞+∞ 【答案】D 【解析】试题分析:由函数()y f x =的图像可知,在(),2-∞和()4,+∞上是递增的,在()2,4上是递减的,故函数()y f x =在区间(,1)a a +上单调递增,则12a +≤或4a >,即1a ≤或4a >,故选D.考点:函数的单调性.8.设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.如果Ω是边长为1的正方形,那么()()x y Ω+Ω的取值范围是( )(A) (B) (C)[1 (D)[1 【答案】B 【解析】试题分析:如下图两种画法分别是()x Ω,()y Ω取得最大值最小值的位置,由图可知,()x Ω取得最大值最小值分别为 ()y Ω取得最大值最小值分别为故()()x y Ω+Ω的取值范围是.10.设抛物线2 4Cy x =:的焦点为F ,M 为抛物线C 上一点,且点M 的横坐标为2,则||MF = .【答案】3 【解析】试题分析:由抛物线的定义可知,0||1232pMF x =+=+=. 考点:抛物线的定义.11.执行如图所示的程序框图,输出的a 值为______.【答案】2- 【解析】试题分析:第一次运行后,得2,2a i =-=,此时25<;第二次运行后,得1,33a i =-=,此时35<; 第三次运行后,得1,42a i ==,此时45<; 第四次运行后,得3,5a i ==,此时55=;第五次运行后,得2,6a i =-=,此时65>;此时停止循环,输出的a 的值为2-. 考点:算法框图.12.在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤所表示的平面区域是α,不等式组440,0x y ⎧⎨⎩≤≤≤≤所表示的平面区域是β. 从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是_____. 【答案】12【解析】试题分析:在同一坐标作出不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤所表示的平面区域,与不等式组40,x ⎧≤≤18832⨯⨯=,β与α重叠的面积β内的点的概率为161322=. BD 所在的直线进行翻折,则试题分析:将ABD ∆沿正方形的对角线BD 所在的直线进行翻折,在翻折过程,底面积不变,高在变化,当平面ABD 与平面ACD A BCD -的体积的最大值是112232V =⨯⨯⨯=考点:翻折问题,几何体体积.14.已知f 是有序数对集合**{(,)|,}M x y x y =∈∈N N 上的一个映射,正整数数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =. 对于任意的正整数,()m n m n >,映射f 由下表给出:则(3,5)f =__________,使不等式(2,)4x f x ≤成立的x 的集合是_____________. 【答案】8 ,{1,2} 【解析】试题分析:根据映射对应法则可知(3,5)538f =+=;(2,)4x f x ≤,当1x =时,(2,1)2114f =-=≤,当2x =时,(4,2)42f =-=≤,当3x =时,(8,3)83f ≥=-=,因此当1,2x =时,(2,)4x f x ≤成立. 考点:映射.15.已知函数()cos (sin cos )1f x x x x =-+. (1)求函数()f x 的最小正周期; (2)当π[,0]2x ∈-时,求函数()f x 的最大值和最小值. 【答案】(1)函数()f x 的最小正周期为πT =;(2)π8x =-时,函数()f x 取到最小值π1()82f -=,π2x =-时,函数()f x 取到最大值π()12f -=. 【解析】试题分析:(1)求函数()f x 的最小正周期,求三角函数周期,首先将函数化成一个角的一个三角函数,即化成()sin y A x ωϕ=+形式,因此对函数()f x 先化简,由()cos (sin cos )1f x x x x =-+,整理得,2()sin cos cos 1f x x x x =-+,由此可用二倍角公式整理得111()sin 2cos 2222f x x x =-+,再由两角和的正弦得π1())242f x x =-+,进而可有2T πω=求得周期;(2)当π[,0]2x ∈-时,求函数()f x 的最大值和最小值,由π[,0]2x ∈-得,5πππ2444x --≤≤-,进而转化为正弦函数的最值,从而求出函数()f x 的最大值和最小值. (1) 2()sin cos cos 1f x x x x =-+11cos 2sin 2122xx +=-+ 4分111sin 2cos 2222x x =-+ π1sin(2)242x =-+, 6分 所以函数()f x 的最小正周期为2ππ2T ==. 7分 (2)由 π02x -≤≤,得5πππ2444x --≤≤-.所以 π1sin(2)4x --≤ 9分所以1π1)2242x -+≤≤1,即 1()12f x ≤≤. 11分当ππ242x -=-,即π8x =-时,函数()f x 取到最小值π1()82f -=; 12分 当π5π244x -=-,即π2x =-时,函数()f x 取到最大值π()12f -=. 13分 考点:三角函数化简,求周期,最值.16.为了解某校学生的视力情况,现采用随机抽样的方式从该校的A ,B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.B 班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.(1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好? (2)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明) (3)根据数据推断A 班全班40名学生中有几名学生的视力大于4.6?【答案】(1)A =4.6x ,B =4.5x ,从数据结果来看A 班学生的视力较好;(2)B 班5名学生视力的方差较大;(3)可推断A 班有16名学生视力大于4.6.【解析】 试题分析:(1)计算出平均数,看平均数的大小,平均数大的班学生的视力较好;(2)对数据分析,一看极差,二看数据集中程度,越集中方差越小,越离散方差越大,从数据上看,B 班5名学生视力极差较大,数据相对较散,从而的结论;(3)对数据观察,找出视力大于4.6的人数,根据视力大于4.6的人数与抽出人数的比值,从而可估算出A 班全班40名学生中的视力大于4.6的人数.(1)A 班5名学生的视力平均数为A 4.3+5.1+4.6+4.1 4.9==4.65x +, 2分B 班5名学生的视力平均数为B 5.1+4.9+4.0+4.0 4.5==4.55x +. 3分 从数据结果来看A 班学生的视力较好. 4分(2)B 班5名学生视力的方差较大. 8分 (3)在A 班抽取的5名学生中,视力大于4.6的有2名,所以这5名学生视力大于4.6的频率为25. 11分 所以全班40名学生中视力大于4.6的大约有240165⨯=名,则根据数据可推断A 班有16名学生视力大于4.6. 13分 考点:统计数据分析,平均数,样本估计总体. 17.如图,在正方体1111D C B A ABCD -中,12AA =,E 为1AA 的中点,O 为1BD 的中点.(1)求证:平面11A BD ⊥平面11ABB A ;(2)求证://EO 平面ABCD ;(3)设P 为正方体1111D C B A ABCD -棱上一点,给出满足条件OP 的点P 的个数,并说明理由.【答案】(1)详见解析;(2)详见解析;(3)在正方体1111D C B A ABCD -棱上使得OP =的点P 有12个. 【解析】试题分析:(1)求证:平面11A BD ⊥平面11ABB A ,证明两平面垂直,只需证明一个平面过另一个平面的垂线,注意到本题是一个正方体,因此可证11A D ⊥平面11ABB A 即可;(2)求证://EO 平面ABCD ,证明线面平行,即证线线平行,即在平面ABCD 内找一条直线与EO 平行,注意到E 为1AA 的中点,O 为1BD 的中点,可连接BD ,AC ,设BDAC G =,连接OG ,证明//EO AG 即可,即证四边形AGOE 是平行四边形即可;(3)设P 为正方体1111D C B A ABCD -棱上一点,给出满足条件OP 的点P 的个数,由(2)可知,//EO AG ,且12EO AG AC ===,故点E 符合,有正方体的特征,可知,1AA OE ⊥,故EO 是点O 到1AA 的最短距离,故这样的点就一个,同理在其他棱上各有一个,故可求出满足条件OP =的点P 的个数. (1)在正方体1111D C B A ABCD -中, 因为 11A D ⊥平面11ABB A ,11A D ⊂平面11A BD ,所以平面11A BD ⊥平面11ABB A . 4分(2)证明:连接BD ,AC ,设BD AC G =,连接OG .因为1111D C B A ABCD -为正方体,所以 1//DD AE ,且121DD AE =,且G 是BD 的中点,又因为O 是1BD 的中点,所以 1//DD OG ,且121DD OG =,所以 AE OG //,且AE OG =, 即四边形AGOE 是平行四边形,所以//EO AG , 6分 又因为 EO ⊄平面ABCD ,⊂AG 平面ABCD ,所以 //EO 平面ABCD . 9分(3)满足条件OP =的点P 有12个. 12分 理由如下:因为 1111D C B A ABCD -为正方体,12AA =,所以AC = 所以12EO AG AC ===分 在正方体1111D C B A ABCD -中,因为 1AA ⊥平面ABCD ,AG ⊂平面ABCD ,所以 1AA AG ⊥,又因为 //EO AG ,所以 1AA OE ⊥, 则点O 到棱1AA所以在棱1AA 上有且只有一个点(即中点E )到点O同理,正方体1111D C B A ABCD -每条棱的中点到点O所以在正方体1111D C B A ABCD -棱上使得OP =的点P 有12个. 14分考点:面面垂直的判断,线面平行的判断,点到直线距离.18.已知函数2e ()1xf x ax x =++,其中a ∈R .(1)若0a =,求函数()f x 的定义域和极值;(2)当1a =时,试确定函数()()1g x f x =-的零点个数,并证明.【答案】(1)定义域为{|x x ∈R ,且1}x ≠-,当0x =时,函数()f x 有极小值(0)1f =;(2)函数()g x 存在两个零点.【解析】试题分析:若0a =,求函数()f x 的定义域和极值,把0a =代入得函数e ()1xf x x =+,故可求得函数()f x 的定义域,求它的极值,对函数求导,求出导数等于零点,及两边导数的符号,从而确定极值点;(2)当1a =时,试确定函数()()1g x f x =-的零点个数,即求函数2e ()11xg x x x =-++的零点个数,首先确定定义域,在定义域内,考虑函数的单调性,由单调性与根的存在性定理,来判断零点的个数.(1)函数e ()1xf x x =+的定义域为{|x x ∈R ,且1}x ≠-. 1分22e (1)e e ()(1)(1)x x xx x f x x x +-'==++. 3分 令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下:4分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞. 所以当0x =时,函数()f x 有极小值(0)1f =. 5分 (2)结论:函数()g x 存在两个零点. 证明过程如下:由题意,函数2e ()11xg x x x =-++, 因为 22131()024x x x ++=++>, 所以函数()g x 的定义域为R . 6分求导,得22222e (1)e (21)e (1)()(1)(1)x x x x x x x x g x x x x x ++-+-'==++++, 7分 令()0g x '=,得10x =,21x =,当x 变化时,()g x 和()g x '的变化情况如下:故函数()g x 的单调减区间为(0,1);单调增区间为(,0)-∞,(1,)+∞.当0x =时,函数()g x 有极大值(0)0g =;当1x =时,函数()g x 有极小值e(1)13g =-. 9分因为函数()g x 在(,0)-∞单调递增,且(0)0g =,所以对于任意(,0)x ∈-∞,()0g x ≠. 10分 因为函数()g x 在(0,1)单调递减,且(0)0g =,所以对于任意(0,1)x ∈,()0g x ≠. 11分因为函数()g x 在(1,)+∞单调递增,且e(1)103g =-<,2e (2)107g =->, 所以函数()g x 在(1,)+∞上仅存在一个0x ,使得函数0()0g x =, 12分 故函数()g x 存在两个零点(即0和0x ). 13分 考点:函数的极值,根的存在性定理.19.设12,F F 分别为椭圆22: 12x W y +=的左、右焦点,斜率为k 的直线l 经过右焦点2F ,且与椭圆W 相交于,A B 两点. (1)求1ABF ∆的周长;(2)如果1ABF ∆为直角三角形,求直线l 的斜率k .【答案】(1)1ABF ∆的周长为(2)直线l的斜率7k =±,或1k =±时,1ABF ∆为直角三角形. 【解析】试题分析:(1)求1ABF ∆的周长,这是焦点三角问题,解这一类问题,往往与定义有关,本题可由椭圆定义得12||||2AF AF a +=,12||||2BF BF a +=,两式相加即得1ABF ∆的周长;(2)如果1ABF ∆为直角三角形,求直线l 的斜率k ,由于没教得那一个角为直角,故三种情况,o 190BF A ∠=,或o 190BAF ∠=,或o 190ABF ∠=,当o 190BF A ∠=时,此时直线AB 的存在,设出直线方程,代入椭圆方程,设11(,)A x y ,22(,)B x y ,由根与系数关系,得到关系式,再由110F A F B ⋅=,即可求出斜率k 的值,当o 190BAF ∠=(与o 190ABF ∠=相同)时,则点A 在以线段12F F 为直径的圆221x y +=上,也在椭圆W 上,求出点A 的坐标,从而可得直线l 的斜率k . (1)椭圆W的长半轴长a =1(1,0)F -,右焦点2(1,0)F , 2分由椭圆的定义,得12||||2AF AF a +=,12||||2BF BF a +=, 所以1ABF ∆的周长为1212||||||||4AF AF BF BF a +++==分 (2)因为1ABF ∆为直角三角形,所以o 190BF A ∠=,或o 190BAF ∠=,或o 190ABF ∠=,再由当o 190BF A ∠=时,设直线AB 的方程为(1)y k x =-,11(,)A x y ,22(,)B x y , 6分由 221,2(1),x y y k x ⎧+=⎪⎨⎪=-⎩ 得 2222(12)4220k x k x k +-+-=, 7分所以 2122412k x x k +=+,21222212k x x k -=+. 8分由o190BF A ∠=,得110F A F B ⋅=, 9分因为111(1,)F A x y =+,122(1,)FB x y =+, 所以11121212()1F A F B x x x x y y ⋅=++++2121212()1(1)(1)x x x x k x x =++++-- 2221212(1)(1)()1k x x k x x k =++-+++2222222224(1)(1)101212k k k k k k k-=+⨯+-⨯++=++, 10分解得k =. 11分 当o 190BAF ∠=(与o190ABF ∠=相同)时,则点A 在以线段12F F 为直径的圆221x y +=上,也在椭圆W 上,由22221,21,x y x y ⎧+=⎪⎨⎪+=⎩解得(0,1)A ,或(0,1)A -, 13分 根据两点间斜率公式,得1k =±, 综上,直线l的斜率k =,或1k =±时,1ABF ∆为直角三角形. 14分 考点:焦点三角,直线与椭圆位置关系.20.在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*n a ∈N ,1n n a a +<. 设*m ∈N , 记使得n a m ≤成立的n 的最大值为m b . (1)设数列{}n a 为1,3,5,7,,写出1b ,2b ,3b 的值;(2)若{}n a 为等比数列,且22a =,求12350b b b b ++++的值;(3)若{}n b 为等差数列,求出所有可能的数列{}n a .【答案】(1)11b =,21b =,32b =;(2)12350243b b b b ++++=;(3)得n n a = 【解析】试题分析:(1)根据使得1n n a a +<成立的n 的最大值为m b ,1n a ≤,则11b =,2n a ≤,则21b =,3n a ≤,则32b =,这样就写出1b ,2b ,3b 的值;(2)确定11b =,232b b ==,45673b b b b ====,89154b b b ====,1617315b b b ====,3233506b b b ====,分组求和,即可求12350b b b b ++++的值;(3)若{}n b 为等差数列,先判断n n a ≥,再证明n a n ≤,即可求出所有可能的数列{}n a .(1) 11b =,21b =,32b =. 3分 (2)因为{}n a 为等比数列,11a =,22a =,所以12n n a -=, 4分 因为使得n a m ≤成立的n 的最大值为m b ,所以11b =,232b b ==,45673b b b b ====,89154b b b ====,1617315b b b ====,3233506b b b ====, 6分所以12350243b b b b ++++=. 8分(3)由题意,得1231n a a a a =<<<<<,结合条件*n a ∈N ,得n n a ≥. 9分 又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +, 所以11b =,*1()m m b b m +∈N ≤. 10分 设2 a k =,则 2k ≥. 假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥. 所以21b =,2k b =. 因为{}n b 为等差数列, 所以公差210d b b =-=, 所以1n b =,其中*n ∈N . 这与2(2)k b k =>矛盾,所以22a =. 11分 又因为123n a a a a <<<<<,所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N . 12分 因为使得n a m ≤成立的n 的最大值为m b , 所以n n a ≤,由n n a ≥,得n n a =. 13分 考点:等差数列与等比数列的性质.。
北京市西城区2014年高三二模试卷数学(理科) 2014.5第I 卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ).A .(,2]-∞-B .[2,)-+∞C .(,2]-∞D .[2,)+∞2.在复平面内,复数2(12i)z =+对应的点位于( ).A . 第一象限B .第二象限C .第三象限D .第四象限3.直线2y x =为双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线,则双曲线C 的离心率是( ).A .5B .52C .3D .324.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ). A . 2A ∈,且4A ∈ B .2A ∈,且4A ∈C . 2A ∈,且25A ∈D .2A ∈,且17A ∈5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.如图,阴影区域是由函数cos y x =的一段图象与x轴围成的封闭图形,那么这个阴影区域的面积是( ).A .1B .2C .π2D .π7.在平面直角坐标系xOy中,不等式组0,0,80xyx y⎧⎪⎨⎪+-⎩………所表示的平面区域是α,不等式组04,010xy⎧⎨⎩剟剟所表示的平面区域是β.从区域α中随机取一点(,)P x y,则P为区域β内的点的概率是().A.14B.35C.34D.158.设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.若Ω是边长为1的正方形,给出下列三个结论: ①()x Ω的最大值为2;②()()x y Ω+Ω的取值范围是[2,22]; ③()()x y Ω-Ω恒等于0.其中所有正确结论的序号是( ). A .①B .②③C .①②D .①②③第II 卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.61()x x+的二项展开式中,常数项为_________.10.在ABC V 中,若14,3,cos 3a b A ===,则sin A =______,B =______.11.如图,AB 和CD 是圆O 的两条弦,AB 与CD 相交于点E ,且4,:4:1C E D E A E B E ===,则AE =_______;ACBD=______.12.执行如图所示的程序框图,输出的a 值为_________.13.设抛物线2:4C y x =的焦点为,F M 为抛物线C 上一点,(2,2)N ,则MF M N +的取值范围为_________.14.已知f 是有序数对集合**{(,)|,}M x y x y =∈∈N N 上的一个映射,正整数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =,对于任意的正整数,()m n m n >,映射f 由下表给出:(,)x y (,)n n (,)m n (,)n m(,)f x yn m n - m n +则(3,5)f =_______,使不等式(2,)4x f x …成立的x 集合是_________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在平面直角坐标系xOy中,点(cos,2sin),(sin,0)A Bθθθ,其中θ∈R.(I)当2π3θ=,求向量ABuu u r的坐标;(II)当π[0,]2θ∈时,求ABuu u r的最大值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的,A B两班中各抽5名学生进行视力检测.检测的数据如下:A班的5名学生的视力检测结果:43.,51.,46.,41.,49..B班的5名学生的视力检测结果:51.,49.,40.,40.,45..(I)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(II)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(III)现从班的上述5名学生中随机选取3名学生,用X表示其中视力大于46.的人数,求X的分布列和数学期望.17.(本小题满分14分)如图,在三棱锥P ABC -中,PA ⊥底面,,ABC AC BC H ⊥为PC 的中点,M 为AH 的中点,2,1PA AC BC ===(I )求证:AH ⊥面PBC ;(II )求PM 与平面AHB 所成角的正弦值 (III )设点N 在线段PB 上,且,PNMN PBλ=∥平面ABC ,求实数λ的值.18.(本小题满分13分)已知函数12e ()44x f x ax x +=++,其中a ∈R(I )若0a =,求函数()f x 的极值;(II )当1a >时,试确定函数()f x 的单调区间.19.(本小题满分14分)设,A B 是椭圆22:143x y W +=上不关于坐标轴对称的两个点,直线AB 交x 轴于点M (与点,A B 不重合),O 为坐标原点.(I )如果点M 是椭圆W 的右焦点,线段MB 的中点在y 轴上,求直线AB 的方程;(II )设N 为x 轴上一点,且4OM ON ⋅=uuu r uuu r,直线AN 与椭圆W 的另外一个交点为C ,证明:点B 与点C 关于x 轴对称.20.(本小题满分14分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*1,n n n a a a +∈<N .设*m ∈N ,记使得n a m …成立的n 最大值为m b .(I )设数列为1,3,5,7,L ,写出123,,b b b 的值; (II )若{}n b 为等差数列,求出所有可能的数列{}n a ;(III )设12,p p a q a a a A =+++=L ,求12q b b b +++L 的值.(用,,p q A 表示)。
2014北京市西城区高三(一模)数学(文)一、选择题(共8小题,每小题5分,满分40分)1.(5分)设全集U={x|0<x<2},集合A={x|0<x≤1},则集合∁U A=()A.(0,1)B.(0,1] C.(1,2)D.[1,2)2.(5分)已知平面向量=(2,﹣1),=(1,3),那么||等于()A.5 B. C. D.133.(5分)已知双曲线C:=1(a>0,b>0)的虚轴长是实轴长的2倍,则此双曲线的离心率为()A.B.2 C.D.4.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.2 B.C.4 D.55.(5分)下列函数中,对于任意x∈R,同时满足条件f(x)=f(﹣x)和f(x﹣π)=f(x)的函数是()A.f(x)=sinx B.f(x)=sin2x C.f(x)=cosx D.f(x)=cos2x6.(5分)设a>0,且a≠1,则“函数y=log a x在(0,+∞)上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.(5分)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于()A.4 B.5 C.6 D.78.(5分)如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个二、填空题(共6小题,每小题5分,满分30分)9.(5分)设复数=x+yi,其中x,y∈R,则x+y= .10.(5分)若抛物线C:y2=2px的焦点在直线x+y﹣2=0上,则p= ;C的准线方程为.11.(5分)已知函数f(x)=,若f(x0)=2,则实数x0= ;函数f(x)的最大值为.(5分)执行如图所示的程序框图,如果输入a=2,b=2,那么输出的a值为.12.13.(5分)若不等式组表示的平面区域是一个四边形,则实数a的取值范围是.14.(5分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=2,P为线段AD(含端点)上一个动点.设=x,=y,记y=f(x),则f(1)= ;函数f(x)的值域为.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.16.(13分)某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.寿命(天)频数频率[100,200)10 0.05[200,300)30 a[300,400)70 0.35[400,500) b 0.15[500,600)60 c合计200 1(Ⅰ)根据频率分布表中的数据,写出a,b,c的值;(Ⅱ)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不是次品的概率;(Ⅲ)某人从这批灯泡中随机地购买了n(n∈N*)个,如果这n个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求n的最小值.17.(14分)如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,AD=2AB,SA=SD,SA⊥AB,N是棱AD的中点.(Ⅰ)求证:AB∥平面SCD;(Ⅱ)求证:SN⊥平面ABCD;(Ⅲ)在棱SC上是否存在一点P,使得平面PBD⊥平面ABCD?若存在,求出的值;若不存在,说明理由.18.(13分)已知函数f(x)=lnx﹣,其中a∈R.(Ⅰ)当a=2时,求函数f(x)的图象在点(1,f(1))处的切线方程;(Ⅱ)如果对于任意x∈(1,+∞),都有f(x)>﹣x+2,求a的取值范围.19.(14分)已知椭圆W:=1(a>b>0)的焦距为2,过右焦点和短轴一个端点的直线的斜率为﹣1,O为坐标原点.(Ⅰ)求椭圆W的方程.(Ⅱ)设斜率为k的直线l与W相交于A,B两点,记△AOB面积的最大值为S k,证明:S1=S2.20.(13分)在数列{a n}中,a n=(n∈N*).从数列{a n}中选出k(k≥3)项并按原顺序组成的新数列记为{b n},并称{b n}为数列{a n}的k项子列.例如数列,,,为{a n}的一个4项子列.(Ⅰ)试写出数列{a n}的一个3项子列,并使其为等比数列;(Ⅱ)如果{b n}为数列{a n}的一个5项子列,且{b n}为等差数列,证明:{b n}的公差d满足﹣<d<0;(Ⅲ)如果{c n}为数列{a n}的一个6项子列,且{c n}为等比数列,证明:c1+c2+c3+c4+c5+c6≤.数学试题答案一、选择题(共8小题,每小题5分,满分40分)1.【解答】∵全集U=(0,2),集合A=(0,1],∴∁U A=(1,2).故选:C.2.【解答】∵=(2,﹣1)+(1,3)=(3,2),∴==.故选:B.3.【解答】∵双曲线C:=1(a>0,b>0)的虚轴长是实轴长的2倍,∴b=2a,∴c==,∴e==.故选:D.4.【解答】由三视图知几何体是一个四棱柱,四棱柱的底面是一个直角梯形,梯形的下底是3,斜边为,高是1,梯形的上底为:3﹣=1,棱柱的高为2,∴四棱柱的体积是:=4,故选:C.5.【解答】对于任意x∈R,f(x)满足f(x)=f(﹣x),则函数f(x)是偶函数,选项中,A,B显然是奇函数,C,D为偶函数,又对于任意x∈R,f(x)满足f(x﹣π)=f(x),则f(x+π)=f(x),即f(x)的最小正周期是π,选项C的最小正周期是2π,选项D的最小正周期是=π,故同时满足条件的是选项D.故选D.6.【解答】若函数y=log a x在(0,+∞)上是减函数,则0<a<1,此时2﹣a>0,函数y=(2﹣a)x3在R上是增函数,成立.若y=(2﹣a)x3在R上是增函数,则2﹣a>0,即a<2,当1<a<2时,函数y=log a x在(0,+∞)上是增函数,∴函数y=log a x在(0,+∞)上是减函数不成立,即“函数y=log a x在(0,+∞)上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的充分而不必要条件,故选:A.7.【解答】设该设备第n年的营运费为a n万元,则数列{a n}是以2为首项,2为公差的等差数列,则a n=2n,则该设备使用了n年的营运费用总和为T n==n2+n,设第n年的盈利总额为S n,则S n=11n﹣(n2+n)﹣9=﹣n2+10n﹣9=﹣(n﹣5)2+16,∴当n=5时,S n取得最大值16,故选:B.8.【解答】符合条件的点P有两类:(1)6条棱的中点;(2)4个面的中心.共10个点.故集合M中有且只有2个元素,那么符合条件的点P有4+6=10.故选:C二、填空题(共6小题,每小题5分,满分30分)9.【解答】∵,又=x+yi,∴,∴,则x+y=.故答案为:.10.【解答】直线x+y﹣2=0,令y=0,可得x=2,∵抛物线C:y2=2px的焦点在直线x+y﹣2=0上,∴=2,∴p=4,准线方程为x=﹣=﹣2.故答案为:4,x=﹣2.11.【解答】x≤0,x+3=2,∴x=﹣1;x>0,=2,x=﹣(舍去);x≤0,x+3≤3;x>0,0<<1,∴函数f(x)的最大值为3.故答案为:﹣1,3.12.【解答】若a=2,则log3a=log32>4不成立,则a=22=4,若a=4,则log3a=log34>4不成立,则a=42=16,若a=16,则log3a=log316>4不成立,则a=162=256若a=256,则log3a=log3256>4成立,输出a=256,故答案为:25613.【解答】作出不等式组对应的平面区域,当直线x+y=a经过点A(3,0)时,对应的平面区域是三角形,此时a=3,当经过点B时,对应的平面区域是三角形,由,解得,即B(1,4),此时a=1+4=5,∴要使对应的平面区域是平行四边形,则3<a<5,故答案为:(3,5)14.【解答】如图,建立直角坐标系;设点P(a,b),则﹣2≤a≤﹣1;∴=(a+2,b),=(1,2);=(﹣a,﹣b),=(﹣a,2﹣b);又∵=x,∴,即,(其中0≤x≤1);∴•=(﹣a,﹣b)•(﹣a,2﹣b)=a2﹣b(2﹣b)=(x﹣2)2﹣2x•(2﹣2x)=5x2﹣8x+4;即y=f(x)=5x2﹣8x+4,其中0≤x≤1;∴当x=1时,y=f(1)=5﹣8+4=1;当x=﹣=时,y取得最小值f()=,当x=0时,y取得最大值f(0)=4;∴f(x)的值域是.故答案为:1,.三、解答题(共6小题,满分80分)15.【解答】(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.16.【解答】(Ⅰ)根据频率分布表中的数据,得a==0.15,b=200﹣(10+30+70+60)=30,c==0.3.(Ⅱ)设“此人购买的灯泡恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有100个,次品有40个,所以此人购买的灯泡恰好不是次品的概率为.(Ⅲ)由(Ⅱ)得这批灯泡中优等品、正品和次品的比例为60:100:40=3:5:2.所以按分层抽样法,购买灯泡数 n=3k+5k+2k=10k(k∈N*),所以n的最小值为10.17.【解答】(Ⅰ)证明:∵底面ABCD是矩形,∴AB∥CD,又∵AB⊄平面SCD,CD⊂平面SCD,所以 AB∥平面SCD.(Ⅱ)证明:∵AB⊥SA,AB⊥AD,∴AB⊥平面SAD,又∵SN⊂平面SAD,∴AB⊥SN.∵SA=SD,且N为AD中点,∴SN⊥AD.∴SN⊥平面ABCD.(Ⅲ)解:如图,连接BD交NC于点F,在平面SNC中过F作FP∥SN交SC于点P,连接PB,PD.∵SN⊥平面ABCD,∴FP⊥平面ABCD.又∵FP⊂平面PBD,∴平面PBD⊥平面ABCD.在矩形ABCD中,∵ND∥BC,∴==.在△SNC中,∵FP∥SN,∴==.则在棱SC上存在点P,使得平面PBD⊥平面ABCD,此时=.18.【解答】(Ⅰ)由,∴,∴k=f′(1)=3,又∵f(1)=﹣2,∴函数f(x)的图象在点(1,f(1))处的切线方程为3x﹣y﹣5=0;(Ⅱ)由 f(x)>﹣x+2,得,即 a<xlnx+x2﹣2x,设函数g(x)=xlnx+x2﹣2x,则g′(x)=lnx+2x﹣1,∵x∈(1,+∞),∴lnx>0,2x﹣1>0,∴当x∈(1,+∞)时,g′(x)=lnx+2x﹣1>0,∴函数g(x)在x∈(1,+∞)上单调递增,∴当x∈(1,+∞)时,g(x)>g(1)=﹣1,∵对于任意x∈(1,+∞),都有f(x)>﹣x+2成立,∴对于任意x∈(1,+∞),都有a<g(x)成立,∴a≤﹣1.19.【解答】(Ⅰ)解:由题意得椭圆W的半焦距c=1,右焦点F(1,0),上顶点M(0,b),∴直线MF 的斜率为,解得 b=1,由 a2=b2+c2,得a2=2,∴椭圆W 的方程为.(Ⅱ)证明:设直线l的方程为y=kx+m,其中k=1或2,A(x1,y1),B(x2,y2).由方程组得(1+2k2)x2+4kmx+2m2﹣2=0,∴△=16k2﹣8m2+8>0,(*)由韦达定理,得,.∴=.∵原点O到直线y=kx+m 的距离,∴=≤=,当且仅当m2=2k2﹣m2+1,即2m2=2k2+1时取等号.与k的取值无关系,因此S1=S2.20.【解答】(Ⅰ)解:答案不唯一.如3项子列:,,.…(2分)(Ⅱ)证明:由题意,知1≥b1>b2>b3>b4>b5>0,所以 d=b2﹣b1<0.…(4分)因为 b5=b1+4d,b1≤1,b5>0,所以 4d=b5﹣b1>0﹣1=﹣1,解得.所以.…(7分)(Ⅲ)证明:由题意,设{c n}的公比为q,则.11 / 12因为{c n}为{a n}的一个6项子列,所以 q为正有理数,且q<1,.…(8分)设,且K,L互质,L≥2).当K=1时,因为,所以,所以.…(10分)当K≠1时,因为是{a n}中的项,且K,L互质,所以 a=K5×M(M∈N*),所以=.因为 L≥2,K,M∈N*,所以.综上,.…(13分)12 / 12。
北京市西城区2014年高三二模试卷数 学(文科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|20}A x x =-<,集合{|1}B x x =>,则( ) (A )A B ⊆(B )B A ⊆(C )AB =∅ (D )A B ≠∅解析:{|20}{|2}A x x x x =-<=<,所以答案D. 知识点;集合与常用逻辑用语--------集合的运算 难度系数:22.在复平面内,复数=(12i)(1i)z +-对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限解析:2=(12i)(1i)1223z i i i i +-=-+-=+,所以对应的点是(3,1)点在第一象限。
知识点; 推理与证明、数系的扩充与复数--------复数---复数乘除和乘方 难度系数:23.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A (B )2(C (D )2解析:双曲线的渐近线方程为b y x a =±,2222222,,5,5,bc a b c a e e a∴==+===,所以答案为C知识点:解析几何---------圆锥曲线--------双曲线 难度系数:34.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ∈,且4A ∈ (BA ,且4A ∈(C ) 2A ∈,且A (DAA解析:有三视图可得,该四棱锥是底面边长的正方形,高为4的正四棱锥,所以=D 。
知识点:立体几何-------空间几何体----------空间几何体的三视图和直观图 难度系数:25.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件解析:平面向量a ,b ,c 均为非零向量,()0⋅-=a b c ,可以得出=b c 或者()⊥-a b c ;所以为必要不充分条件。
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(文科) 2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,0{|1}B x x =-≥,则集合A B =( )(A )(0,1) (B )(0,1](C )(1,2)(D )[1,2)2.已知命题p :“x ∀∈R ,23x -<”,那么p ⌝是( ) (A )x ∀∈R ,23x ->, (B )x ∀∈R ,23x -≥ (C )x ∃∈R ,23x -< (D )x ∃∈R ,23x -≥3.在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k =( ) (A )4 (B )3(C )2(D )14.若坐标原点在圆22()()4x m ym 的内部,则实数m 的取值范围是( )(A )11m(B )33m(C )22m(D )2222m5.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )16. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b << (D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[1,0]x ∈-时,()f x 的最小值为( ) (A )18-(B ) 14-(C )0(D )148.在平面直角坐标系xOy 中,记不等式组0,0,2x y x y y +⎧⎪-⎨⎪⎩≥≤≤所表示的平面区域为D . 在映射,:u x y T v x y =+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v ,则由点(,)u v 所形成的平面区域的面积为( ) (A )2 (B )4(C )8(D )16第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知复数z 满足2i=1iz +,那么||z =______.10.在等差数列{}n a 中,11a =,8104a a +=,则公差d =______;前17项的和17S =______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=, 则cos C =______;c = ______.13.设函数2log , 0,()4, 0,x x x f x x >⎧=⎨⎩≤ 则[(1)]f f -=______;若函数()()g x f x k =-存在两个零点,则实数k 的取值范围是______.14.设{(,)|(,)0}M x y F x y ==为平面直角坐标系xOy 内的点集,若对于任意11(,)x y M ∈,存在22(,)x y M ∈,使得12120x x y y +<,则称点集M 满足性质P . 给出下列三个点集:○1{(,)|cos 0}R x y x y =-=; ○2{(,)|ln 0}S x y x y =-=; ○322{(,)|1}T x y x y =-=. 其中所有满足性质P 的点集的序号是______.侧(左)视图2三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()f α=,[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点. (Ⅰ)求证:AC ⊥平面BDEF ; (Ⅱ)求证:平面BDGH //平面AEF ; (Ⅲ)求多面体ABCDEF 的体积.甲组 乙组 891a822 F B CG EAHD18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当[0,4]x ∈时,求函数()f x 的最小值.19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为(0)k k >.设抛物线W 的焦点在直线AB 的下方.(Ⅰ)求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D . 判断四边形ABDC 是否为梯形,并说明理由.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若1114,2a q,求3T ; (Ⅱ)证明: n n S T (1,2,3,n )的充分必要条件为na N ;(Ⅲ)若对于任意不超过2014的正整数n ,都有21nT n ,证明:120122()13q <<.。
中国威望高考信息资源门户北京市西城区2014 年高三二模试卷参照答案及评分标准高三数学(文科)2014.5一、:本大共8小,每小5分,共 40 分.1.D2. A3. C4. D5.B6. A7 .D8. B二、填空:本大共6小,每小5分,共 30 分.9.2n210.311.212.122214.8{1,2}13.3注:第 9,14第一2分,第二 3 分 .三、解答:本大共6小,共 80 分.其余正确解答程,参照分准分. 15.(本小分13 分)(Ⅰ)解: f ( x) sin x cosx cos2 x11sin 2x 1 cos2x1⋯⋯⋯⋯⋯⋯ 422分1sin 2x 1cos 2x12222π1⋯⋯⋯⋯⋯⋯6sin(2 x),242分因此函数 f (x) 的最小正周期T2ππ.⋯⋯⋯⋯⋯⋯72分(Ⅱ)解:由π≤ 0,得5πππ≤ x4≤ 2x≤-.244π2,⋯⋯⋯⋯⋯⋯9因此 1≤ sin(2 x) ≤42中国威望高考信息资源门户分因此2 1 2 sin(2 xπ 1 2 1≤ f (x) ≤ 1 .⋯⋯⋯112 ≤2 )≤1,即422分πππ 取到最小f (π2 1当 2x,即 x,函数 f ( x) )2 ;⋯ 124288分π5π πf (π1.⋯⋯⋯⋯ 13当 2x,即 x 2 ,函数 f ( x) 取到最大)442分16.(本小 分 13 分)(Ⅰ) 解:A 班5名学生的 力均匀数x A = 4.3+5.1+4.6+4.14.9=4.6 , ⋯⋯⋯⋯ 25分B 班 5 名学生的 力均匀数x B = 5.1+4.9+4.0+4.04.5=4.5 .⋯⋯⋯⋯⋯35分从数据 果来看 A 班学生的 力 好 .⋯⋯⋯⋯⋯⋯4分(Ⅱ) 解:B 班 5名学生 力的方差 大 .⋯⋯⋯⋯⋯⋯8分(Ⅲ) 解:在 A 班抽取的 5 名学生中, 力大于 4.6 的有 2 名,因此 5 名学生 力大于4.6 的 率 2.⋯⋯⋯⋯⋯⋯115分因此全班40 名学生中 力大于4.6 的大 有40216 名,A165依据数据可推测班有 名学生 力大于4.6⋯⋯⋯⋯⋯⋯ 13.分17.(本小 分14 分)(Ⅰ) 明:在正方体ABCDA 1B 1C 1D 1中,因A 1 D 1平面ABB 1 A 1 ,A 1D 1平面A 1 BD 1 ,中国威望高考信息资源门户因此平面 A 1 BD 1 平面 ABB 1 A 1 .分(Ⅱ) 明: 接 BD , AC , BDAC G , 接 OG .因 ABCDA 1B 1C 1D 1 正方体,因此AE // DD 1,且 AE1DD 1 ,且 G 是 BD 的中点,2A 1又因 O 是 BD 1 的中点,因此 OG // DD 1 ,且 OG1DD 1,E2因此 OG // AE ,且 OG AE ,A即四 形 AGOE 是平行四 形, 因此 EO //AG ,又因EO 平面 ABCD , AG平面 ABCD ,因此 EO // 平面 ABCD .分(Ⅲ) 解: 足条件 OP 2的点 P 有12 个 .分原因以下:因ABCDA 1B 1C 1D 1 正方体, AA 1 2 ,因此 AC 2 2.因此 EO AG 1AC2 .2分在正方体 ABCD A 1B 1C 1D 1中,因 AA 1平面 ABCD , AG 平面 ABCD ,因此 AA 1AG ,又因 EO//AG ,因此AA 1 OE ,⋯⋯⋯⋯⋯⋯4D 1C 1B 1ODCGB⋯⋯⋯⋯⋯⋯6 分⋯⋯⋯⋯⋯⋯9⋯⋯⋯⋯⋯⋯12⋯⋯⋯⋯⋯⋯ 13中国威望高考信息资源门户点O 到棱AA 1 的距离2 ,因此在棱AA 1 上有且只有一个点(即中点E )到点O 的距离等于2 ,同理,正方体ABCDA 1B 1C 1D 1 每条棱的中点到点O 的距离都等于2 ,因此在正方体ABCDA 1B 1C 1D 1 棱上使得OP2的点P有12个 .⋯⋯⋯14分18. (本小 分 13 分)(Ⅰ) 解:函数 f (x)e x 的定 域 { x | x R ,且 x 1} .⋯⋯⋯⋯⋯⋯ 1x1分e x ( x1) e xxe x⋯⋯⋯⋯⋯⋯ 3 分f ( x)(x22.1) ( x 1)令 f ( x)0 ,得 x0 ,当 x 化 ,f ( x) 和 f ( x) 的 化状况以下:( ,1)( 1,0)(0,)xf ( x)f (x)↘ ↘ ↗⋯⋯⋯⋯⋯⋯4分故 f ( x) 的 减区 ( , 1), ( 1,0) ; 增区 (0, ) .因此当 x 0 ,函数f ( x) 有极小 f (0)1.⋯⋯⋯⋯⋯⋯ 5分(Ⅱ) 解: :函数 g(x) 存在两个零点 .明程以下:e x由意,函数g( x)x2x 11,因 x2x 1 (x 1 )230 ,24因此函数 g( x) 的定域R .⋯⋯⋯⋯⋯⋯ 6分x2x1)x x1)e (x e (2x 1)ex (x⋯⋯⋯⋯⋯⋯ 7求,得 g (x)( x2x1)2( x2x1) 2,分令 g ( x)0 ,得 x10 , x2 1 ,当 x 化,g (x)和g (x)的化状况以下:x(, 0)01(1, )(0,1)g ( x)0g ( x)↗↘↗故函数 g( x) 的减区 ( 0,1);增区 (,0),(1,).当x0,函数 g( x)有极大g( 0 );当x1,函数 g (x) 有极小g(1)e1.⋯⋯⋯⋯⋯⋯9 3分因函数 g( x) 在(, 0)增,且 g(0)0,因此于随意 x (, 0), g(x)0 .⋯⋯⋯⋯⋯⋯10分因函数 g( x) 在( 0,1)减,且g(0) 0 ,因此于随意x (0,1) ,g (x)0 .⋯⋯⋯⋯⋯⋯11分因函数 g( x) 在(1,) 增,且e0 , g (2)e2g (1)1 1 0 ,37因此函数 g(x) 在(1,) 上存在一个x0,使得函数g( x0 )0 ,⋯⋯⋯⋯12分故函数 g( x) 存在两个零点(即0 和 x0).⋯⋯⋯⋯⋯⋯13分19.(本小分14 分)(Ⅰ)解:W的半a 2 ,左焦点F1 ( 1,0) ,右焦点F2 (1,0) ,⋯⋯⋯⋯2分由的定,得|AF1||AF2|2a ,|BF1|| BF2|2a,因此ABF1的周|AF1||AF2||BF1|| BF2|4a4 2 .⋯⋯⋯⋯⋯⋯5分(Ⅱ)解:因ABF1直角三角形,因此BF1A 90o,或BAF190o,或ABF190o,当 BF1 A 90o,直 AB 的方程y k( x 1) ,A(x1, y1),B( x2, y2),⋯⋯⋯⋯⋯⋯6分x2y 21,得 (1 2k2 )x24k 2 x 2k 2由2 2 0 ,⋯⋯⋯⋯⋯⋯ 7 y k ( x1),分因此 x1x24k 22, x1 x22k 22⋯⋯⋯⋯⋯⋯ 8 2k 1 2k2.1分由 BFA90o,得 F A F B0 ,⋯⋯⋯⋯⋯⋯ 9 111分因 F1A(x1 1, y1 ) , F1B ( x21, y2 ) ,因此F1 A F1 B x1x2( x1x2 ) 1 y1 y2x1x2( x1x2 ) 1 k 2 (x1 1)( x21)(1 k 2 ) x1 x2(1 k 2 )( x1 x2 ) 1 k 2(1k 2 )2k22(1 k 2 )4k 2 1 k 20 ,⋯⋯⋯⋯⋯1012k212k 2分7解得 k.⋯⋯⋯⋯⋯⋯11 7分当BAF190o(与ABF190o同样),点 A 在以段 F1F2直径的 x2y21上,也在W 上,x2y21,,或 A(0,1) ,⋯⋯⋯⋯⋯⋯ 13由2解得 A(0,1)x2y21,分依据两点斜率公式,得 k 1 ,上,直 l 的斜率 k7k1,ABF1直角三角形.⋯⋯⋯⋯⋯14,或7分20.(本小分13 分)(Ⅰ)解: b1, b1, b 2 .⋯⋯⋯⋯⋯⋯3 123分(Ⅱ)解:因 { a n} 等比数列,a1 1, a2 2 ,因此 a2n 1,⋯⋯⋯⋯⋯⋯4 n分因使得 a n≤m 建立的 n 的最大 b m,中国威望高考信息资源门户因此 b11, b2b3 2 , b4b5b6b7 3 , b8 b9b15 4 ,b 16b17b31 5 , b32b33b50 6 ,⋯⋯⋯⋯⋯⋯6分因此 b1b2b3b50243 .⋯⋯⋯⋯⋯⋯8分(Ⅲ)解:由意,得 1a1 a2a3a n,合条件 a n N*,得 a n≥n.⋯⋯⋯⋯⋯⋯9分又因使得a n≤m 建立的 n 的最大b m,使得 a n≤ m 1 建立的 n 的最大b m 1,因此 b11, b m≤b m 1 (m N *).⋯⋯⋯⋯⋯⋯10分a2k, k≥ 2 .假 k2,即a2k >2 ,当 n≥2,a n 2 ;当n≥3, a n≥k 1.因此 b21, b k 2 .因 { b n } 等差数列,因此公差 d b2b10 ,因此 b n1,此中n N *.与 b k2(k2)矛盾,因此 a2 2 .⋯⋯⋯⋯⋯⋯ 11分又因 a a a an ,123因此 b 2 ,2中国威望高考信息资源门户由 {b n } 等差数列,得b n n ,此中n N *.⋯⋯⋯⋯⋯⋯12分因使得 a n≤m 建立的 n 的最大 b m,因此 a n≤n,由 a n≥n,得 a n n .⋯⋯⋯⋯⋯⋯13分更多下:(在文字上按住ctrl即可看)高考模:高考各科模【下】年高考:年高考各科【下】高中卷道:高中各年各科卷【下】高考源:各年及学料【下】点此接可看更多高考有关【下】。
北京市西城区2014年高三二模试卷数 学(文科) 2014.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集{|02}U x x =<<,集合1{|0}A x x =<≤,则集合U A =ð( )(A )(0,1) (B )(0,1](C )(1,2)(D )[1,2)2.已知平面向量(2,1)=-a ,(1,3)=b ,那么|a +b |等于( ) (A )5 (B(C(D )133.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长是实轴长的2倍,则此双曲线的离心率为( ) (A(B )2(C(D4.某几何体的三视图如图所示,则该几何体的体积为( ) (A )2 (B )43(C )4 (D )5正(主)视图俯视图侧(左)视图6. 设0a >,且1a ≠,则“函数log a y x =在(0,)+∞上是减函数”是“函数3(2)y a x =-在R 上是增函数”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) (A )4 (B )5(C )6(D )78. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )(A ) 4个 (B )6个(C )10个(D )14个5.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是( )(A )()sin =f x x (B )()sin 2=f x x (C )()cos =f x x (D )()cos 2=f x xBADC. P第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______.10.若抛物线2:2C y px =的焦点在直线20x y +-=上,则p =_____;C 的准线方程为_____.11.已知函数3, 0,()1, 0,1≤+⎧⎪=⎨>⎪+⎩x x f x x x 若0()2=f x ,则实数0=x ______;函数()f x 的最大值为_____.12.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为______.13.若不等式组1,0,26,ax y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个四边形,则实数a 的取值范围是__________.14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,2BC =,P 为线段AD (含端点)上一个动点. 设AP xAD =,PB PC y ⋅=,记()=y f x ,则(1)=f ____; 函数()f x 的值域为_________.A D C P三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小; (Ⅱ)如果cos =B ,2b =,求a 的值. 16.(本小题满分13分)某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a ,b ,c 的值;(Ⅱ)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不.是次品的概率; (Ⅲ)某人从这批灯泡中随机地购买了()*∈n nN 个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽样......所得的结果相同,求n 的最小值.17.(本小题满分14分)如图,在四棱锥ABCD S -中,底面ABCD 是矩形,2AD AB =,SA SD =,SA AB ⊥, N 是棱AD 的中点.(Ⅰ)求证://AB 平面SCD ; (Ⅱ)求证:SN ⊥平面ABCD ;(Ⅲ)在棱SC 上是否存在一点P ,使得平面⊥PBD 平面ABCD ?若存在,求出SPPC的值;若不存在,说明理由. 18.(本小题满分13分)已知函数()ln af x x x=-,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.19.(本小题满分14分)已知椭圆22221(0)x y W a b a b+=>>:的焦距为2,过右焦点和短轴一个端点的直线的斜率为1-,O 为坐标原点.(Ⅰ)求椭圆W 的方程.(Ⅱ)设斜率为k 的直线l 与W 相交于,A B 两点,记AOB ∆面积的最大值为k S ,证明:12S S =.20.(本小题满分13分)在数列{}n a 中,1()n a n n*=∈N . 从数列{}n a 中选出(3)k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列1111,,,2358为{}n a 的一个4项子列.(Ⅰ)试写出数列{}n a 的一个3项子列,并使其为等比数列;(Ⅱ)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足104d -<<; (Ⅲ)如果{}n c 为数列{}n a 的一个6项子列,且{}n c 为等比数列,证明:1234566332c c c c c c +++++≤.北京市西城区2014年高三一模试卷参考答案及评分标准高三数学(文科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.B 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.4 2=-x 11.1- 3 12.25613. (3,5) 14.1 4[,4]5注:第10、11、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, ……………… 4分又因为 (0,π)∈A ,所以 π3A =. ……………… 6分(Ⅱ)解:因为 cos 3=B ,(0,π)∈B ,所以 sin B ==, ………………8分由正弦定理 sin sin =a bA B, ………………11分得 sin 3sin ==b Aa B. ………………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =,0.3=c . ……………… 3分(Ⅱ)解:设“此人购买的灯泡恰好不是次品”为事件A . ……………… 4分由表可知:这批灯泡中优等品有60个,正品有100个,次品有40个, 所以此人购买的灯泡恰好不是次品的概率为100604()2005+==P A . …………… 8分(Ⅲ)解:由(Ⅱ)得这批灯泡中优等品、正品和次品的比例为60:100:403:5:2=. (10)分所以按分层抽样法,购买灯泡数 35210()*=++=∈n k k k k k N ,所以n 的最小值为10. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 是矩形,所以 //AB CD , ……………… 1分又因为 AB ⊄平面SCD ,CD ⊂平面SCD ,所以 //AB 平面SCD . ……………… 3分(Ⅱ)证明:因为 , , AB SA AB AD SAAD A ⊥⊥=,所以 ⊥AB 平面SAD , ……………… 5分又因为 SN ⊂平面SAD ,所以 AB SN ⊥. ……………… 6分因为 SA SD =,且N 为AD 中点, 所以 SN AD ⊥. 又因为 ABAD A =,所以 SN ⊥平面ABCD . ……………… 8分(Ⅲ)解:如图,连接BD 交NC 于点F ,在平面SNC 中过F 作//FP SN 交SC 于点P ,连接PB ,PD .因为 SN ⊥平面ABCD ,所以 FP ⊥平面ABCD . (11)又因为 FP ⊂平面PBD ,所以平面PBD ⊥平面ABCD . …………… 12在矩形ABCD 中,因为//ND BC , 所以12NF ND FC BC ==. 在SNC ∆中,因为//FP SN , 所以12NF SP FC PC ==. 则在棱SC 上存在点P ,使得平面⊥PBD 平面ABCD ,此时12SP PC =. ……… 14分18.(本小题满分13分) (Ⅰ)解:由2()ln f x x x=-,得212()f x x x '=+, (2)分所以 (1)3f '=, 又因为 (1)2f =-,所以函数()f x 的图象在点(1,(1))f 处的切线方程为350x y --=. ……………… 4分(Ⅱ)解:由 ()2f x x >-+,得ln 2ax x x->-+, 即 2ln 2a x x x x <+-. ……………… 6分设函数2()ln 2g x x x x x =+-,则 ()ln 21g x x x '=+-, ……………… 8分因为(1,)x ∈+∞,所以ln 0x >,210x ->,所以当(1,)x ∈+∞时,()ln 210g x x x '=+->, ……………… 10分故函数()g x 在(1,)x ∈+∞上单调递增,所以当(1,)x ∈+∞时,()(1)1g x g >=-. ……………… 11分因为对于任意(1,)x ∈+∞,都有()2f x x >-+成立, 所以对于任意(1,)x ∈+∞,都有()a g x <成立.所以1a -≤. ……………… 13分19.(本小题满分14分)(Ⅰ)解:由题意,得椭圆W 的半焦距1c =,右焦点(1,0)F ,上顶点(0,)M b ,…… 1分 所以直线MF 的斜率为0101-==--MF b k , 解得 1b =, ……………… 3分由 222a b c =+,得22a =,所以椭圆W 的方程为2212x y +=. ……………… 5分(Ⅱ)证明:设直线l 的方程为y kx m =+,其中1k =或2,11(,)A x y ,22(,)B x y .… 6分由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分所以 2216880k m ∆=-+>, (*)由韦达定理,得122412km x x k -+=+, 21222212m x x k -=+. (8)分所以||AB == (9)分因为原点O 到直线y kx m =+的距离d =, (10)分所以 1||2AOB S AB d ∆=⋅= ……………… 11分当1k =时,因为AOB S ∆=所以当232m =时,AOB S ∆的最大值12S =, 验证知(*)成立; ……………… 12分当2k =时,因为AOB S ∆=所以当292m =时,AOB S ∆的最大值22S =; 验证知(*)成立.所以 12S S =. ……………… 14分注:本题中对于任意给定的k ,AOB ∆的面积的最大值都是2.20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列:12,14,18. ……………… 2分(Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥,所以 210d b b =-<. ……………… 4分因为 514b b d =+,151,0b b >≤, 所以 514011d b b =->-=-,解得 14d >-. 所以104d -<<. ……………… 7分(Ⅲ)证明:由题意,设{}n c 的公比为q ,则 23451234561(1)c c c c c c c q q q q q +++++=+++++. 因为{}n c 为{}n a 的一个6项子列, 所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. ……………… 8分设 (,Kq K L L*=∈N ,且,K L 互质,2L ≥).当1K =时,因为 112q L =≤, 所以 23451234561(1)c c c c c c c q q q q q +++++=+++++ 2345111111()()()()22222+++++≤, 所以 1234566332c c c c c c +++++≤. ……………… 10分当1K ≠时,因为 556151==⨯K c c q a L是{}n a 中的项,且,K L 互质,所以 5*()a K M M =⨯∈N ,所以 23451234561(1)c c c c c c c q q q q q +++++=+++++543223*********()M K K L K L K L KL L=+++++. 因为 2L ≥,*,K M ∈N ,所以 234512345611111631()()()()2222232c c c c c c ++++++++++=≤. 综上, 1234566332c c c c c c +++++≤. ……………… 13分。
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(文科) 2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,0{|1}B x x =-≥,则集合A B = ( ) (A )(0,1) (B )(0,1](C )(1,2)(D )[1,2)2.已知命题p :“x ∀∈R ,23x -<”,那么p ⌝是( ) (A )x ∀∈R ,23x ->, (B )x ∀∈R ,23x -≥ (C )x ∃∈R ,23x -< (D )x ∃∈R ,23x -≥3.在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k =( )(A )4 (B )3 (C )2 (D )14.若坐标原点在圆22()()4x m y m -++=的内部,则实数m 的取值范围是( ) (A )11m -<<(B )m -<(C )m -<(D )m -<<5.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )16. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b << (D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[1,0]x ∈-时,()f x 的最小值为( ) (A )18-(B ) 14-(C )0(D )148.在平面直角坐标系xOy 中,记不等式组0,0,2x y x y y +⎧⎪-⎨⎪⎩≥≤≤所表示的平面区域为D . 在映射,:u x y T v x y =+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v ,则由点(,)u v 所形成的平面区域的面积为( ) (A )2 (B )4 (C )8 (D )16第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知复数z 满足2i=1iz +,那么||z =______.10.在等差数列{}n a 中,11a =,8104a a +=,则公差d =______;前17项的和17S =______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=, 则cos C =______;c = ______.13.设函数2log , 0,()4, 0,x x x f x x >⎧=⎨⎩≤ 则[(1)]f f -=______;若函数()()g x f x k =-存在两个零点,则实数k 的取值范围是______.14.设{(,)|(,)0}M x y F x y ==为平面直角坐标系xOy 内的点集,若对于任意11(,)x y M ∈,存在22(,)x y M ∈,使得12120x x y y +<,则称点集M 满足性质P . 给出下列三个点集:○1{(,)|cos 0}R x y x y =-=; ○2{(,)|ln 0}S x y x y =-=; ○322{(,)|1}T x y x y =-=. 其中所有满足性质P 的点集的序号是______.侧(左)视图三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()f α=[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点. (Ⅰ)求证:AC ⊥平面BDEF ; (Ⅱ)求证:平面BDGH //平面AEF ; (Ⅲ)求多面体ABCDEF 的体积.甲组 乙组 891a822 F B CG EAHD18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当[0,4]x ∈时,求函数()f x 的最小值.19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为(0)k k >.设抛物线W 的焦点在直线AB 的下方.(Ⅰ)求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D . 判断四边形ABDC 是否为梯形,并说明理由.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若1114,2a q ==,求3T ; (Ⅱ)证明: n n S T =(1,2,3,n =L )的充分必要条件为n a N *Î;(Ⅲ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<.北京市西城区2013 — 2014学年度第一学期期末高三数学(文科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.D 3.A 4.C 5.B 6.C 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分.9 10. 18 3411. 12.13-13. 2- (0,1] 14.○1○3注:第10、12、13题第一问2分,第二问3分. 第14题若有错选、多选不得分,少选得2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x x ωω=->的最小正周期为π, 所以 2||ωπ=π,解得2ω=. ……………… 3分由 ()2f α=22α=,即 cos 22α=, ……………… 4分所以 π22π4k α=±,k ∈Z . 因为 [π,π]α∈-,所以7πππ7π{,,,}8888α∈--. ……………… 6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- (8)分1sin 222x x =+ πsin(2)3x =+, (10)分由 2πππ2π2π232k k x -++≤≤, ………………11分解得 5ππππ1212k k x -+≤≤. (12)分所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 3分解得 1a =. ……………… 4分(Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 5分依题意 0,1,2,,9a = ,共有10种可能. ……………… 6分由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同,所以当2,3,4,,9a = 时,乙组平均成绩超过甲组平均成绩,共有8种可能.… 7分所以乙组平均成绩超过甲组平均成绩的概率84()105P A ==. ……………… 8分(Ⅲ)解:设“这两名同学的数学成绩之差的绝对值不超过2分”为事件B ,………… 9分当2a =时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种,它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92), (10)分所以事件B 的结果有7种,它们是:(88,90),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92). (11)分因此这两名同学的数学成绩之差的绝对值不超过2分的概率7()9P B =. (13)分17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是正方形,所以AC BD ⊥. ……………… 1分又因为平面BDEF ⊥平面ABCD ,平面BDEF 平面ABCD BD =, 且AC ⊂平面ABCD ,所以AC ⊥平面BDEF . ……………… 4分(Ⅱ)证明:在CEF ∆中,因为,G H 分别是,CE CF 的中点,所以//GH EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF ,E所以//GH 平面AEF . ……………… 6分 设AC BD O = ,连接OH ,在ACF ∆中,因为OA OC =,CH HF =, 所以//OH AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF ,所以//OH 平面AEF . ……………… 8分又因为OH GH H = ,,OH GH ⊂平面BDGH ,所以平面//BDGH 平面AEF . ………………10分(Ⅲ)解:由(Ⅰ),得 AC ⊥平面BDEF ,又因为AO =,四边形BDEF 的面积3BDEF S =⨯= 11分所以四棱锥A BDEF -的体积1143BDEF V AO S =⨯⨯= . ………………12分同理,四棱锥C BDEF -的体积24V =.所以多面体ABCDEF 的体积128V V V =+=. (14)分18.(本小题满分13分)(Ⅰ)解:因为()()e xf x x a =+,x ∈R ,所以()(1)e xf x x a '=++. (2)分令()0f x '=,得1x a =--. ……………… 3分当x 变化时,()f x 和()f x '的变化情况如下:) (5)分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分(Ⅱ)解:由(Ⅰ),得()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.所以当10a --≤,即1a -≥时,()f x 在[0,4]上单调递增,故()f x 在[0,4]上的最小值为min ()(0)f x f a ==; (8)分当401a <--<,即51a -<<-时,()f x 在(0,1)a --上单调递减, ()f x 在(1,4)a --上单调递增,故()f x 在[0,4]上的最小值为1min ()(1)ea f x f a --=--=-; (10)分当41a --≥,即5a -≤时,()f x 在[0,4]上单调递减,故()f x 在[0,4]上的最小值为4min ()(4)(4)e f x f a ==+. (12)分所以函数()f x 在[0,4]上的最小值为1min4, 1,()e , 51,(4)e , 5.a a a f x a a a ---⎧⎪=--<<-⎨⎪+-⎩≥≤ ……13分19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. 因为 0k >, 所以 304k <<. ……………… 5分(Ⅱ)解:结论:四边形ABDC 不可能为梯形. ……………… 6分理由如下:假设四边形ABDC 为梯形. ……………… 7分由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩消去y ,得210x kx k -+-=,由韦达定理,得11x k +=,所以 11x k =-. ……………… 8分同理,得211x k=--. ……………… 9分对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线BD 的斜率为1222x k =-, ……………… 10分抛物线2y x =在点C 处的切线CD 的斜率为2222x k=--. ………………11分由四边形ABDC 为梯形,得//AB CD 或//AC BD . 若//AB CD ,则22k k=--,即2220k k ++=, 因为方程2220k k ++=无解,所以AB 与CD 不平行. ………………12分若//AC BD ,则122k k-=-,即22210k k -+=, 因为方程22210k k -+=无解,所以AC 与BD 不平行. ……………13分所以四边形ABDC 不是梯形,与假设矛盾.因此四边形ABDC 不可能为梯形. ……………14分20.(本小题满分13分)(Ⅰ)解:因为等比数列{}n a 的114a =,12q =, 所以 114a =,27a =,3 3.5a =. .................. 1分 所以 114b =,27b =,33b =. (2)分则 312324T b b b =++=. ……………… 3分(Ⅱ)证明:(充分性)因为 n a N *Î,所以 []n n n b a a == 对一切正整数n 都成立.因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 5分 (必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =; ……………… 6分 当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =. ……………… 7分 因为 []n n b a Z = ,0n a >,所以对一切正整数n 都有n a N *Î. ……………… 8分(Ⅲ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 9分因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ………………10分 由 21a q a =,得 1q <. ………………11分 因为 201220142[2,3)a a q =∈,所以 20122223qa >≥, 所以 2012213q <<,即 120122()13q <<. ………………13分。
北京市西城区2014年高三二模试卷数学(文科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|20}A x x =-<,集合{|1}B x x =>,则( ) (A )A B ⊆ (B )B A ⊆(C )AB =∅ (D )A B ≠∅2.在复平面内,复数=(12i)(1i)z +-对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A(B(C(D4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A Î,且4A Î (BA ,且4A Î(C ) 2A Î,且A (DAA5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件正(主)视图俯视图侧(左)视图6.在△ABC 中,若4a =,3b =,1cos 3A =,则B =( ) (A )π4 (B )π3 (C )π6(D )2π37. 设函数2244, ,()log , 4.x x x f x x x -+⎧=⎨>⎩≤ 若函数()y f x =在区间(,1)a a +上单调递增,则实数a的取值范围是( ) (A )(,1]-∞ (B )[1,4](C )[4,)+∞(D )(,1][4,)-∞+∞8. 设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.如果Ω是边长为1的正方形,那么()()x y Ω+Ω的取值范围是( ) (A)(B)(C)(D)[1第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在等差数列{}n a 中,11a =,47a =,则公差d =_____;12n a a a +++=____.10.设抛物线24C y x =:的焦点为F ,M 为抛物线C 上一点,且点M 的横坐标为2,则||MF = .11.执行如图所示的程序框图,输出的a 值为______.12.在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤所表示的平面区域是α,不等式组440,0x y ⎧⎨⎩≤≤≤≤所表示的平面区域是β. 从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是_____.13.已知正方形ABCD ,AB =2,若将ABD ∆沿正方形的对角线BD 所在的直线进行翻折,则在翻折的过程中,四面体A BCD -的体积的最大值是____.14.已知f 是有序数对集合**{(,)|,}M x y x yN N =挝上的一个映射,正整数数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =. 对于任意的正整数,()m n m n >,映射f 由下表给出:则(3,5)f =__________,使不等式(2,)4x f x ≤成立的x 的集合是_____________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos (sin cos )1f x x x x =-+.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)当π[,0]2x ∈-时,求函数()f x 的最大值和最小值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的A ,B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.B 班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好? (Ⅱ)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明) (Ⅲ)根据数据推断A 班全班40名学生中有几名学生的视力大于4.6?17.(本小题满分14分)如图,在正方体1111D C B A ABCD -中,12AA =,E 为1AA 的中点,O 为1BD 的中点. (Ⅰ)求证:平面11A BD ⊥平面11ABB A ; (Ⅱ)求证://EO 平面ABCD ;(Ⅲ)设P 为正方体1111D C B A ABCD -棱上一点,给出满足条件OP =的点P 的 个数,并说明理由.18.(本小题满分13分)已知函数2e ()1xf x ax x =++,其中a ∈R .1(Ⅰ)若0a =,求函数()f x 的定义域和极值;(Ⅱ)当1a =时,试确定函数()()1g x f x =-的零点个数,并证明. 19.(本小题满分14分)设12,F F 分别为椭圆22: 12x W y +=的左、右焦点,斜率为k 的直线l 经过右焦点2F ,且与椭圆W 相交于,A B 两点. (Ⅰ)求1ABF ∆的周长;(Ⅱ)如果1ABF ∆为直角三角形,求直线l 的斜率k .20.(本小题满分13分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*n a ∈N ,1n n a a +<. 设*m ∈N , 记使得n a m ≤成立的n 的最大值为m b .(Ⅰ)设数列{}n a 为1,3,5,7,,写出1b ,2b ,3b 的值;(Ⅱ)若{}n a 为等比数列,且22a =,求12350b b b b ++++的值;(Ⅲ)若{}n b 为等差数列,求出所有可能的数列{}n a .北京市西城区2014年高三二模试卷参考答案及评分标准 高三数学(文科) 2014.5一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.A 3.C 4.D 5.B 6.A 7.D 8.B 二、填空题:本大题共6小题,每小题5分,共30分. 9.2 2n 10.3 11.2- 12.1213.314.8 {1,2} 注:第9,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:2()sin cos cos 1f x x x x =-+11cos 2sin 2122xx +=-+ ……………… 4分 111sin 2cos 2222x x =-+π1)242x =-+, ……………… 6分 所以函数()f x 的最小正周期为2ππ2T ==. ……………… 7分 (Ⅱ)解:由 π02x -≤≤,得5πππ2444x --≤≤-.所以 π1sin(2)42x --≤≤, ……………… 9分所以1π1)2242x -+≤≤1,即 1()12f x ≤≤. ……… 11分当ππ242x -=-,即π8x =-时,函数()f x 取到最小值π1()82f -=;… 12分当π5π244x -=-,即π2x =-时,函数()f x 取到最大值π()12f -=. …………13分 16.(本小题满分13分)(Ⅰ)解:A 班5名学生的视力平均数为A 4.3+5.1+4.6+4.1 4.9==4.65x +, ………… 2分B 班5名学生的视力平均数为B 5.1+4.9+4.0+4.0 4.5==4.55x +. …………… 3分 从数据结果来看A 班学生的视力较好. ……………… 4分(Ⅱ)解:B 班5名学生视力的方差较大. ……………… 8分 (Ⅲ)解:在A 班抽取的5名学生中,视力大于4.6的有2名,所以这5名学生视力大于4.6的频率为25. ……………… 11分 所以全班40名学生中视力大于4.6的大约有240165⨯=名,则根据数据可推断A 班有16名学生视力大于4.6. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:在正方体1111D C B A ABCD -中,因为 11A D ⊥平面11ABB A ,11A D ⊂平面11A BD ,所以平面11A BD ⊥平面11ABB A . ……………… 4分 (Ⅱ)证明:连接BD ,AC ,设BDAC G =,连接OG .因为1111D C B A ABCD -为正方体, 所以 1//DD AE ,且121DD AE =,且G 是BD又因为O 是1BD 的中点,所以 1//DD OG ,且121DD OG =,所以 AE OG //,且AE OG =,即四边形AGOE 是平行四边形,所以//EO AG , ……………… 6分 又因为 EO ⊄平面ABCD ,⊂AG 平面ABCD ,所以 //EO 平面ABCD . ……………… 9分 (Ⅲ)解:满足条件OP =的点P 有12个. ……………… 12分1理由如下:因为 1111D C B A ABCD -为正方体,12AA =,所以 AC =所以 12EO AG AC ===……………… 13分在正方体1111D C B A ABCD -中,因为 1AA ⊥平面ABCD ,AG ⊂平面ABCD , 所以 1AA AG ⊥, 又因为 //EO AG ,所以 1AA OE ⊥,则点O 到棱1AA所以在棱1AA 上有且只有一个点(即中点E )到点O同理,正方体1111D C B A ABCD -每条棱的中点到点O所以在正方体1111D C B A ABCD -棱上使得OP =的点P 有12个. ……… 14分18.(本小题满分13分)(Ⅰ)解:函数e ()1xf x x =+的定义域为{|x x ∈R ,且1}x ≠-. (1)分22e (1)e e ()(1)(1)x x xx x f x x x +-'==++. ……………… 3分令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下:……………… 4分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞.所以当0x =时,函数()f x 有极小值(0)1f =. ……………… 5分 (Ⅱ)解:结论:函数()g x 存在两个零点.证明过程如下:由题意,函数2e ()11xg x x x =-++, 因为 22131()024x x x ++=++>, 所以函数()g x 的定义域为R . ……………… 6分求导,得22222e (1)e (21)e (1)()(1)(1)x x x x x x x x g x x x x x ++-+-'==++++, ………………7分令()0g x '=,得10x =,21x =,当x 变化时,()g x 和()g x '的变化情况如下:故函数()g x 的单调减区间为(0,1);单调增区间为(,0)-∞,(1,)+∞.当0x =时,函数()g x 有极大值(0)0g =;当1x =时,函数()g x 有极小值e(1)13g =-. ……………… 9分因为函数()g x 在(,0)-∞单调递增,且(0)0g =,所以对于任意(,0)x ∈-∞,()0g x ≠. ……………… 10分 因为函数()g x 在(0,1)单调递减,且(0)0g =,所以对于任意(0,1)x ∈,()0g x ≠. ……………… 11分因为函数()g x 在(1,)+∞单调递增,且e (1)103g =-<,2e (2)107g =->,所以函数()g x 在(1,)+∞上仅存在一个0x ,使得函数0()0g x =, ………… 12分 故函数()g x 存在两个零点(即0和0x ). ……………… 13分19.(本小题满分14分) (Ⅰ)解:椭圆W的长半轴长a =1(1,0)F -,右焦点2(1,0)F , ... (2)分由椭圆的定义,得12||||2AF AF a +=,12||||2BF BF a +=, 所以1ABF ∆的周长为1212||||||||4AF AF BF BF a +++==. ……………… 5分(Ⅱ)解:因为1ABF ∆为直角三角形,所以o 190BF A ∠=,或o 190BAF ∠=,或o190ABF ∠=, 当o 190BF A ∠=时,设直线AB 的方程为(1)y k x =-,11(,)A x y ,22(,)B x y , ……………… 6分由 221,2(1),x y y k x ⎧+=⎪⎨⎪=-⎩得 2222(12)4220k x k x k +-+-=, ……………… 7分所以 2122412k x x k +=+,21222212k x x k -=+. (8)分由o190BF A ∠=,得110F A F B ⋅=, ……………… 9分因为111(1,)F A x y =+,122(1,)F B x y =+, 所以11121212()1F A F B x x x x y y ⋅=++++2121212()1(1)(1)x x x x k x x =++++-- 2221212(1)(1)()1k x x k x x k =++-+++2222222224(1)(1)101212k k k k k k k-=+⨯+-⨯++=++, ……………10分解得k =. ……………… 11分当o 190BAF ∠=(与o 190ABF ∠=相同)时,则点A 在以线段12F F 为直径的圆221x y +=上,也在椭圆W 上, 由22221,21,x y x y ⎧+=⎪⎨⎪+=⎩解得(0,1)A ,或(0,1)A -, ……………… 13分根据两点间斜率公式,得1k =±,综上,直线l的斜率k =,或1k =±时,1ABF ∆为直角三角形. ……………14分20.(本小题满分13分)(Ⅰ)解:11b =,21b =,32b =. ……………… 3分(Ⅱ)解:因为{}n a 为等比数列,11a =,22a =,所以12n n a -=, ……………… 4分 因为使得n a m ≤成立的n 的最大值为m b ,所以11b =,232b b ==,45673b b b b ====,89154b b b ====, 1617315b b b ====,3233506b b b ====, ……………… 6分所以12350243b b b b ++++=. (8)分 (Ⅲ)解:由题意,得1231n a a a a =<<<<<,结合条件*n a ∈N ,得n n a ≥. ……………… 9分又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +,所以11b =,*1()m m b b m +∈N ≤. ……………… 10分设2 a k =,则 2k ≥.假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥. 所以21b =,2k b =. 因为{}n b 为等差数列, 所以公差210d b b =-=, 所以1n b =,其中*n ∈N . 这与2(2)k b k =>矛盾, 所以22a =. ……………… 11分又因为123n a a a a <<<<<, 所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N .……………… 12分因为使得n a m ≤成立的n 的最大值为m b , 所以n n a ≤,由n n a ≥,得n n a =. ……………… 13分。
北京市西城区2014年高三二模试卷数 学(理科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )(A )(,2]-∞-(B )[2,)-+∞(C )(,2]-∞(D )[2,)+∞2.在复平面内,复数2=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A (B (C (D4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A Î,且4A Î (BA ,且4A Î(C ) 2A Î,且A (DAA5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.如图,阴影区域是由函数cos y x =的一段图象与x 轴围成的封闭图形,那么这个阴影区域的面积是( )(A )1(B )2(C )π2(D )π7. 在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤所表示的平面区域是α,不等式组4100,0x y ⎧⎨⎩≤≤≤≤所表示的平面区域是β. 从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是( ) (A )14(B )35(C )34(D )15正(主)视图俯视图侧(左)视图8. 设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.若Ω是边长为1的正方形,给出下列三个结论: ○1 ()x Ω○2 ()()x y Ω+Ω的取值范围是; ○3 ()()x y Ω-Ω恒等于0.其中所有正确结论的序号是( ) (A )○1(B )○2○3(C )○1○2(D )○1○2○3第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.61()x x+的二项展开式中,常数项为______. 10. 在△ABC 中,若4a =,3b =,1cos 3A =,则sin A =_____;B =_____. 11.如图,AB 和CD 是圆O 的两条弦, AB 与CD 相交于点E ,且4CE D E ==,:4:1AE BE =,则 AE =______;ACBD=______.12.执行如图所示的程序框图,输出的a 值为______.C D. O E BA13. 设抛物线24C y x =:的焦点为F ,M 为抛物线C 上一点,(2,2)N ,则||||MF MN +的取值范围是 .14. 已知f 是有序数对集合**{(,)|,}M x y x yN N =挝上的一个映射,正整数数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =. 对于任意的正整数,()m n m n >,映射f 由下表给出:则(3,5)f =__________,使不等式(2,)4x f x ≤成立的x 的集合是_____________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在平面直角坐标系xOy 中,点(cos )A θθ,(sin ,0)B θ,其中θ∈R .(Ⅰ)当2π3θ=时,求向量AB 的坐标; (Ⅱ)当π[0,]2θ∈时,求||AB 的最大值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的A ,B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.B 班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(Ⅱ)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(Ⅲ) 现从A 班的上述5名学生中随机选取3名学生,用X 表示其中视力大于4.6的人数,求X 的分布列和数学期望.17.(本小题满分14分)如图,在三棱锥ABC P -中,PA ⊥底面ABC ,AC BC ⊥,H 为PC 的中点, M 为AH 的中点,2PA AC ==,1BC =. (Ⅰ)求证:⊥AH 平面PBC ; (Ⅱ)求PM 与平面AHB 成角的正弦值; (Ⅲ)设点N 在线段PB 上,且PNPBλ=,//MN 平面ABC ,求实数λ的值.18.(本小题满分13分)已知函数12e ()44x f x ax x +=++,其中a ∈R .(Ⅰ)若0a =,求函数()f x 的极值;(Ⅱ)当1a >时,试确定函数()f x 的单调区间.19.(本小题满分14分)设,A B 是椭圆22: 143x y W +=上不关于坐标轴对称的两个点,直线AB 交x 轴于点M (与ACPHM点,A B 不重合),O 为坐标原点.(Ⅰ)如果点M 是椭圆W 的右焦点,线段MB 的中点在y 轴上,求直线AB 的方程; (Ⅱ)设N 为x 轴上一点,且4OM ON ⋅=,直线AN 与椭圆W 的另外一个交点为C ,证明:点B 与点C 关于x 轴对称.20.(本小题满分13分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*n a ∈N ,1n n a a +<. 设*m ∈N , 记使得n a m ≤成立的n 的最大值为m b .(Ⅰ)设数列{}n a 为1,3,5,7,,写出1b ,2b ,3b 的值;(Ⅱ)若{}n b 为等差数列,求出所有可能的数列{}n a ; (Ⅲ)设p a q =,12p a a a A +++=,求12q b b b +++的值.(用,,p q A 表示)北京市西城区2014年高三二模试卷参考答案及评分标准高三数学(理科) 2014.5一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.B 3.A 4.D 5.B 6.B 7.C 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.20 10.3 π411.8 2 12.13- 13.[3,+)∞14.8 {1,2}注:第10,11,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:由题意,得(sin cos ,)AB θθθ=-, ……………… 2分当 2π3θ=时,2π2π1sin cos sin cos 332θθ+-=-=, ……………… 4分2π3θ==所以 AB =. ……………… 6分(Ⅱ)解:因为 (sin cos ,)AB θθθ=-,所以 222||(sin cos )()AB θθθ=-+ ……………… 7分21sin 22sin θθ=-+ ……………… 8分 1sin 21cos 2θθ=-+- ……………… 9分π2)4θ=+. ………………10分因为π2θ≤≤,所以ππ5π2444θ+≤≤. ………………11分所以当π5π244θ+=时,2||AB取到最大值2||2()32AB=-=,……12分即当π2θ=时,||AB………………13分16.(本小题满分13分)(Ⅰ)解:A班5名学生的视力平均数为A4.3+5.1+4.6+4.1 4.9==4.65x+,…………2分B班5名学生的视力平均数为B5.1+4.9+4.0+4.0 4.5==4.55x+. ………………3分从数据结果来看A班学生的视力较好. ………………4分(Ⅱ)解:B班5名学生视力的方差较大. ………………7分(Ⅲ)解:由(Ⅰ)知,A班的5名学生中有2名学生视力大于4.6.则X的所有可能取值为0,1,2. ………………8分所以3335C1(0)C10P X===;………………9分213235C C3(1)C5P X===;………………10分123235C C3(2)C10P X===. ………………11分所以随机变量X………………12分故1336()012105105E X=⨯+⨯+⨯=. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为 PA ⊥底面ABC ,BC ⊂底面ABC ,所以 PA BC ⊥, ……………… 1分 又因为 AC BC ⊥, PAAC A =,所以 ⊥BC 平面PAC , ……………… 2分 又因为 ⊂AH 平面PAC ,所以 BC AH ⊥. ……………… 3分 因为 ,AC PA =H 是PC 中点, 所以 AH PC ⊥, 又因为 PCBC C =,所以 ⊥AH 平面PBC . ……………… 5分 (Ⅱ)解:在平面ABC 中,过点A 作,BC AD // 因为 ⊥BC 平面PAC , 所以 ⊥AD 平面PAC ,由 PA ⊥底面ABC ,得PA ,AC ,AD 两两垂直,所以以A 为原点,AD ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴如图建立空间直角坐标系,则(0,0,0)A ,(0,0,2)P ,(1,2,0)B ,(0,2,0)C ,(0,1,1)H ,11(0,,)22M . ……………… 6分设平面AHB 的法向量为(,,)x y z =n ,因为 (0,1,1)AH =,(1,2,0)AB =,由 0,0,AH AB ⎧⋅=⎪⎨⋅=⎪⎩n n 得 0,20,y z x y +=⎧⎨+=⎩ 令1=z ,得(2,1,1)=-n . ……………… 8分 设PM 与平面AHB 成角为θ,因为)23,21,0(-=PM ,所以sin cos ,PM PM PM θ⋅=<>==⋅n n n, 即 sin 15θ=.……………… 10分(Ⅲ)解:因为 (1,2,2)PB =-,PN PB λ=,所以 (,2,2)PN λλλ=-, 又因为 13(0,,)22PM =-, 所以 13(,2,2)22MN PN PM λλλ=-=--. ……………… 12分 因为 //MN 平面ABC ,平面ABC 的法向量(0,0,2)AP =, 所以 340MN AP λ⋅=-=, 解得 43=λ. ……………… 14分18.(本小题满分13分)(Ⅰ)解:函数1e ()44x f x x +=+的定义域为{|x x ∈R ,且1}x ≠-. ……………… 1分11122e (44)4e 4e ()(44)(44)x x x x xf x x x ++++-'==++. ……………… 3分令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下:……………… 5分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞. 所以当0x =时,函数()f x 有极小值e(0)4f =. ……………… 6分 (Ⅱ)解:因为 1a >,所以 22244(2)(1)0ax x x a x ++=++->,所以函数()f x 的定义域为R , ……………… 7分求导,得12112222e (44)e (24)e (42)()(44)(44)x x x ax x ax x ax a f x ax x ax x +++++-++-'==++++,…… 8分令()0f x '=,得10x =,242x a=-, ……………… 9分 当 12a <<时,21x x <,当x 变化时,()f x 和()f x '的变化情况如下:故函数()f x 的单调减区间为(2,0)a -,单调增区间为(,2)a-∞-,(0,)+∞. ……………… 11分当 2a =时,210x x ==,因为12222e ()0(244)x x f x x x +'=++≥,(当且仅当0x =时,()0f x '=) 所以函数()f x 在R 单调递增. ……………… 12分 当 2a >时,21x x >,当x 变化时,()f x 和()f x '的变化情况如下:故函数()f x 的单调减区间为4(0,2)a-,单调增区间为(,0)-∞,4(2,)a-+∞. 综上,当 12a <<时,()f x 的单调减区间为4(2,0)a -,单调增区间为4(,2)a-∞-,(0,)+∞;当 2a =时,函数()f x 在R 单调递增;当 2a >时,函数()f x 的单调减区间为4(0,2)a-;单调增区间为(,0)-∞,4(2,)a -+∞. ……………… 13分19.(本小题满分14分)(Ⅰ)解:椭圆W 的右焦点为(1,0)M , ……………… 1分因为线段MB 的中点在y 轴上,所以点B 的横坐标为1-, 因为点B 在椭圆W 上,将1x =-代入椭圆W 的方程,得点B 的坐标为3(1,)2-±. ……………… 3分 所以直线AB (即MB )的方程为3430x y --=或3430x y +-=.…………… 5分 (Ⅱ)证明:设点B 关于x 轴的对称点为1B (在椭圆W 上),要证点B 与点C 关于x 轴对称, 只要证点1B 与点C 重合,.又因为直线AN 与椭圆W 的交点为C (与点A 不重合),所以只要证明点A ,N ,1B 三点共线. ……………… 7分 以下给出证明:由题意,设直线AB 的方程为(0)y kx m k =+≠,11(,)A x y ,22(,)B x y ,则122(,)B x y -.由 223412,,x y y kx m ⎧+=⎨=+⎩得 222(34)84120k x kmx m +++-=, ……………… 9分 所以 222(8)4(34)(412)0km k m ∆=-+->,122834km x x k +=-+,212241234m x x k -=+. ……………… 10分在y kx m =+中,令0y =,得点M 的坐标为(,0)mk-, 由4OM ON ⋅=,得点N 的坐标为4(,0)km-, ……………… 11分 设直线NA ,1NB 的斜率分别为NA k ,1NB k ,则 1211122121212444444()()NA NB k kx y y x y y y y m m k k k k k k x x x x m m m m+⨯++⨯--=-=++++ ,………12分 因为 21112244k k x y y x y y m m+⨯++⨯ 21112244()()()()k k x kx m kx m x kx m kx m m m=+++⨯++++⨯2121242()()8k k x x m x x k m=++++2222412482()()()83434m k kmk m k k m k -=⨯++-+++ 22323824832243234m k k m k k k k k---++=+ 0=, ……………… 13分所以 10NA NB k k -=,所以点A ,N ,1B 三点共线,即点B 与点C 关于x 轴对称. ……………… 14分20.(本小题满分13分)(Ⅰ)解:11b =,21b =,32b =. ……………… 3分 (Ⅱ)解:由题意,得1231n a a a a =<<<<<,结合条件*n a ∈N ,得n n a ≥. ……………… 4分 又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +,所以11b =,*1()m m b b m +∈N ≤. ……………… 5分 设2 a k =,则 2k ≥. 假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥. 所以21b =,2k b =. 因为{}n b 为等差数列, 所以公差210d b b =-=, 所以1n b =,其中*n ∈N . 这与2(2)k b k =>矛盾,所以22a =. ……………… 6分 又因为123n a a a a <<<<<,所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N . ……………… 7分 因为使得n a m ≤成立的n 的最大值为m b , 所以n n a ≤,由n n a ≥,得n n a =. ……………… 8分(Ⅲ)解:设2 (1)a k k =>,因为123n a a a a <<<<<,所以1211k b b b -====,且2k b =,所以数列{}n b 中等于1的项有1k -个,即21a a -个; ……………… 9分 设3 ()a l l k =>, 则112l k k b b b -+====, 且3l b =,所以数列{}n b 中等于2的项有l k -个,即32a a -个; ……………… 10分 ……以此类推,数列{}n b 中等于1p -的项有1p p a a --个. ……………… 11分 所以1221321(1())))2((p q p b b b a a a a a p a p -++=-+--+-+++121(1)p p a a p a a p -=-----++121()p p p pa p a a a a -=+-++++(1)p q A =+-.即12(1)q q A b b b p ++++=-. ……………… 13分。
北京市西城区2014年高三5月二模数 学(文科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|20}A x x =-<,集合{|1}B x x =>,则( ) (A )A B ⊆ (B )B A ⊆(C )AB =∅ (D )A B ≠∅2.在复平面内,复数=(12i)(1i)z +-对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A(B)2(C(D)24.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A Î,且4A Î (BA ,且4A Î(C ) 2A Î,且A (DAA俯视图侧(左)视图5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.在△ABC 中,若4a =,3b =,1cos 3A =,则B =( ) (A )π4 (B )π3 (C )π6(D )2π37. 设函数2244, ,()log , 4.x x x f x x x -+⎧=⎨>⎩≤ 若函数()y f x =在区间(,1)a a +上单调递增,则实数a的取值范围是( ) (A )(,1]-∞ (B )[1,4](C )[4,)+∞(D )(,1][4,)-∞+∞8. 设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.如果Ω是边长为1的正方形,那么()()x y Ω+Ω的取值范围是( ) (A)(B)(C)(D)[1第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在等差数列{}n a 中,11a =,47a =,则公差d =_____;12n a a a +++=____.10.设抛物线2 4C y x =:的焦点为F ,M 为抛物线C 上一点,且点M 的横坐标为2,则||MF = .11.执行如图所示的程序框图,输出的a 值为______.12.在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤所表示的平面区域是α,不等式组440,0x y ⎧⎨⎩≤≤≤≤所表示的平面区域是β. 从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是_____. 13.已知正方形ABCD ,AB =2,若将ABD ∆沿正方形的对角线BD 所在的直线进行翻折,则在翻折的过程中,四面体A BCD -的体积的最大值是____.14.已知f 是有序数对集合**{(,)|,}M x y x yN N =挝上的一个映射,正整数数对(,)x y 在映射f下的象为实数z ,记作(,)f x y z =. 对于任意的正整数,()m n m n >,映射f 由下表给出:(,)x y (,)n n (,)m n (,)n m (,)f x yn m n -m n +则(3,5)f =__________,使不等式(2,)4x f x ≤成立的x 的集合是_____________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos (sin cos )1f x x x x =-+.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)当π[,0]2x ∈-时,求函数()f x 的最大值和最小值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的A ,B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.B 班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好? (Ⅱ)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明) (Ⅲ)根据数据推断A 班全班40名学生中有几名学生的视力大于4.6?17.(本小题满分14分)如图,在正方体1111D C B A ABCD -中,12AA =,E 为1AA 的中点,O 为1BD 的中点. (Ⅰ)求证:平面11A BD ⊥平面11ABB A ; (Ⅱ)求证://EO 平面ABCD ;(Ⅲ)设P 为正方体1111D C B A ABCD -棱上一点,给出满足条件OP 的点P 的 个数,并说明理由.18.(本小题满分13分)已知函数2e ()1xf x ax x =++,其中a ∈R .(Ⅰ)若0a =,求函数()f x 的定义域和极值;1(Ⅱ)当1a =时,试确定函数()()1g x f x =-的零点个数,并证明.19.(本小题满分14分)设12,F F 分别为椭圆22: 12x W y +=的左、右焦点,斜率为k 的直线l 经过右焦点2F ,且与椭圆W 相交于,A B 两点. (Ⅰ)求1ABF ∆的周长;(Ⅱ)如果1ABF ∆为直角三角形,求直线l 的斜率k .20.(本小题满分13分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*n a ∈N ,1n n a a +<. 设*m ∈N , 记使得n a m ≤成立的n 的最大值为m b .(Ⅰ)设数列{}n a 为1,3,5,7,,写出1b ,2b ,3b 的值;(Ⅱ)若{}n a 为等比数列,且22a =,求12350b b b b ++++的值;(Ⅲ)若{}n b 为等差数列,求出所有可能的数列{}n a .参考答案及评分标准高三数学(文科) 2014.5一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.A 3.C 4.D5.B 6.A 7.D 8.B 二、填空题:本大题共6小题,每小题5分,共30分. 9.2 2n 10.3 11.2- 12.1213.14.8 {1,2} 注:第9,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:2()sin cos cos 1f x x x x =-+11cos 2sin 2122xx +=-+ ……………… 4分 111sin 2cos 2222x x =-+π1)42x =-+, ……………… 6分 所以函数()f x 的最小正周期为2ππ2T ==. ……………… 7分 (Ⅱ)解:由 π02x -≤≤,得5πππ2444x --≤≤-.所以 π1sin(2)42x --≤, ……………… 9分所以π1)42x -+≤1,即 ()1f x ≤. ……… 11分当ππ242x -=-,即π8x =-时,函数()f x 取到最小值π1()82f -=;… 12分 当π5π244x -=-,即π2x =-时,函数()f x 取到最大值π()12f -=. …………13分 16.(本小题满分13分)(Ⅰ)解:A 班5名学生的视力平均数为A 4.3+5.1+4.6+4.1 4.9==4.65x +, ………… 2分B 班5名学生的视力平均数为B 5.1+4.9+4.0+4.0 4.5==4.55x +. …………… 3分从数据结果来看A 班学生的视力较好. ……………… 4分 (Ⅱ)解:B 班5名学生视力的方差较大. ……………… 8分 (Ⅲ)解:在A 班抽取的5名学生中,视力大于4.6的有2名,所以这5名学生视力大于4.6的频率为25. ……………… 11分 所以全班40名学生中视力大于4.6的大约有240165⨯=名,则根据数据可推断A 班有16名学生视力大于4.6. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:在正方体1111D C B A ABCD -中,因为 11A D ⊥平面11ABB A ,11A D ⊂平面11A BD ,所以平面11A BD ⊥平面11ABB A . ……………… 4分 (Ⅱ)证明:连接BD ,AC ,设BDAC G =,连接OG .因为1111D C B A ABCD -为正方体, 所以 1//DD AE ,且121DD AE =,且G 是BD又因为O 是1BD 的中点,所以 1//DD OG ,且121DD OG =,所以 AE OG //,且AE OG =,即四边形AGOE 是平行四边形,所以//EO AG , ……………… 6分 又因为 EO ⊄平面ABCD ,⊂AG 平面ABCD ,所以 //EO 平面ABCD . ……………… 9分 (Ⅲ)解:满足条件OP 的点P 有12个. ……………… 12分理由如下:因为 1111D C B A ABCD -为正方体,12AA =, 所以 AC = 1所以 12EO AG AC === ……………… 13分 在正方体1111D C B A ABCD -中,因为 1AA ⊥平面ABCD ,AG ⊂平面ABCD , 所以 1AA AG ⊥, 又因为 //EO AG ,所以 1AA OE ⊥,则点O 到棱1AA所以在棱1AA 上有且只有一个点(即中点E )到点O同理,正方体1111D C B A ABCD -每条棱的中点到点O所以在正方体1111D C B A ABCD -棱上使得OP =的点P 有12个. ……… 14分18.(本小题满分13分)(Ⅰ)解:函数e ()1xf x x =+的定义域为{|x x ∈R ,且1}x ≠-. ……………… 1分22e (1)e e ()(1)(1)x x xx x f x x x +-'==++. ……………… 3分 令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下:∞……………… 4分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞.所以当0x =时,函数()f x 有极小值(0)1f =. ……………… 5分 (Ⅱ)解:结论:函数()g x 存在两个零点.证明过程如下:由题意,函数2e ()11xg x x x =-++, 因为 22131()024x x x ++=++>, 所以函数()g x 的定义域为R . ……………… 6分求导,得22222e (1)e (21)e (1)()(1)(1)x x x x x x x x g x x x x x ++-+-'==++++, ………………7分令()0g x '=,得10x =,21x =,当x 变化时,()g x 和()g x '的变化情况如下:∞故函数()g x 的单调减区间为(0,1);单调增区间为(,0)-∞,(1,)+∞.当0x =时,函数()g x 有极大值(0)0g =;当1x =时,函数()g x 有极小值e(1)13g =-. ……………… 9分因为函数()g x 在(,0)-∞单调递增,且(0)0g =,所以对于任意(,0)x ∈-∞,()0g x ≠. ……………… 10分 因为函数()g x 在(0,1)单调递减,且(0)0g =,所以对于任意(0,1)x ∈,()0g x ≠. ……………… 11分因为函数()g x 在(1,)+∞单调递增,且e (1)103g =-<,2e (2)107g =->, 所以函数()g x 在(1,)+∞上仅存在一个0x ,使得函数0()0g x =, ………… 12分 故函数()g x 存在两个零点(即0和0x ). ……………… 13分19.(本小题满分14分)(Ⅰ)解:椭圆W 的长半轴长a =1(1,0)F -,右焦点2(1,0)F , … ……… 2分由椭圆的定义,得12||||2AF AF a +=,12||||2BF BF a+=, 所以1ABF ∆的周长为1212||||||||4AF AF BF BF a +++== ……………… 5分(Ⅱ)解:因为1ABF ∆为直角三角形,所以o 190BF A ∠=,或o 190BAF ∠=,或o190ABF ∠=, 当o 190BF A ∠=时,设直线AB 的方程为(1)y k x =-,11(,)A x y ,22(,)B x y , ……………… 6分由 221,2(1),x y y k x ⎧+=⎪⎨⎪=-⎩得 2222(12)4220k x k x k +-+-=, ……………… 7分所以 2122412k x x k +=+,21222212k x x k -=+. ……………… 8分由o190BF A ∠=,得110F A F B ⋅=, ……………… 9分因为111(1,)F A x y =+,122(1,)F B x y =+, 所以11121212()1F A F B x x x x y y ⋅=++++2121212()1(1)(1)x x x x k x x =++++-- 2221212(1)(1)()1k x x k x x k =++-+++2222222224(1)(1)101212k k k k k k k-=+⨯+-⨯++=++, ……………10分解得k = ……………… 11分 当o190BAF ∠=(与o190ABF ∠=相同)时,则点A 在以线段12F F 为直径的圆221x y +=上,也在椭圆W 上,由22221,21,x y x y ⎧+=⎪⎨⎪+=⎩解得(0,1)A ,或(0,1)A -, ……………… 13分 根据两点间斜率公式,得1k =±,综上,直线l 的斜率7k =±,或1k =±时,1ABF ∆为直角三角形. ……………14分20.(本小题满分13分) (Ⅰ)解:11b =,21b =,32b =. ……………… 3分 (Ⅱ)解:因为{}n a 为等比数列,11a =,22a =,所以12n n a -=, ……………… 4分 因为使得n a m ≤成立的n 的最大值为m b ,所以11b =,232b b ==,45673b b b b ====,89154b b b ====, 1617315b b b ====,3233506b b b ====, ……………… 6分所以12350243b b b b ++++=. ……………… 8分(Ⅲ)解:由题意,得1231n a a a a =<<<<<, 结合条件*n a ∈N ,得n n a ≥. ……………… 9分 又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +,所以11b =,*1()m m b b m +∈N ≤. ……………… 10分 设2 a k =,则 2k ≥.假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥.所以21b =,2k b =.因为{}n b 为等差数列,所以公差210d b b =-=,所以1n b =,其中*n ∈N .这与2(2)k b k =>矛盾,所以22a =. ……………… 11分 又因为123n a a a a <<<<<, 所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N . ……………… 12分 因为使得n a m ≤成立的n 的最大值为m b , 所以n n a ≤,由n n a ≥,得n n a =. ……………… 13分。
北京市西城区高三5月模拟测试(二模)数学(文)试题Word版含答案数学(文科)2018.5西城区高三模拟测试第I卷(选择题共40 分)选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项1•若集合 A {x|0 x 1} , B {x|x(A ) AI B (B ) AUB R (C ) A B(D )B A2 .复数11 i1 i1 i1 i(A(B )(C2 22 22 21 2(A ) y(B ) y x(C ) y cosxx4 •某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的侧棱长是 (A) ,10(B ) (B) 410 (C) 4.11(D ) y ln|x|5.向量a,b,c 在正方形网格中的位置如图所示.若向量共线,则实数(A) 2(B)(C ) 1 22x 0},则下列结论中正确的是3•下列函数中,既是偶函数又在区间(0,)上单调递减的是(D) 26 .设 a,b R ,且 ab 0 .则"ab 1 ”是"a(A )充分而不必要条件 (C )充分必要条件x > 1,7 .设不等式组x y > 3,表示的平面区域为 2x y v 5则实数a 的取值范围是 (A )』,2]2 (C ) [1,2]&地铁某换乘站设有编号为A ,B ,C ,D ,全出口,疏散1000名乘客所需的时间如下:安全出口编号 A , B B , C C , D D , E A , E 疏散乘客时间(s )120220160140200则疏散乘客最快的一个安全出口的编号是1丄”的 b(B )必要而不充分条件 (D )既不充分也不必要条件D .若直线ax y 0上存在区域D 上的点,1 (B ) [—,3]2 (D) [2,3]E 的五个安全出口.若同时开放其中的两个安二、填空题: 本大题共 6小题,每小题 5分,共30分.9 .函数y|x| 2的最大值是10.执行如右图所示的程序框图,输出的 k 值为11.在△ ABC(A) A ( B) B ( C) D ( D) E(非选择题共110分)2 212•双曲线C:^ —1的焦距是9 16切,贝U r ____ •13.为绿化生活环境,某市开展植树活动.今年全年植树万棵•若植树的棵数每年的增长率均为a,则aa 2X, x w 1,14 .已知函数f(x) 1其中a R .如果函数f(x)恰有两个零点,那么a的取值x a, x 1,2范围是三、解答题:本大题共6小题,共80分•解答应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分13分)在等差数列{a n}和等比数列{b n}中,d Q 1 , a2 b2 , 2 a°Q .(I)求{a n}和{b n}的通项公式;(n)求数列{a n b n}的前n项和S n.16. (本小题满分13分)已知函数f (x) COS2x.sin x cosx(I)求f (x)的定义域;2 2 2;若圆(X 1) y r (r 0)与双曲线C的渐近线相6.4万棵,计(n)求f(x)的取值范围.17. (本小题满分13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(I)求样本中患病者的人数和图中a, b的值;(H)试估计此地区该项身体指标检测值不低于5的从业者的人数;(III )某研究机构提出,可以选取常数X。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设全集{}02U x x =<<,集合{}01A x x =<≤,则集合U A =ð( )A.()0,1B.(]0,1C.()1,2D.[)1,22.已知平面向量()2,1a =-,()1,3b =,那么a b +等于( )A.5B.13C.17D.133.已知双曲线()2222:10,0x y C a b a b-=>>的虚轴长是实轴长的2倍,则此双曲线的离心 率为( )A.2B.2C.3D.55=,故选D.考点:1.双曲线的几何性质;2.双曲线的离心率4.某几何体的三视图如图所示,则该几何体的体积为( )A.2B.43C.4D.55.下列函数中,对于任意x R ∈,同时满足条件()()f x f x =-和()()f x f x π-=的函数是( )A.()sin f x x =B.()sin cos f x x x =C.()cos f x x =D.()22cos sin f x x x =-()22cos sin cos2f x x x x =-=,该函数是偶函数,且以π为最小正周期的周期函数,故选D.正(主)视图 俯视图 侧(左)视图 2 3 1 251考点:1.二倍角公式;2.三角函数的奇偶性与周期性6.设0a >,且1a ≠,则“函数log a y x =在()0,+∞上是减函数”是“函数()32y a x =-在R 上是增函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( )A.4B.5C.6D.78.如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )A.4个B. 6个C.10个D.14个【答案】C【解析】试题分析:分以下两种情况讨论:(1)点P 到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点P 位于正四面体各棱的中点,符合条件的有6个点;(2)点P 到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点P 在正四面体各侧面的中心点,符合条件的有4个点,故选C.考点:新定义第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设复数12i x yi i-=++,其中x 、y R ∈,则x y +=______.10.若抛物线2:2C y px =的焦点在直线20x y +-=上,则p =_____;C 的准线方程为_____. 4p =,此时抛物线的准线方程为2x =-.BAD C . P考点:抛物线的几何性质11.已知函数()3,01,01x x f x x x +≤⎧⎪=⎨>⎪+⎩,若()02f x =,则实数0=x ______;函数()f x 的最大值为_____.12.执行如图所示的程序框图,如果输入2a =,2b =,那么输出的a 值为______.【答案】256.【解析】试题分析:3log 24>不成立,执行第一次循环,224a ==; 3log 44>不成立,执行第二次循环,2416a ==;4333log 164log 3log 81>==不成立,执行第三次循环,216256a ==; 开始b a a =3log 4a >输出a结束 否 是 输入a , b33log 2564log 81>=成立,跳出循环体,输出a 的值为256,故选C.考点:算法与程序框图13.若不等式组1026ax y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是_______.范围是()3,5.考点:线性规划14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,2BC =,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,记()y f x =,则()1f =____; 函数()f x 的值域为_________.因为()()205080441f f =⨯-⨯+=>,因此()()max 04f x f ==, 所以函数()f x 的值域为4,45⎡⎤⎢⎥⎣⎦. A BD CP考点:1.平面向量的数量积;2.二次函数三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .已知222b c a bc +=+.(1)求A 的大小;(2)如果6cos 3=B ,2b =,求a 的值.考点:1.正弦定理与余弦定理;2.同角三角函数的基本关系16.(本小题满分13分)某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品. 寿命(天) 频数 频率[)100,20010 0.05 [)200,30030 a [)300,400 70 0.35[)400,500 b 0.15[)500,60060 c 合计 200 1(1)根据频率分布表中的数据,写出a 、b 、c 的值;(2)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不.是次品的概率; (3)某人从这批灯泡中随机地购买了()n n N *∈个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽.....样.所得的结果相同,求n 的最小值.所以n 的最小值为10.考点:1.频率分布表;2.古典概型17.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD 是矩形,2AD AB =,SA SD =,SA AB ⊥, N 是棱AD 的中点.(1)求证://AB 平面SCD ;(2)求证:SN ⊥平面ABCD ;(3)在棱SC 上是否存在一点P ,使得平面PBD ⊥平面ABCD ?若存在,求出SP PC的值;若不存在,说明理由.【答案】(1)详见解析;(2)详见解析;(3)存在,且12SP PC =. 所以 SN AD ⊥.又因为 AB AD A =,所以 SN ⊥平面ABCD .(3)如图,连接BD 交NC 于点F ,在平面SNC 中过F 作//FP SN 交SC 于点P ,连接PD 、PC . B CA D S N因为 SN ⊥平面ABCD ,所以FP ⊥平面ABCD . 又因为FP ⊂平面PBD ,所以平面PBD ⊥平面ABCD . 在矩形ABCD 中,因为//ND BC , 所以12NF ND FC BC ==. 在SNC ∆中,因为//FP SN , 所以12NF SP FC PC ==. 则在棱SC 上存在点P ,使得平面PBD ⊥平面ABCD ,此时12SP PC =. 考点:1.直线与平面平行的判定与性质;2.直线与平面垂直 18.(本小题满分13分)已知函数()ln af x x x=-,其中a R ∈. (1)当2a =时,求函数()f x 的图象在点()()1,1f 处的切线方程; (2)如果对于任意()1,x ∈+∞,都有()2f x x >-+,求a 的取值范围. 【答案】(1)350x y --=;(2)(],1-∞-. 【解析】试题分析:(1)将2a =代入函数解析式,求出()1f '及()1f 的值,利用点斜式写出切线方程;(2)利用参数分离法将()2f x x >-+转化为2ln 2a x x x x <+-,构造新函数()2ln 2g x x x x x =+-,问题转化为()min a g x <来求解,但需注意区间()1,+∞端点值的取舍. 试题解析:(1)由()2ln f x x x =-,得()212f x x x'=+, 所以()13f '=, 又因为()12f =- ,B CA DSNFP所以函数()f x 的图象在点()()1,1f 处的切线方程为350x y --=;19.(本小题满分14分)已知椭圆()2222:10x y W a b a b+=>>的焦距为2,过右焦点和短轴一个端点的直线的斜率为1-,O 为坐标原点. (1)求椭圆W 的方程.(2)设斜率为k 的直线l 与W 相交于A 、B 两点,记AOB ∆面积的最大值为k S ,证明:12S S =.【答案】(1)2212x y +=;(2)详见解析. 【解析】试题分析:(1)利用题干中的已知条件分别求出a 、b 、c ,从而写出椭圆W 的方程;(2)设直线l 的方程为y kx m =+,将直线l 的方程与椭圆W 的方程联立,借助韦达定理求出弦长AB ,并求出原点到直线l 的距离d ,然后以AB 为底边,d 为高计算AOB ∆的面积,利用基本不等式验证1k =时和2k =时AOB ∆的验证知(*)成立;当2k =时,因为()22299AOB S m m ∆=-,20.(本小题满分13分)在数列{}n a 中,()1n a n N n*=∈. 从数列{}n a 中选出()3k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列12、13、15、18为{}n a 的一个4 项子列.(1)试写出数列{}n a 的一个3项子列,并使其为等比数列;(2)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足104d -<<;(3)如果{}n c 为数列{}n a 的一个6项子列,且{}n c 为等比数列,证明:1234566332c c c c c c +++++≤.【答案】(1)答案不唯一. 如3项子列:12、14、18;(2)详见解析;(3)详见解析.【解析】试题分析:(1)根据题中的定义写出一个3项子列即可;(2)根据定义得到11b ≤,利用数列{}n b 的定义与单调性得到0d >,然后由5140b b d =+>得到14d >-,从而证明104d -<<;(3)注意到数列{}n a 各项均为有理数,从而得到数列{}n c 的公比q 为正有理数,从而存在K 、L N *∈使得K q L=,并对K 是否等于1进行分类讨论,结合等比数列求和公式进行证明. 试题解析:(1)答案不唯一. 如3项子列:12、14、18; (2)由题意,知1234510b b b b b ≥>>>>>,所以 210d b b =-<. 因为 514b b d =+,11b ≤,50b >,所以 514011d b b =->-=-,解得 14d >-.543223*********M K K L K L K L KL L ⎛⎫=+++++ ⎪⎝⎭. 因为 2L ≥,K 、*M N ∈,所以 2345123456111116312222232c c c c c c ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤+++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.综上,12345663 32c c c c c c+++++≤. 考点:1.新定义;2.等比数列求和。
北京市西城区2014年高三二模试卷数学(理科) 2014.5第I 卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( ).A .(,2]-∞-B .[2,)-+∞C .(,2]-∞D .[2,)+∞2.在复平面内,复数2(12i)z =+对应的点位于( ).A . 第一象限B .第二象限C .第三象限D .第四象限3.直线2y x =为双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线,则双曲线C 的离心率是( ). A .5B .5C .3D .3 4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ).A . 2A ∈,且4A ∈B . 2A ∈,且4A ∈C . 2A ∈,且25A ∈D .2A ∈,且17A ∈5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.如图,阴影区域是由函数cos y x =的一段图象与x轴围成的封闭图形,那么这个阴影区域的面积是( ).A .1B .2C . π2D .π7.在平面直角坐标系xOy中,不等式组0,0,80xyx y⎧⎪⎨⎪+-⎩所表示的平面区域是α,不等式组04,010xy⎧⎨⎩所表示的平面区域是β.从区域α中随机取一点(,)P x y,则P为区域β内的点的概率是().A.14B.35C.34D.158.设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.若Ω是边长为1的正方形,给出下列三个结论:①()x Ω的最大值为2; ②()()x y Ω+Ω的取值范围是[2,22];③()()x y Ω-Ω恒等于0.其中所有正确结论的序号是( ).A .①B .②③C .①②D .①②③第II 卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.61()x x +的二项展开式中,常数项为_________.10.在ABC 中,若14,3,cos 3a b A ===,则sin A =______,B =______.11.如图,AB 和CD 是圆O 的两条弦,AB 与CD 相交于点E ,且4,:4:1CE DE AE BE ===,则AE =_______;AC BD=______.12.执行如图所示的程序框图,输出的a 值为_________.13.设抛物线2:4C y x =的焦点为,F M 为抛物线C 上一点,(2,2)N ,则MF MN +的取值范围为_________.14.已知f 是有序数对集合**{(,)|,}M x y x y =∈∈N N 上的一个映射,正整数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =,对于任意的正整数,()m n m n >,映射f 由下表给出:则(3,5)f =_______,使不等式(2,)4x f x 成立的x 集合是_________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在平面直角坐标系xOy中,点(cos),(sin,0)A Bθθθ,其中θ∈R.(I)当2π3θ=,求向量AB的坐标;(II)当π[0,]2θ∈时,求AB的最大值.为了解某校学生的视力情况,现采用随机抽样的方式从该校的,A B两班中各抽5名学生进行视力检测.检测的数据如下:A班的5名学生的视力检测结果:43.,51.,46.,41.,49..B班的5名学生的视力检测结果:51.,49.,40.,40.,45..(I)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(II)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(III)现从班的上述5名学生中随机选取3名学生,用X表示其中视力大于46.的人数,求X的分布列和数学期望.如图,在三棱锥P ABC -中,PA ⊥底面,,ABC AC BC H ⊥为PC 的中点,M 为AH 的中点,2,1PA AC BC ===(I )求证:AH ⊥面PBC ;(II )求PM 与平面AHB 所成角的正弦值 (III )设点N 在线段PB 上,且,PN MN PBλ=∥平面ABC ,求实数λ的值.已知函数12e ()44x f x ax x +=++,其中a ∈R (I )若0a =,求函数()f x 的极值;(II )当1a >时,试确定函数()f x 的单调区间.设,A B是椭圆22:143x yW+=上不关于坐标轴对称的两个点,直线AB交x轴于点M(与点,A B不重合),O为坐标原点.(I)如果点M是椭圆W的右焦点,线段MB的中点在y轴上,求直线AB的方程;(II)设N为x轴上一点,且4OM ON⋅=,直线AN与椭圆W的另外一个交点为C,证明:点B与点C关于x轴对称.在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*1,n n n a a a +∈<N .设*m ∈N ,记使得n a m 成立的n 最大值为m b .(I )设数列为1,3,5,7,,写出123,,b b b 的值; (II )若{}n b 为等差数列,求出所有可能的数列{}n a ; (III )设12,p p a q a a a A =+++=,求12q b b b +++的值.(用,,p q A 表示)。
北京市西城区2014年高三5月二模理科综合能力测试生物试题2014.5选择题(共20题每小题6分共120分)在每小题列出的四个选项中,选出符合题目要求的一项。
1.下列关于生物膜的叙述不正确...的是A.温度会影响磷脂和膜蛋白分子运动B.膜蛋白是生物膜功能的主要承担者C.有载体蛋白参与的物质跨膜运输方式即为主动运输D.T细胞对抗原的识别与细胞膜上特异的蛋白分子有关2.下列有关酶的叙述不正确...的是A.酶通过提供反应所需的活化能来提高反应速度B.酶活性最高时的温度并不适合该酶的长期保存C.酶在一定pH范围内才起作用且受pH变化的影响D.一种酶只能催化一种或一类底物的化学反应3.B基因在人肝脏细胞中的表达产物是含100个氨基酸的B-100蛋白,而在小肠细胞中的表达产物是由前48个氨基酸构成的B-48蛋白。
研究发现,小肠细胞中B基因转录出的mRNA靠近中间位置某一CAA密码子上的C被编辑成了U。
以下判断错误..的是A.小肠细胞中编辑后的mRNA第49位密码子是终止密码UAAB.B-100蛋白前48个氨基酸序列与B-48蛋白相同C.B-100蛋白和B-48蛋白的空间结构不同D.肝脏和小肠细胞中的B基因结构有差异4.下列关于种群、群落、生态系统的叙述正确的是A.华北地区种植的杨树林构成了一个种群B.群落演替过程中优势种不发生显著变化C.生态系统营养结构越复杂,抗外力干扰的能力越强D.发展生态农业可以实现物质和能量的循环利用5.下列有关实验的叙述正确的是A.取洋葱的外表皮观察细胞的质壁分离现象需用碘液染色B.用黑藻叶片观察细胞质流动时,以叶绿体的运动为参照C.以樱桃为原料酿制酒和醋时,应先供氧进行果醋的发酵D.在外植体脱分化时,应通入足量的CO2以满足光合需要29.(16分)为探究大气CO2浓度上升及紫外线(UV)辐射强度增加对农业生产的影响,研究人员人工模拟一定量的UV辐射和加倍的CO2浓度处理番茄幼苗,直至果实成熟,测定了番茄株高及光合作用相关生理指标,结果见下表。
北京市西城区2014年高三5月二模数 学(文科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|20}A x x =-<,集合{|1}B x x =>,则( ) (A )A B ⊆ (B )B A ⊆(C )AB =∅ (D )A B ≠∅2.在复平面内,复数=(12i)(1i)z +-对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A(B)2(C(D)24.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A Î,且4A Î (BA ,且4A Î(C ) 2A Î,且A (DAA俯视图侧(左)视图5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.在△ABC 中,若4a =,3b =,1cos 3A =,则B =( ) (A )π4 (B )π3 (C )π6(D )2π37. 设函数2244, ,()log , 4.x x x f x x x -+⎧=⎨>⎩≤ 若函数()y f x =在区间(,1)a a +上单调递增,则实数a的取值范围是( ) (A )(,1]-∞ (B )[1,4](C )[4,)+∞(D )(,1][4,)-∞+∞8. 设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.如果Ω是边长为1的正方形,那么()()x y Ω+Ω的取值范围是( ) (A)(B)(C)(D)[1第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在等差数列{}n a 中,11a =,47a =,则公差d =_____;12n a a a +++=____.10.设抛物线2 4C y x =:的焦点为F ,M 为抛物线C 上一点,且点M 的横坐标为2,则||MF = .11.执行如图所示的程序框图,输出的a 值为______.12.在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤所表示的平面区域是α,不等式组440,0x y ⎧⎨⎩≤≤≤≤所表示的平面区域是β. 从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是_____. 13.已知正方形ABCD ,AB =2,若将ABD ∆沿正方形的对角线BD 所在的直线进行翻折,则在翻折的过程中,四面体A BCD -的体积的最大值是____.14.已知f 是有序数对集合**{(,)|,}M x y x yN N =挝上的一个映射,正整数数对(,)x y 在映射f下的象为实数z ,记作(,)f x y z =. 对于任意的正整数,()m n m n >,映射f 由下表给出:(,)x y (,)n n (,)m n (,)n m (,)f x yn m n -m n +则(3,5)f =__________,使不等式(2,)4x f x ≤成立的x 的集合是_____________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos (sin cos )1f x x x x =-+.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)当π[,0]2x ∈-时,求函数()f x 的最大值和最小值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的A ,B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.B 班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好? (Ⅱ)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明) (Ⅲ)根据数据推断A 班全班40名学生中有几名学生的视力大于4.6?17.(本小题满分14分)如图,在正方体1111D C B A ABCD -中,12AA =,E 为1AA 的中点,O 为1BD 的中点. (Ⅰ)求证:平面11A BD ⊥平面11ABB A ; (Ⅱ)求证://EO 平面ABCD ;(Ⅲ)设P 为正方体1111D C B A ABCD -棱上一点,给出满足条件OP 的点P 的 个数,并说明理由.18.(本小题满分13分)已知函数2e ()1xf x ax x =++,其中a ∈R .(Ⅰ)若0a =,求函数()f x 的定义域和极值;1(Ⅱ)当1a =时,试确定函数()()1g x f x =-的零点个数,并证明.19.(本小题满分14分)设12,F F 分别为椭圆22: 12x W y +=的左、右焦点,斜率为k 的直线l 经过右焦点2F ,且与椭圆W 相交于,A B 两点. (Ⅰ)求1ABF ∆的周长;(Ⅱ)如果1ABF ∆为直角三角形,求直线l 的斜率k .20.(本小题满分13分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*n a ∈N ,1n n a a +<. 设*m ∈N , 记使得n a m ≤成立的n 的最大值为m b .(Ⅰ)设数列{}n a 为1,3,5,7,,写出1b ,2b ,3b 的值;(Ⅱ)若{}n a 为等比数列,且22a =,求12350b b b b ++++的值;(Ⅲ)若{}n b 为等差数列,求出所有可能的数列{}n a .参考答案及评分标准高三数学(文科) 2014.5一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.A 3.C 4.D5.B 6.A 7.D 8.B 二、填空题:本大题共6小题,每小题5分,共30分. 9.2 2n 10.3 11.2- 12.1213.14.8 {1,2} 注:第9,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:2()sin cos cos 1f x x x x =-+11cos 2sin 2122xx +=-+ ……………… 4分 111sin 2cos 2222x x =-+π1)42x =-+, ……………… 6分 所以函数()f x 的最小正周期为2ππ2T ==. ……………… 7分 (Ⅱ)解:由 π02x -≤≤,得5πππ2444x --≤≤-.所以 π1sin(2)42x --≤, ……………… 9分所以π1)42x -+≤1,即 ()1f x ≤. ……… 11分当ππ242x -=-,即π8x =-时,函数()f x 取到最小值π1()82f -=;… 12分 当π5π244x -=-,即π2x =-时,函数()f x 取到最大值π(12f -=. …………13分 16.(本小题满分13分)(Ⅰ)解:A 班5名学生的视力平均数为A 4.3+5.1+4.6+4.1 4.9==4.65x +, ………… 2分B 班5名学生的视力平均数为B 5.1+4.9+4.0+4.0 4.5==4.55x +. …………… 3分从数据结果来看A 班学生的视力较好. ……………… 4分 (Ⅱ)解:B 班5名学生视力的方差较大. ……………… 8分 (Ⅲ)解:在A 班抽取的5名学生中,视力大于4.6的有2名,所以这5名学生视力大于4.6的频率为25. ……………… 11分 所以全班40名学生中视力大于4.6的大约有240165⨯=名,则根据数据可推断A 班有16名学生视力大于4.6. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:在正方体1111D C B A ABCD -中,因为 11A D ⊥平面11ABB A ,11A D ⊂平面11A BD ,所以平面11A BD ⊥平面11ABB A . ……………… 4分 (Ⅱ)证明:连接BD ,AC ,设BDAC G =,连接OG .因为1111D C B A ABCD -为正方体, 所以 1//DD AE ,且121DD AE =,且G 是BD又因为O 是1BD 的中点,所以 1//DD OG ,且121DD OG =,所以 AE OG //,且AE OG =,即四边形AGOE 是平行四边形,所以//EO AG , ……………… 6分 又因为 EO ⊄平面ABCD ,⊂AG 平面ABCD ,所以 //EO 平面ABCD . ……………… 9分 (Ⅲ)解:满足条件OP 的点P 有12个. ……………… 12分理由如下:因为 1111D C B A ABCD -为正方体,12AA =, 所以 AC = 1所以 12EO AG AC === ……………… 13分 在正方体1111D C B A ABCD -中,因为 1AA ⊥平面ABCD ,AG ⊂平面ABCD , 所以 1AA AG ⊥, 又因为 //EO AG ,所以 1AA OE ⊥,则点O 到棱1AA所以在棱1AA 上有且只有一个点(即中点E )到点O同理,正方体1111D C B A ABCD -每条棱的中点到点O所以在正方体1111D C B A ABCD -棱上使得OP =的点P 有12个. ……… 14分18.(本小题满分13分)(Ⅰ)解:函数e ()1xf x x =+的定义域为{|x x ∈R ,且1}x ≠-. ……………… 1分22e (1)e e ()(1)(1)x x xx x f x x x +-'==++. ……………… 3分 令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下:∞……………… 4分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞.所以当0x =时,函数()f x 有极小值(0)1f =. ……………… 5分 (Ⅱ)解:结论:函数()g x 存在两个零点.证明过程如下:由题意,函数2e ()11xg x x x =-++, 因为 22131(024x x x ++=++>, 所以函数()g x 的定义域为R . ……………… 6分求导,得22222e (1)e (21)e (1)()(1)(1)x x x x x x x x g x x x x x ++-+-'==++++, ………………7分令()0g x '=,得10x =,21x =,当x 变化时,()g x 和()g x '的变化情况如下:∞故函数()g x 的单调减区间为(0,1);单调增区间为(,0)-∞,(1,)+∞.当0x =时,函数()g x 有极大值(0)0g =;当1x =时,函数()g x 有极小值e(1)13g =-. ……………… 9分因为函数()g x 在(,0)-∞单调递增,且(0)0g =,所以对于任意(,0)x ∈-∞,()0g x ≠. ……………… 10分 因为函数()g x 在(0,1)单调递减,且(0)0g =,所以对于任意(0,1)x ∈,()0g x ≠. ……………… 11分因为函数()g x 在(1,)+∞单调递增,且e (1)103g =-<,2e (2)107g =->, 所以函数()g x 在(1,)+∞上仅存在一个0x ,使得函数0()0g x =, ………… 12分 故函数()g x 存在两个零点(即0和0x ). ……………… 13分19.(本小题满分14分)(Ⅰ)解:椭圆W 的长半轴长a =1(1,0)F -,右焦点2(1,0)F , … ……… 2分由椭圆的定义,得12||||2AF AF a +=,12||||2BF BF a+=, 所以1ABF ∆的周长为1212||||||||4AF AF BF BF a +++== ……………… 5分(Ⅱ)解:因为1ABF ∆为直角三角形,所以o 190BF A ∠=,或o 190BAF ∠=,或o190ABF ∠=, 当o 190BF A ∠=时,设直线AB 的方程为(1)y k x =-,11(,)A x y ,22(,)B x y , ……………… 6分由 221,2(1),x y y k x ⎧+=⎪⎨⎪=-⎩得 2222(12)4220k x k x k +-+-=, ……………… 7分所以 2122412k x x k +=+,21222212k x x k -=+. ……………… 8分由o190BF A ∠=,得110F A F B ⋅=, ……………… 9分因为111(1,)F A x y =+,122(1,)F B x y =+, 所以11121212()1F A F B x x x x y y ⋅=++++2121212()1(1)(1)x x x x k x x =++++-- 2221212(1)(1)()1k x x k x x k =++-+++2222222224(1)(1)101212k k k k k k k-=+⨯+-⨯++=++, ……………10分解得k = ……………… 11分 当o190BAF ∠=(与o190ABF ∠=相同)时,则点A 在以线段12F F 为直径的圆221x y +=上,也在椭圆W 上,由22221,21,x y x y ⎧+=⎪⎨⎪+=⎩解得(0,1)A ,或(0,1)A -, ……………… 13分 根据两点间斜率公式,得1k =±,综上,直线l 的斜率7k =±,或1k =±时,1ABF ∆为直角三角形. ……………14分20.(本小题满分13分) (Ⅰ)解:11b =,21b =,32b =. ……………… 3分 (Ⅱ)解:因为{}n a 为等比数列,11a =,22a =,所以12n n a -=, ……………… 4分 因为使得n a m ≤成立的n 的最大值为m b ,所以11b =,232b b ==,45673b b b b ====,89154b b b ====, 1617315b b b ====,3233506b b b ====, ……………… 6分所以12350243b b b b ++++=. ……………… 8分(Ⅲ)解:由题意,得1231n a a a a =<<<<<, 结合条件*n a ∈N ,得n n a ≥. ……………… 9分 又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +,所以11b =,*1()m m b b m +∈N ≤. ……………… 10分 设2 a k =,则 2k ≥.假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥.所以21b =,2k b =.因为{}n b 为等差数列,所以公差210d b b =-=,所以1n b =,其中*n ∈N .这与2(2)k b k =>矛盾,所以22a =. ……………… 11分 又因为123n a a a a <<<<<,所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N . ……………… 12分 因为使得n a m ≤成立的n 的最大值为m b , 所以n n a ≤,由n n a ≥,得n n a =. ……………… 13分。