传输法测试压电陶瓷参数
- 格式:ppt
- 大小:75.00 KB
- 文档页数:12
压电陶瓷dcs3参数全文共四篇示例,供您参考第一篇示例:压电陶瓷(DCS3)是一种具有压电效应的陶瓷材料,其参数对于压电陶瓷的应用至关重要。
压电陶瓷由于其优异的压电性能、机械性能和化学稳定性,在声学、传感、电声、声表面波设备等领域都有广泛的应用。
在工程领域中,压电陶瓷的参数对于设计和使用压电材料的设备至关重要。
深入了解压电陶瓷DCS3的参数对于工程应用具有重要的意义。
压电陶瓷DCS3的参数之一是压电系数。
压电系数是压电陶瓷材料的一个重要参数,它描述了材料在受到机械应力时产生的电荷量与机械应力的关系。
对于压电陶瓷而言,压电系数的大小直接影响到其在传感、换能器等领域的性能表现。
准确测定和掌握压电陶瓷DCS3的压电系数是非常重要的。
压电陶瓷DCS3的谐振频率也是一个重要参数。
谐振频率是指在给定的尺寸和结构条件下,压电陶瓷在电场作用下产生的机械谐振频率。
该参数直接影响了压电陶瓷在振动传感和滤波器等领域的应用效果。
对于设计和制造具有特定频率响应特性的压电陶瓷设备而言,准确控制谐振频率至关重要。
压电陶瓷DCS3的介电常数也是一个重要的参数。
介电常数描述了材料对电场的响应能力,是一个衡量材料绝缘性能的重要参数。
对于压电陶瓷而言,介电常数的大小直接影响到其在电声换能器、压电陶瓷储能器等设备中的性能表现。
准确掌握压电陶瓷DCS3的介电常数对于实现其在电声应用中的最佳效果至关重要。
压电陶瓷DCS3在不同温度和频率下的参数变化也是需要重点关注的。
由于压电陶瓷在实际工程应用中会受到温度和频率的影响,因此对于其参数随温度和频率的变化规律进行研究和分析,对于完善压电陶瓷材料的工程应用具有重要的意义。
压电陶瓷DCS3的参数对于其在工程应用中的性能表现起着至关重要的作用。
在设计和使用压电陶瓷材料的设备时,需全面了解并准确掌握其各项参数,以确保其在特定应用条件下具有良好的性能表现。
需要加强对其参数变化规律的研究,以进一步完善压电陶瓷材料在工程领域的应用效果。
压电陶瓷性能参数解析压电陶瓷是一种能够将电能转化为机械动能的材料。
它具有压电效应,即当施加电场时,会在陶瓷晶体中产生机械变形;反之,当施加机械应力时,会在陶瓷晶体中产生电荷积累。
这种特性使得压电陶瓷在传感器、声学器件、电子器件等领域得到广泛应用。
本文将介绍一些常见的压电陶瓷性能参数。
1.压电系数:压电系数是衡量压电材料性能的重要参数,用于描述材料在施加外部压力或电场时的响应情况。
它可分为压电应变系数d和压电电场系数g。
压电应变系数d用于描述压电陶瓷在施加电场时的形变情况,通常以毫米/伏作为单位。
压电电场系数g用于描述压电陶瓷在施加应力时产生的电荷量,通常以库伦/牛作为单位。
2.介电常数:介电常数是衡量材料在电场作用下电荷积累能力的参数。
压电陶瓷的介电常数通常以两个维度进行描述,分别为介电常数的相对静电介电常数(εr)和相对介电常数(εr)。
3.矫顽场和剩余极化:矫顽场是指施加电场或机械应力后,压电陶瓷尚未发生压电效应的最大电场或应力值。
剩余极化是指当外场消除时,材料中保留的极化强度。
这两个参数都能够反映压电陶瓷的稳定性和可逆性。
4.力常数和耦合系数:力常数是描述压电陶瓷的力-位移耦合效应的参数,标志着材料在施加电场时的机械响应程度。
耦合系数是力常数的相对值,是一种无量纲参数,常用于比较不同材料之间的压电性能。
5.介质损耗和压电品质因数:介质损耗是指压电陶瓷在工作频率下由于材料自身的损耗所导致的能量损失。
压电品质因数是衡量压电陶瓷在工作频率下损耗程度的参数,取决于介质损耗和介电常数等因素。
6.工作温度范围:工作温度范围是指压电陶瓷在正常工作条件下可以承受的温度范围。
这是一个重要的参数,因为一些压电材料在高温或低温环境中性能会发生变化。
以上是一些常见的压电陶瓷性能参数。
不同的应用场景对这些参数的需求也有所不同,因此在选用压电陶瓷材料时,需要根据具体的应用需求对这些性能参数进行综合考虑。
压电陶瓷的性能参数对材料的性能和应用特性有着重要的影响,因此对于压电材料的研究和理解是非常重要的。
压电陶瓷片主要参数
压电陶瓷片是一种用来发声的新型智能元件,它的出现便开创了现代声学技术
的一个崭新篇章。
该片由导电玻璃/电子基材以及表面强度层组成,其中导电玻璃/电子基材主要由高温烧结的压电陶瓷和可抗热韧性的电子基材构成,当外加电场即
使产生压陷,超声波可由此系统发出。
压电陶瓷片的主要参数包括尺寸、厚度、电容量、超声反射系数、频率和电压。
其中,片子尺寸对其工作有非常大的影响,尺寸越大,其反应的尺度就越大,电容量就越大;厚度过厚也会降低其超声能力,最佳厚度为0.381mm;超声反射系数通
常在20-40,这取决于其介质和常数;超声频率可以从1-20kHz,该参数受尺寸、
厚度和介质参数影响;最后,电压越大,超声能力越强。
因此,压电陶瓷片的主要参数的设计制造的精度和实用性都是极为关键的,确
保压电陶瓷片的可靠性和质量。
正确地掌握这些参数,可以有效地协助工程师们科学地选定、定制和使用各种压电陶瓷片。
压电陶瓷性能参数解析T=cS(1-6)式中,S为弹性顺度常数,单位为m2/N;C为弹性劲度常数,单位为N/m2。
但是,任何材料都是三维的,即当施加应⼒于长度⽅向时,不仅在长度⽅向产⽣应变,宽度与厚度⽅向上也产⽣应变。
设有如图1-2所⽰的薄长⽚,其长度沿1⽅向,宽度沿2⽅向。
沿1⽅向施加应⼒T1,使薄⽚在1⽅向产⽣应变S1,⽽在⽅向2上产⽣应变S2,由(1-5)式不难得出S1=S11T1(1-7)S2=S12T1(1-8)上⾯两式弹性顺度常数S11和S12之⽐,称为迫松⽐,即(1-9)它表⽰横向相对收缩与纵向相对伸长之⽐。
同理,可以得到S13,S21,S22,其中,S22=S11,S12。
极化过的压电瓷,其独⽴的弹性顺度常数只有5个,即S11,S12,S13,S33和S44。
独⽴的弹性劲度常数也只有5个,即C11,C12,C13,C33和C44.由于压电瓷存在压电效应,因此压电瓷样品在不同的电学条件下具有不同的弹性顺度常数。
在外电路的电阻很⼩相当于短路,或电场强度E=0的条件下测得的称为短路弹性顺度常数,记作S E。
在外电路的电阻很⼤相当于开路,或电位移D=0的条件下测得的称为开路弹性顺度常数,记作S D。
由于压电瓷为各向异相性体,因此共有下列10个弹性顺度常数:S E11,S E12,S E13,S E33,S E44,S D12,S D13,S D33,S D44。
同理,弹性劲度常数也有10个:C E11,C E12,C E13,C E33,C E44,C D11,C D12,C D13,C D33,C D44。
(4)机械品质因数。
压电陶瓷及其测量原理近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。
由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。
同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。
(一)压电陶瓷的主要性能及参数(1)压电效应与压电陶瓷在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。
这两种正、逆压电效应统称为压电效应。
晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。
在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。
(2)压电陶瓷的主要参数1 、介质损耗介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。
在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。
介质损耗是异相分量与同相分量的比值,如图1 所示,I C为同相分量,I R为异相分量,I C与总电流I的夹角为,其正切值为tan 1CR其中3为交变电场的角频率, R为损耗电阻,C为介质电容。
s R1C1 s L1图1交流电路中电压-电流矢量图(有损耗时)2、机械品质因数机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。
机械品质因数越大,能量的损耗越小。
产生能量损耗的原因在于材料的内部摩擦。
机械品质因数Q m的定义为:谐振时振子储存的机械能 cQm谐振时振子每周所损失的机械能2兀机械品质因数可根据等效电路计算而得式中R1为等效电阻(Q), s为串联谐振角频率(Hz ), C1为振子谐振时的等效电容(F),L1为振子谐振时的等效电感。
压电陶瓷材料的性能测试和应用研究压电陶瓷材料:性能测试和应用研究概述压电陶瓷材料是一种具有压电效应的陶瓷材料,原理是在外加电场作用下会产生形变,反之,在受到机械应力的作用下也会产生电荷的积累。
由于其天然抗腐蚀性和高耐磨性,在众多领域都有广泛的应用,如声波传感器、压力传感器、可调谐滤波器等。
性能测试压电陶瓷材料的性能测试主要包括压电性能、介电性能、机械性能等。
压电性能是评估压电陶瓷材料性能的最重要指标之一,是描述材料能量转换效率的指标。
常用的压电系数包括短路压电系数$d_33$,开路压电系数$d_31$等。
在测试中,通常使用震荡器和电荷放大器来测量,通过调节频率和电极间距来测量压电系数。
介电性能是指压电材料在电场下的电容率和损耗因子。
在实际应用中,学者和工程师会考虑介电响应时间和介电滞后等因素。
介电性能的主要测试方法是测试材料的电容量和介电损耗,通过调整电源电压和频率来改变测试条件。
除了压电性能和介电性能外,机械性能也是评估压电陶瓷材料质量的一个关键指标,包括材料的硬度、弹性模量、磨损和断裂韧性等。
硬度测试通常使用维氏硬度计,磨损测试可使用磨损试验机,断裂韧性则可通过在试样上施加负载来测试材料的压缩、拉伸和弯曲分别使用。
应用研究压电陶瓷材料在许多领域中都有广泛的应用,如声波传感器、可调谐滤波器和振动器等。
下面将重点介绍它们在可调谐滤波器和声波传感器上的应用。
压电陶瓷材料的可调谐滤波器在移动通信、军事等领域中有重要的应用。
可调谐滤波器的主要作用是帮助减少选频器中的失真,它可以自动调整石英谐振器,帮助减小干扰和降低噪音水平。
当前,在移动电话和移动网络中普遍采用压电陶瓷材料制成的可调谐谐振器。
压电陶瓷材料在声波传感器,无线感应器和控制器等领域中同样有广泛的应用。
声波传感器通常使用压电陶瓷制成,以提高传感器的性能,同时还可以在多频段中工作。
压电材料的应力和变形可以被电极捕获并检测,以便测量气体、液体或固体的速度。
压电参数的测量方法作者:中国超声波设备网转载来自:超声波运用论坛发布时间:2005-11-26 00:00:36压电陶瓷材料的压电参数的测量方法甚多,有电测法,声测法,力测法和光测法等,这些方法中以电测法的应用最为普遍。
在利用电测法进行测试时,由于压力体对力学状态极为敏感,因此,按照被测样品所处的力学状态,又可划分为动态法,静态法和准静态法等。
(1)静态法静态法是被测样品处于不发生交变形变的测试方法,主要用于测试压电常数,测试样品上加一定大小和方向的力,根据压电效应,样品将因形变而产生一定的电荷。
按照式(1-15)可得:D33=d33T3 (1-38)若施加力为F3,则在电极上产生的总电荷为Q3=d33F3 (1-39)静态法的测量装置如图1-6所示,线路中的电容C的作用是为了使样品所产生的电荷都能释放到电容上。
因此,要求电容C越大越好,一般选择的为样品电容的几十到一百倍的低损耗电容。
测量时,为了避免施加力F3时会有附加冲击力而引起测量误差,一般加压时会合上电键K1,使样品短路而清除加压所产生的电荷。
去压时先打开电键K1,使样品上所产生的电荷全部释放到电容上,用静电计测其电压V3(伏),用下式求出:Q3=(Co+C1)V3 (1-40)(1-41)式中,C3为样品的静电容(法);C为外加并联电容(法),V3为电压(伏)。
(2)动态法压电陶瓷材料的大部分参数都可以通过测量频率Fs和fa来确定。
生产上都采用动态法中的传输法。
图1-7给了一种简单的测量线路。
这种测量线路过于简单,有一些缺点,为了克服简单测量线路的缺点,通常采用1-8所示的常用测量线路。
在振子两端有连接的电阻Ri,RT和RTo。
一般选择Ri≥10RT′,RT= RT′及RT小于振子的等效电阻R1。
这一测量电路中每个电阻的作用及阻值选择理由如下。
选择RT′≤R1/10,既RT′较下,而振子又与RT′并联,这样,振子的阻抗Z虽然随频率变化很大,但Z与RT′并联后的和阻抗随频率的变化却很小,因此,可以认为输入电压几乎保持不变。