动能定理
- 格式:doc
- 大小:138.00 KB
- 文档页数:2
对动能定理的理解及应用(1)动能定理:合外力做功等于动能的变化。
(2)公式:W合= E k末- E k初(3)理解:①物理意义:动能定理实际上是一个质点的功能关系,揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功对应着物体动能的变化,变化的大小由做功的多少来决定。
②动能定理虽然是在物体受恒力作用,沿直线做匀加速直线运动的情况下推导出来的,但是对于外力是变力或物体做曲线运动,动能定理都成立,要对动能定理适用条件(不论外力是否为恒力,也不论物体是否做直线运动,动能定理都成立)有清楚的认识。
③动能定理提供了一种计算变力做功的简便方法。
功的计算公式w=Fscosa只能求恒力做的功,不能求变力的功,而由于动能定理提供了一个物体的动能变化△Ek与合外力对物体所做功具有等量代换关系,因此已知(或求出)物体的动能变化△Ek,就可以间接求得变力做功。
④它描述了力作用一段位移(空间积累)的效果——产生动能变化。
⑤应用动能定理解题的优点:动能定理对应的是一个过程,它只涉及到物体初、末状态的动能和整个过程中合外力的功,无需注意其中运动状态变化的细节,且涉及的功和能均为标量无方向性,计算十分方便,因而当遇到不涉及加速度和时间而涉及力、位移、质量、速度、功和动能等物理量大小的力学问题时,优先考虑用动能定理。
用动能定理求解一般比用牛顿第二定律和运动学公式求解来得简便,甚至还能解决牛顿定律和运动学公式难以解决的问题,动能定理解题优于动力学方法,是解决力学问题的重要方法。
【典型例题】1、将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。
(g取10m/s2)Hh2-7-22、从离地面H高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k吧(k<1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求:(1)小球第一次与地面碰撞后,能够反弹起的最大高度是多少?(2)小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?3、如图4所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
动能定理物体动能与功的关系动能定理是物理学中一个重要的定理,它描述了物体的动能与所受的做功之间的关系。
本文将详细介绍动能定理,并探讨物体动能与功之间的关系。
一、动能定理的定义和表达式动能定理是描述物体动能变化的定理。
它可以表达为:物体的动能变化等于物体所受的净外力所做的功。
动能定理的数学表达式为:物体的动能的变化量等于物体所受的净外力所做的功的总和。
数学表达式为:ΔKE = W_net其中,ΔKE表示物体动能的变化量,W_net表示物体所受的净外力所做的功的总和。
二、物体动能与功的关系根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
这意味着,当一个物体所受的净外力做功时,它的动能会发生变化。
1. 净外力与功的关系在动能定理中,功是由物体所受的净外力所做的。
净外力是指物体所受的所有作用力的矢量和。
功可以由净外力的大小和方向以及物体位移的大小和方向来计算。
2. 功对动能的影响根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
如果物体所受的净外力所做的功为正值,那么物体的动能将增加;如果功为负值,物体的动能将减小;如果功为零值,物体的动能将保持不变。
3. 动能与功的关系示例例如,当一个人用力推动一辆静止的小车,小车受到的作用力将进行功,将其推动到一定的位移。
这时,小车的动能将增加,同时也可以通过功的大小来计算增加的动能。
另一个示例是,当一个物体从高处自由下落时,在下落过程中,重力对物体进行功,使其动能增加。
这也可以通过功的大小来计算物体的动能增加量。
三、总结动能定理是描述物体动能与所受的净外力所做的功之间的关系的定理。
根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
净外力的大小和方向以及物体位移的大小和方向都会影响功的大小,进而影响物体动能的变化。
在实际问题中,我们可以利用动能定理来分析物体的运动情况和动能的变化。
通过计算功的大小和方向,我们可以了解物体动能的增加或减少,从而加深对动能和功之间关系的理解。
高中物理动能定理的内容与公式高中物理动能定理公式是W=(1/2)mV₁²-(1/2)mVo²=Ek₂-Ek₁,W为外力做的功,Vo是物体初速度,V₁是末速度,Ek₂表示物体的末动能,Ek₁表示物体的初动能。
W是动能的变化,又称动能的增量,也表示合外力对物体做的总功。
动能定理研究的对象是单一的物体,或者可以称单一物体的物体系。
动能定理的计算式是等式,一般以地面为参考系。
动能定理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;里可以是分段作用,也可以是同时作用,只要可以求出各个力的正负代数和。
拓展阅读:高中物理动能定理的知识点动能定理的基本概念合外力做的功,等于物体动能的改变量,这就是动能定理的内容。
动能定理还可以表述为:过程中所有分力做的功的代数和,等于动能的改变量。
这里的合外力指研究对象受到的所有外力的合力。
动能定理的表达式动能定理的基本表达式:F合s=W=ΔEk;动能定理的其他表示方法:∫Fds=W=ΔEk;F1s1+F2s2+F3s3+……=ΔEk;功虽然是标量,但有正负一说。
最为严谨的公式是第二个公式;最常用的,有些难度的却是第三个公式。
动能定理根源我们来推导动能定理,很多学生可能认为这是没有必要的,其实恰恰相反。
近几年的高考物理试题,特别注重基础知识的推导和与应用。
理解各个知识点之间的关联,能够帮你更好的理解物理考点。
在内心理解了动能定理,知道了它的本源,才能在考试中科学运用动能定理来解题。
动能定理的推导分为如下两步:(1)匀变速直线运动下的动能定理推导过程物体做匀变速直线运动,则其受力情况为F合=ma;由匀变速直线运动的公式:2as=v2-v02;方程的两边都乘以m,除以2,有:mas=½(mv2-v02)=Ek2-Ek1=ΔEk;上述方程的左端mas=F合s=W;因此有:F合s=W=ΔEk;这就是动能定理在匀变速直线运动情况下的推导过程。
第11章动能定理即质点系的动能等于其随质心平BCθABθCPA2rOr C力的功2rOr CAP2rOr CAP2rOr CAPs汽车驱动问题能量角度:汽缸内气体爆炸力是内力,不改变汽车的动量,但使汽车的动能增加。
动量角度:地面对后轮的摩擦力是驱动力,使汽车的动量增加,但不做功,不改变汽车的动能。
内力不能改变质点系的动量和动量矩,但可以改变能量;外力能改变质点系的动量和动量矩,但不一定能改变能量。
例题11-8水平悬臂梁AB,B端铰接滑轮B,匀质滑轮质量m1,半径r;绳一端接滚,轮C,半径r,质量m2视为质量集中在边缘;绳另端接重物D,质量m3。
求重物加速度。
CωDv BωCv 解:末位置是一般位置hconst 01==T T =2T 2321D v m 221B B J ω+221CP J ω+运动学关系rr v v B C C D ωω===2121rm J B =2222222rm r m r m J P=+=2321222121Dv m m m T ⎟⎠⎞⎜⎝⎛++=gh m W 312=CωDv BωCv h1212W T T =−gh m T v m m m D 30232122121=−⎟⎠⎞⎜⎝⎛++对t 求导h g m vv m m m D D &&33210)221(=−++Dv h =&D D a v=&gm m m m a D 3213221++=例11-9匀质圆盘和滑块的质量均为m。
圆盘的半径为r。
杆平行于斜面,其质量不计。
斜面的倾斜角为θ。
圆盘、滑块与斜面的摩擦因数均为μ。
圆盘在斜面上作纯滚动。
试求滑块下滑加速度。
1212W T T =−01=T 2222212121mvJ mv T A ++=ω解()sF F mgs mgs W B A +−+=θθsin sin 12θμcos mg F F B A ==取导221,mrJ v r A ==ω2245mvT =()θμθcos sin 2452−=gs v a v v s==&&,()θμθcos sin 54−=g a F A 是静摩擦力,理想约束,不作功。
动能定理
动能定理是物理学中一个重要的定理,它是物体运动的重要理论依据,是物理学中最重要
的定理之一。
动能定理指出,物体在加速运动时,其动能增加,而在减速运动时,其动能
减少。
一、动能定理的内容
动能定理指出,当物体在加速运动时,其动能增加,而在减速运动时,其动能减少。
它可
以用来解释物体运动的原理,并用来计算物体的动能变化。
动能定理的数学表达式为:
$$W_{2}-W_{1}=\Delta W=F\Delta t$$
其中,$W_{2}$和$W_{1}$分别表示物体的最终动能和初始动能,$\Delta W$表示物体的动
能变化,$F$表示外力,$\Delta t$表示时间间隔。
二、动能定理的应用
1、动能定理可以用来解释物体运动的原理。
例如,当一个球从一定高度自由落下时,它
的动能会随着时间的推移而增加,这就是动能定理的体现。
2、动能定理可以用来计算物体的动能变化。
例如,当一个物体从一定高度落下时,可以
利用动能定理来计算它在落下过程中的动能变化。
3、动能定理也可以用来计算物体的运动轨迹。
例如,当一个物体在一个重力场中运动时,可以利用动能定理来计算它的运动轨迹。
三、动能定理的总结
动能定理是物理学中一个重要的定理,它是物体运动的重要理论依据。
它指出,当物体在
加速运动时,其动能增加,而在减速运动时,其动能减少。
动能定理可以用来解释物体运
动的原理,并用来计算物体的动能变化。
动能定理知识梳理 一、动能(一)动能的表达式1.定义:物体由于运动而具有的能叫做动能.2.公式:E k =mv 2,动能的单位是焦耳. 说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关.(2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要速度的大小相等,该物体具有的动能就相等.(3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能. (二)动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W=E -E ,W 是外力所做的总功,E 、E 分别为初末状态的动能.若初、末速度分别为v 1、v 2,则E =mv 21,E =mv . 3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.利用动能定理来求解变力所做的功通常有以下两种情况: ①如果物体只受到一个变力的作用,那么:W=E k2-E k1.只要求出做功过程中物体的动能变化量ΔE k ,也就等于知道了这个过程中变力所做的功.②如果物体同时受到几个力作用,但是其中只有一个力F 1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W 1+W 其他=ΔE k .可见应把变力所做的功包括在上述动能定理的方程中. ③注意以下两点:122k 1k 1k 1k 1k 122k 1222a.变力的功只能用表示功的符号W来表示,一般不能用力和位移的乘积来表示.b.变力做功,可借助动能定理求解,动能中的速度有时也可以用分速度来表示.4.理解动能定理(1)力(合力)在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
动能定理1、动能定理的基本概念合外力做的功,等于物体动能的改变量,这就是动能定理的内容。
动能定理还可以表述为:过程中所有分力做的功的代数和,等于动能的改变量。
这里的合外力指研究对象受到的所有外力的合力。
2、动能定理的表达式动能定理的基本表达式:F合s=W=ΔEk;动能定理的其他表示方法:∫Fds=W=ΔEk;F1s1+F2s2+F3s3+……=ΔEk;功虽然是标量,但有正负一说。
最为严谨的公式是第二个公式;最常用的,有些难度的却是第三个公式。
3、动能定理的推导(1)匀变速直线运动下的动能定理推导过程物体做匀变速直线运动,则其受力情况为F合=ma;由匀变速直线运动的公式:2as=v2-v02;方程的两边都乘以m,除以2,有:mas=½(mv2-v02)=Ek2-Ek1=ΔEk;上述方程的左端mas=F合s=W;因此有:F合s=W=ΔEk;(2)普通直线运动模式下动能定理的推导过程运用微积分wuli.in的思想,我们普通运动模式进行拆分,将其肢解为非常小的一段一段的运动(微元法应用;请同学们思考下位移公式的推导过程)。
当我们的运动模式被无限分割后,每一小段都可以认为是匀变加速直线运动模式(要么a>0;要么a<0;要么a=0)。
对任何一段(从t=m到t=n),我们都可以利用(1)中的推理过程得到W=F合s=man=En-Em对整个过程,我们有:W总=W1+W2+W3+……=ma1+ma2+ma3+……=(E2-E1)+(E3-E2)+(E4-E3)+……+(En-Em)+……=E末-E初即,W总=E末-E初;这就是普通的直线运动模式下的动能定理推导过程。
曲线运动模式下,动能定理也是成立的。
4、动能定理的意义无论是研究外力做的功,还是求物体动能的变化,除了最基本的定义外,我们有了另一条求解途径。
动能定理建立起过程量(功)和状态量(动能)间的联系。
我们在分析复杂运动模式时,除了牛顿动力学内容外,还可以借助于动能定理,避开中间复杂的(求加速度等)过程。
动能定理的定义和公式在咱们学习物理的过程中,有一个特别重要的概念,那就是动能定理。
这玩意儿听起来好像有点高深莫测,但其实只要咱们耐心点儿,搞清楚它的定义和公式,那也不是什么难事儿。
先来说说啥是动能定理吧。
简单来讲,动能定理说的就是合外力对物体所做的功等于物体动能的变化量。
这就好比咱们跑步,咱们用力往前跑,这个力做的功就会影响咱们跑的速度,速度一变,动能也就跟着变啦。
动能定理的公式是:W 合= ΔEk 。
这里的“W 合”表示合外力做的功,“ΔEk”表示动能的变化量。
我记得有一次,我在公园里看到一个小朋友在玩滑梯。
小朋友从滑梯的顶端滑下来,速度越来越快。
这其实就是动能定理在起作用。
小朋友受到重力这个合外力,重力做正功,让小朋友的动能增加,速度也就变快了。
咱们再深入一点儿理解这个公式。
合外力做功可以是正功,也可以是负功。
如果合外力做正功,那物体的动能就增加;要是合外力做负功,物体的动能就减少。
比如说,一辆汽车在刹车的时候,摩擦力做负功,汽车的动能就减少,速度逐渐降低。
在实际解题的时候,动能定理可是个大宝贝。
比如,咱们要算一个物体从高处自由下落的速度,就可以用动能定理。
先算出重力做的功,然后根据动能定理就能求出末速度啦。
还有啊,动能定理不像有些定理那么“矫情”,它不管物体的运动过程是直线还是曲线,是恒力作用还是变力作用,都能派上用场。
再给您举个例子。
假设一个小球在粗糙的水平面上被一个弹簧推着运动。
在这个过程中,弹簧的弹力是变力,但是咱们依然可以用动能定理来计算小球的最终速度。
先算出弹力做的功和摩擦力做的功,然后根据动能定理就能得出结果。
总之,动能定理是咱们解决物理问题的一把利器。
只要咱们掌握了它的定义和公式,再多多练习,遇到相关的问题就能轻松搞定啦!就像前面提到的小朋友玩滑梯,他从滑梯上滑下来获得了更快的速度,这是因为重力做了正功让他的动能增加。
而在我们的学习和生活中,不断努力学习知识,就像是给我们自己积累“功”,让我们的能力和“动能”不断提升,从而能够在未来的道路上跑得更快、更远!。
动能与动能定理动能是描述物体的运动状态和能量的一种物理量。
在物理学中,动能通常用符号K表示,其计算公式为K=½mv²,其中m为物体的质量,v为物体的速度。
动能定理则描述了动能的改变与物体所受合外力的关系。
本文将从动能的概念、计算公式,以及动能定理的推导和应用等方面进行探讨。
1. 动能的概念动能是物体在运动过程中所具有的能量,它随着物体的速度增加而增加。
当物体停止运动时,动能为零。
动能的单位是焦耳(J)。
在经典物理学中,动能的计算公式为K=½mv²,其中m为物体的质量,v为物体的速度。
正如计算公式所示,动能与物体的质量和速度的平方成正比。
2. 动能定理的推导动能定理描述了物体运动的改变与物体所受合外力的关系。
根据牛顿第二定律F=ma,将其代入动能的计算公式K=½mv²中,可得到K=½m(v²-0)。
根据牛顿第二定律的形式F=ma,我们知道力可以表示为F=dp/dt,其中p是物体的动量,t是时间。
代入动量的定义p=mv,可得到F=mdv/dt。
将这个方程代入动能的计算公式中,可得到K=½mdv/dt *v。
对动能公式进行简化后,可得到K=d(½mv²)/dt,即动能的变化率等于物体所受合外力的功率。
3. 动能定理的应用动能定理可以应用于多种物理问题的求解和分析。
首先,我们可以利用动能定理来计算物体的速度和位移。
通过已知物体的质量、起始速度、物体所受合外力的功率等信息,可以利用动能定理来求解相应的物理量。
其次,动能定理可以帮助我们理解和解释物体的能量转化过程。
例如,当一个物体从较高的位置下落时,它的重力势能被转化为动能,从而使其速度增加。
在碰撞等过程中,动能定理也可以用于分析和计算能量的守恒与转化。
总结:动能是物体运动时所具有的能量,与物体的质量和速度的平方成正比。
动能定理描述了动能的变化与物体所受合外力的关系,通过动能定理可以计算物体的速度和位移,并用于分析能量的转化过程。
动能定理计算公式在我们学习物理的奇妙世界里,动能定理可是个相当重要的家伙!动能定理说的是合外力对物体所做的功等于物体动能的变化量。
它的计算公式是:W 合= ΔEk ,这里的 W 合表示合外力做的功,ΔEk 则表示动能的变化量。
那咱先来说说这个“合外力做的功”是咋回事儿。
比如说,有个小车在光滑水平面上,受到一个水平向右的拉力 F ,小车移动了一段距离s ,那这个拉力做的功就是 W = Fs 。
但要是还有个向左的摩擦力 f 也在作用,那合外力做的功就是拉力做的功减去摩擦力做的功。
再来讲讲这个“动能的变化量”。
动能 Ek = 1/2 mv²,m 是物体的质量,v 是物体的速度。
要是一个物体的速度从 v₁变成了 v₂,那动能的变化量ΔEk = 1/2 mv₂² - 1/2 mv₁²。
给大家讲讲我曾经观察过的一件事儿吧。
有次我在公园里看到小朋友们在玩滑梯。
一个小朋友从滑梯顶端滑下来,刚滑下来的时候速度比较慢,到了滑梯底部速度就快多了。
这其实就可以用动能定理来解释。
小朋友在下滑的过程中,重力做正功,摩擦力做负功,合外力做的功让小朋友的动能增加了,速度也就变快啦。
在解题的时候,动能定理可好用了。
比如有道题是这样的:一个质量为 2kg 的物体,在水平拉力作用下,从静止开始沿水平地面运动,4s 内位移为 8m,已知物体与地面间的动摩擦因数为 0.2,求拉力的大小。
这时候,我们就可以先根据位移公式求出加速度,再根据牛顿第二定律求出合外力,然后用动能定理就能算出拉力做的功,进而求出拉力的大小。
动能定理不仅在解决这种简单的直线运动问题时有用,在处理复杂的曲线运动问题时也能大展身手。
比如一个小球从光滑的曲面下滑,我们很难直接分析每个力在每个时刻的做功情况,但用动能定理,只需要考虑初末状态的动能和所有力做的总功就行,是不是方便多啦?还有啊,在实际生活中,动能定理也无处不在。
像汽车的加速,运动员的跳远,甚至是火箭的发射,都离不开动能定理的影子。