并联式混合动力汽车机械式自动变速器换档策略
- 格式:pdf
- 大小:479.86 KB
- 文档页数:7
自动变速器动力性升挡规律
自动变速器更改后的经济性换挡规律5F16 自动变速器经济性升挡规律
5F16 自动变速器锁止和解锁规律
变矩器效率特性
发动机与变矩器共同工作输入特性
两参数换挡规律示意图
1
两参数换挡规律类型
UF i j 2i(α)u-f“ (α)
UI Ui 两参数换挡规律示意图乍速U
某发动机换挡规律1
某发动机换挡规律2
某发动机换挡规律3
某发动机换挡规律4
突加、减油门频繁换挡局部图
液力变矩器与发动机输入特性5
长安羚羊 AMT 轿车两参数经济性换挡
自动变速器换挡规律。
汽车换挡的原理
汽车换挡的原理是通过改变变速器档位来实现换挡。
在车轮转轴上有不同档位的齿轮,大小不同的齿轮与发动机组合时,由于大小不同,所以大齿轮的圆周速度小于小齿轮,从而实现速度的变化。
汽车换挡的具体原理可以分为以下几个步骤:
1.变速箱是一个齿轮箱,里面有很多齿轮,其中主动齿轮通过离合器与发动机相连,接收发动机的动力,带动从动齿轮通过主减速器和传动轴与车轮相连。
2.每个齿轮都有一对主从动齿轮,哪个档位接合意味着哪个档位组合起来传递动力,这里也提到了“传动比”的概念。
一般5挡变速器第一挡的传动比在3~5之间,也就是说主动挡(发动机)转3~5圈,从动挡转1圈。
3.发动机的转速降低了3~5倍,但扭矩(动力内力)却放大了3~5倍,这是机械原理的知识。
随着变速器档位的增加,传动比不断减小,一般在五档小于1,这意味着变速器的输出转速高于发动机。
4.变速器的输出转速与车速成正比,所以说档位低,动力大,车速低(发动机转速不变时);高挡、低功率、高速度。
汽车自动变速器换档规律研究
自动变速器是一种能够自动控制车辆换挡的装置,其换挡规律
是通过车速、油门踏板位置及发动机转速等因素来判断适宜的档位,并进行换挡操作。
汽车自动变速器换挡规律研究主要涉及以下几个
方面:
1. 换挡时间和顺畅度:研究自动变速器在不同车速、不同油门
踏板位置以及不同发动机转速下的换挡时间和顺畅度,以便优化自
动变速器换挡算法。
2. 换挡策略:研究自动变速器在不同路况、不同驾驶风格以及
不同车辆负载情况下的换挡策略,以便实现更加平稳、高效的换挡
过程。
3. 换挡信号控制:研究自动变速器的控制系统,包括换挡信号
的检测和控制逻辑等,以便提高控制精度和鲁棒性。
4. 换挡力学特性:研究自动变速器换挡过程中的力学特性,如
离合器片的耐磨性、离合器片的接触面积、换挡过程中的离合器离
合精度等,以便提高换挡的可靠性和耐久性。
总之,汽车自动变速器换挡规律的研究对于提高驾驶体验、实
现更高效、安全的汽车驾驶具有重要的意义。
纯电动车两挡机械自动变速器换挡过程分析及综合控制李天琨;吴斌;陈存玺;陈勇;李卓强;李睿【摘要】为减小纯电动车两挡机械自动变速器换挡动力中断时间,改善换挡品质,文章通过对换挡过程的动力学分析,提出了一种综合换挡控制策略:在调速过程中,通过开环控制的方法,使接合套与结合齿圈之间的转速差快速到达一定范围内;在挂挡过程中,通过驱动电机输出与换挡电机作用下产生的同步摩擦力矩相同方向的转矩,使驱动电机与换挡电机协同作用消除剩余的转速差,从而缩短动力中断时间.使用Simulink设计了换挡控制模型,并在基于TCU、MCU控制下的纯电动车两挡AMT 换挡实验台进行实验.实验结果表明,本文提出的综合控制策略可以在保证同步器磨损较小的前提下,有效减小整个换挡过程的动力中断时间.【期刊名称】《汽车实用技术》【年(卷),期】2019(000)009【总页数】5页(P22-25,31)【关键词】纯电动车;两挡AMT;动力中断时间;综合控制策略【作者】李天琨;吴斌;陈存玺;陈勇;李卓强;李睿【作者单位】北京工业大学环境与能源工程学院,北京 100124;北京工业大学环境与能源工程学院,北京 100124;北京工业大学环境与能源工程学院,北京 100124;河北工业大学机械工程学院,天津 300130;河北工业大学机械工程学院,天津 300130;河北工业大学机械工程学院,天津 300130【正文语种】中文【中图分类】U469.7电动车辆具有节能、环保、能源利用多元化、可实现智能化等特点[1]。
当下,多国的相关政府部门都先后颁布了发展纲要以推动电动车辆的技术进化和规模化应用[2]。
目前市场上常见的纯电动汽车基本以驱动电机直连单级减速器的方式作为动力源,但是这种方式存在着当电机转速较高或较低时,电机效率相对较低的问题。
将AMT应用于纯电动汽车上,便可以扩大电机的高效运行区间,满足其更高标准的动力性要求,提高纯电动汽车的经济性[3]。
混合动力汽车变速系统的优化设计混合动力汽车是一种运用内燃机和电动发动机结合起来的汽车。
利用这样的技术将电能和燃料混合使用可以让汽车在发动机的效率和电机的便捷性之间获得最佳的平衡。
而对于混合动力汽车变速系统,其优化设计能够更好的发挥混合动力技术的优势,达到更好的性能表现。
1. 混合动力汽车变速系统的工作原理混合动力汽车主要由内燃发动机、电动机、电池和变速器组成。
工作原理是将内燃机和电动机结合起来,通过变速器来调节输出的扭矩和转速以适应不同的工作状态。
变速器是混合动力汽车的重要组成部分,其能够根据车速、加速度和扭矩等参数,通过变换相应正比关系来调节汽车传动系的转矩和转速。
混合动力汽车的变速系统主要分为纵向和横向两种。
2. 混合动力汽车变速系统的优化设计由于混合动力汽车变速系统的工作原理比较复杂,其优化设计也需要考虑多种因素才能达到更好的性能表现。
下面列举一些优化设计的方法:2.1 调节电池容量和荷电状态在混合动力汽车的工作过程中,电池在一定程度上影响着汽车的性能表现。
因此,要想让混合动力汽车的性能达到最优,必须对电池的容量和荷电状态做出适当的调节。
当电池的容量太小或者荷电状态过低时,混合动力汽车将不得不依靠燃油发动机提供动力,此举会导致能量的浪费和环境污染。
因此,在设计混合动力汽车变速系统时,电池容量和荷电状态的调节是十分关键的。
2.2 提高变速器效率变速器是混合动力汽车传动系统的重要组成部分,其效率会直接影响到汽车的性能表现。
目前,大多数混合动力汽车采用CVT变速器或者DCT变速器,这些变速器的效率都有一定的提高空间。
现在的最新技术是基于电磁耦合器或者超级电容器的混合动力汽车变速系统,这样的变速系统能够提高汽车的燃油效率和动力性能,达到更好的性能表现。
2.3 优化动力控制策略混合动力汽车的电机和内燃机的控制策略对其性能表现有很大影响。
在传统的混合动力汽车中,电机和内燃机的控制是通过电子控制器实现的,但是这种控制方式却制约了汽车的性能。
P2结构混合动力自动变速器控制策略摘要:P2结构混合动力自动变速器主要涉及混动车辆领域,特别是涉及变速箱档位控制方法,是在同时满足油门松开状态并且当前的车速大于车速的阈值时进入的步骤,进入到能量回馈模式。
该动力系统能够提供自动、纯电、电量保持、手动挡模式等多种驾驶方式,最大程度满足新能源汽车的经济性目标。
本文将从系统方案入手,分析P2结构混合动力自动变速器控制的策略。
关键词:P2结构,混合动力,自动变速器,控制策略前言:近些年,随着经济的快速发展,新能源汽车逐渐迎来发展的热潮,其也为新能源汽车零件产业的发展带来良好的契机。
混合动力汽车是在保证动力性的前提下促使汽车的燃油经济性更强,这也是新能源汽车发展的重要方向。
发动机和电机是混合动力汽车的动力源,其能够根据汽车的实际情况采取不同的动力模式,促使混动车辆的整体性能得到提高。
一、系统方案P2结构电机布置的位置是在发动机和变速器二者之间,电机将变速器的所有档位进行利用,并且电机的本身不需要太大的扭矩,一定程度上可以起到节约成本,减小电机的体积的优势,并且具有布置灵活、开发难度较小的特征,混合动力汽车控制原理如图一所示。
图一混合动力汽车控制原理图1、动力总成架构整个车的动力是由右至左传递的,顺序依次为发动机、混合动力自动变速器、差速器、车桥。
混合动力自动变速器比传统的变速器多了P2这个模块,重要是用于控制发动机的结合与分离,并且增加电子油泵,其主要的功能是在动力源停止运行的状态下自动变速器油压维持在当前的档位[1]。
2、网络拓扑整车的网络拓扑主要分为传统动力CAN以及新能源动力CAN,VCU是整车动力控制的核心,其接入传统动力CAN上负责发动机、变速器等传统部件的信息收集和整理,又接入新能源CAN监管高压电源的控制、冷却转换和高压电机的转速扭矩控制。
TCU除了传统的自动变速器档位控制还新增设了P2这个模块KO离合器控制和油压控制,其他的控制器负责接受命令控制对应的部件正常工作并且将工作状态进行反馈[2]。
变速器换挡机构的原理与设计要点一、引言在现代汽车中,变速器扮演着重要的角色,它能够在车辆行驶中改变驱动力的传递比,使得驾驶者能够根据行驶条件和需求选择合适的档位。
而变速器的换挡机构则是实现档位切换的核心部件。
本文将介绍变速器换挡机构的原理与设计要点。
二、换挡机构的原理1. 换挡原理换挡机构的核心原理是通过控制齿轮的相对位置和连接状态来实现档位的切换。
在变速器中,通常会采用齿轮对齿轮的咬合方式来传递驱动力。
当需要进行换挡时,换挡机构会采用不同的方式来切换齿轮的连接状态,从而实现不同的传递比。
2. 换挡方式根据不同的变速器结构和设计,换挡机构的方式也会有所不同。
常见的换挡方式包括手动换挡和自动换挡。
手动换挡通常通过操纵换挡杆或拨片来实现,驾驶者可以根据需求手动选择合适的档位。
而自动换挡则通过电子系统和液压控制来实现,系统会根据车速和发动机负荷等参数智能选择合适的档位。
三、换挡机构的设计要点1. 结构设计换挡机构的结构设计应考虑紧凑、坚固和易于操控。
在设计过程中需要充分了解齿轮传递的力学特性,并选择合适的轴承和连接件。
同时,在设计中应注意杠杆原理,通过合理的杠杆比例来减小操纵力。
2. 换挡力矩控制换挡时需要克服一定的换挡力矩,而过大或过小的力矩都会影响换挡的舒适性和可靠性。
因此,在设计中需要准确计算换挡力矩,并选择合适的换挡机构传递力矩的方式,如使用弹簧、摩擦片等。
3. 换挡路径设计换挡路径设计要考虑换挡的顺畅性和快速性。
合理设计换挡机构的路径和动作,可以减少换挡时间和换挡过程中的冲击和噪音。
同时,注意相邻档位之间的间隔,使得换挡过程中能够准确地进入目标档位。
4. 换挡机构的可靠性换挡机构的可靠性是设计的一个重要指标。
在设计过程中,需要使用合适的材料和加工工艺,确保换挡机构能够承受长时间和高强度的工作。
同时,需进行可靠性验证和测试,以确保换挡机构的正常工作和寿命。
四、总结变速器换挡机构是实现档位切换的重要部件,其原理和设计要点直接影响着变速器的性能和可靠性。