例谈转化与化归思想的应用
- 格式:pdf
- 大小:161.18 KB
- 文档页数:3
例谈化归思想在中学数学解题中的应用化归思想是一种在数学问题求解中经常应用的思维方式,它通过将问题进行逻辑转化,从而使得原本复杂的问题得到简化和解决。
在中学数学教学中,化归思想的应用是十分重要的,它能够帮助学生更好地理解和解决各种数学问题,并且培养学生的逻辑思维能力。
本文将通过几个具体的例子来说明化归思想在中学数学解题中的应用。
我们来看一个简单的例子。
假设有一个数学问题:甲乙两人一起做一件事情需要5天完成,如果甲一个人做,需要7天完成,那么乙一个人做需要多少天完成?这个问题实际上就是一个典型的化归思想的应用。
我们可以假设甲乙两人一起一天完成的工作量为1,那么甲的单日工作量为1/5,乙的单日工作量为1/x。
根据题意可以列出方程:1/7 + 1/x = 1/5,通过化简和代数运算可以求解得到x=35/4。
所以乙一个人做需要35/4=8.75天完成。
这个例子展示了如何通过化归思想将原本复杂的问题转化为一个简单的代数方程,从而实现问题的解决。
我们来看一个关于几何题目的例子。
已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
这个问题看似简单,但如果没有化归思想的引导,很容易被逻辑混乱所困扰。
通过利用勾股定理可以得出斜边长度为5。
这个例子中,化归思想的应用表现在将几何问题转化为代数问题,并且通过代数运算得到了问题的解。
再来看一个关于代数题目的例子。
已知一个一元二次方程的两个根分别为2和3,求方程的系数。
这个问题可以通过化归思想来解决。
设该一元二次方程为ax^2+bx+c=0,根据题意可以列出方程:(x-2)(x-3)=0,通过展开和比较系数可以得到a=1,b=-5,c=6。
这个例子展示了如何通过化归思想将一个抽象的代数问题转化为具体的数值问题,并且解决了系数的求解问题。
我们来看一个组合数学的例子。
已知一个集合中有n个元素,求该集合的子集个数。
这个问题可以通过化归思想来解决。
当n=1时,集合包含一个元素,子集个数为2;当n=2时,集合包含两个元素,子集个数为4;当n=3时,集合包含三个元素,子集个数为8……可以发现子集的个数是以2的指数递增的,所以当n个元素时,子集个数为2^n。
常用逻辑用语中转化与化归思想的应用举例
发表时间:2019-10-18T14:47:01.313Z 来源:《知识-力量》2019年11月47期作者:路莹[导读] 本文主要通过几个例子来说明转化与化归思想,在研究和解决有关常用逻辑用语问题中应用,进行学法指导.转化与化归这种思想就是在研究和解决有关问题时,采用某种手段将问题通过变换使之转化,进而得到解决的一种思想方法。
正文
转化与化归这种思想一般是将复杂的问题通过变换转化为简单的问题,将难解决的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.下面看看它在解常用逻辑用语题目中的应用.
一、命题之间的转化
例1(2019·青岛调研)
【分析】直接判断比较复杂,根据原命题与其逆否命题的等价性,可用间接法判断.
【解析】
二、充分、必要条件与集合间的转化
例2
【分析】将p是q的充分不必要条件转化为集合间的关系求解.
【解析】
三、P与 ┐p的转化
例3
【分析】将特称命题转化为全称命题,再进一步转化为不等式恒成立问题解决.
【解析】
参考文献
[1]李孝治.高中数学教学中如何培养学生的思维能力[J].试题与研究,2016(09)
[2]李名德,李胜宏.高中数学竞赛培优教程[M].2018.。
化归与转化的数学思想解题举例在数学问题中,化归与转化是一种常用的解题思路。
它们可以帮助我们将原问题转化为一个简化的形式,从而更容易得到解答。
本文将通过几个具体的例子来说明化归与转化在数学问题中的应用。
一、化归化归是将一个复杂的问题转化为一个更简单的等价问题的过程。
它通常是通过引入新变量或假设,将原问题转化为一个更易于处理的形式。
例子1:求解一元二次方程的解对于一元二次方程ax^2 + bx + c = 0,如果a不等于0,我们可以通过化归的方法求解其根。
首先,我们可以将方程中的未知数x改写为y = x + p,其中p是一个常数。
这样,我们将原来的方程转化为了ay^2 + dy + e = 0(其中d 和e是和p相关的常数)。
接下来,我们可以通过求解新方程来得到原方程的解。
由于新方程中的y是一个平移的变量,我们可以通过平方完成对y的消除。
最后,我们将得到一个新的一次方程: Cy + F = 0(C和F是和p 相关的常数)。
求解这个一次方程,我们就可以得到原方程的解。
通过化归,我们将原本复杂的问题转化为了一个简单的一次方程的求解问题,从而更容易得到解答。
二、转化转化是将一个问题转换为一个具有相同解的等价问题的思想。
它可以通过改变问题的表述方式或者引入新的概念来实现。
例子2:求解无穷几何级数的和对于一个无穷几何级数a + ar + ar^2 + ar^3 + ...(其中| r | < 1),我们可以使用转化的思想来求它的和。
首先,我们可以将级数的和S表示为S = a + ar + ar^2 + ar^3 + ...,这是一个无穷级数。
接下来,我们将级数的每一项都乘以公比r,得到rS = ar + ar^2 + ar^3 + ar^4 + ...,这是另一个等价的无穷级数。
然后,我们将这两个等式相减,得到(S - rS) = a,进一步化简得到S = a / (1 - r)。
通过这样的转化,我们得到了无穷几何级数的和的数学表达式,简化了求解过程。
例谈转化与化归的思想方法
例谈转化与化归的思想方法是一种理论,旨在将事物归结为不同
的元素,并以此来理解它们之间的关系和内在联系。
其中,例谈转化
是指从一般的概念出发而不断深入讨论的过程,以达到更广泛的认识。
而化归则是从一般到特殊、从特殊到一般的一种思考方法。
首先,例谈转化以具体例子入手,比如数学中的实例,可以以此
作为我们学习概念的基础,进一步深入探讨,由具体到抽象,最终把
它提升到一般的概念,从而得到更加宏观的认识。
其次,化归的方法也可以帮助我们理解事物,从而使我们对复杂
的概念有更清晰的认识。
化归可以划分为从一般到特殊和从特殊到一
般的思考方法。
从一般到特殊的方法我们可以通过聚焦特定领域,把
抽象的概念引入具体的实例,以便更深入地理解。
而从特殊到一般的
思考方法则与前者相反,在这种方法中,我们可以根据特定的实例,
把具体的概念引入抽象的概念,从而掌握概念的宏观结构。
例谈转化与化归的思想方法在各种学科和领域都有应用,可以帮
助我们理解事物,从而更好地推动知识的发展。
首先,例谈转化可以
帮助我们理解抽象的概念,从实例出发,深入探讨,归纳出更宏观的
概念。
而化归则可以帮助我们理解复杂的概念,从一般到特殊,从特
殊到一般,把具体的概念理解为抽象的概念,从而更好地掌握它们之
间的联系。
浅谈化归与转化思想在高中数学教学中的应用作者:黄庆彬来源:《新课程》2021年第12期新课程标准明确提出了高中生通过数学课程的学习要达到获“四基”、提“四能”的目标。
获“四基”,即学生获得数学基础知识、基本的技能、思想和活动经验;提“四能”,即提高学生从数学角度发现并提出问题、分析和解决问題的四种能力。
纵观近年来高考数学试题的编制及考查的内容,都很好地反映了课程改革理念,加大了数学思维能力的考查,注重学科思想方法的运用,这就要求教师在数学教学中要“两手抓”,既要加强基础知识与基本技能的教学,又要注意以素养为导向,以能力为重,加大各种思想方法的渗透。
在中学数学思想方法中,最基本、最核心的就是化归与转化思想,它是解决数学问题思想方法的精髓。
化归与转化,即运用转化、归结的数学手段,通过一定的数学过程,把一个复杂、陌生或者未解决的问题转化到已解决或较易解决的问题上来,从而破解原问题的一种方法。
数学家笛卡尔对此方法给予了高度评价,称之为解决数学问题的万能方法。
它对培养学生的解题能力和数学素质起至关重要的作用,故教师在平时教学中应注意引导学生抓基础与注重转化能力的培养两者并重,这是学好数学的金钥匙。
以下便是其模式。
一、高中数学中应用转化与化归思想遵循的原则应遵循4个原则:(1)熟悉化原则,即“化生为熟”,把陌生问题转化成熟悉问题。
(2)简单化原则,即“化繁为简”,把复杂问题转化成简单问题。
(3)直观化原则,即“化抽象为直观”,把较抽象的问题转化为较直观的问题(如数形结合思想,立体几何问题转化成平面几何问题)。
(4)正难则反原则。
若问题直接求解困难时,可考虑运用反证法或补集法,或用逆否命题间接地解决问题。
二、高中数学中常见的转化与化归方法共有10种:在解决数学问题时,有的可用直接转换法、换元法、数形结合法,有的可用参数法、构造法、坐标法,还有的可用类比法、特殊法、一般化、等价转换法来解。
这些方法在一些题目中可能单独使用,也可能相互交叉使用,是不能完全分割开的。
解题研究2023年12月上半月㊀㊀㊀转化与化归 思想在高中数学解题教学中的应用◉哈尔滨师范大学教师教育学院㊀李㊀硕㊀㊀转化与化归 思想是高学数学中的一种重要的数学思想,运用非常广泛,尤其是一些特殊的问题,运用 转化与化归 思想解题可以提高效率,同时还可以降低问题解决的难度.因此,在数学课堂引入并应用转化与化归思想,能够让学生在学习数学及解题的过程中,加深对数学概念的理解,同时也能有效锻炼数学思维,提高学习效率,进一步发展数学核心素养.在高中数学的解题过程中,基于 转化与化归 思想的三大原则,主要运用的解题方法包括特殊与一般的转化㊁命题的等价转化,以及函数㊁方程㊁不等式之间的转化等一些常见的转化方法.1特殊与一般的转化将一般问题进行特殊化处理,可使问题的解决变得更为直接和简便,并且还能从特殊情况中寻找问题解决的常规思维;除此之外,对特殊性问题进行概括性研究,实现特殊问题一般化,也能从宏观与全局的角度把握特殊性问题的普遍规律,并能有效地解决特殊性问题.例1㊀ 蒙日圆 涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为(㊀㊀).A.x 2+y 2=9㊀㊀㊀㊀㊀B .x 2+y 2=7C .x 2+y 2=5D.x 2+y 2=4分析:根据题目中的已知条件,在椭圆上,两条相互垂直的切线可以随意选择,但其交点位于与椭圆同心的圆却是唯一的,也即答案是唯一的.由此,可以通过选取一般问题的特殊情形找到一般的解题思路,不妨利用过椭圆的右顶点和上顶点的两条切线进行解题.解:因为椭圆C :x 2a +1+y 2a=1(a >0)的离心率为12,所以1a +1=12,解得a =3.所以椭圆C 的方程为x 24+y 23=1,且椭圆C 的上顶点为A (0,3),右顶点为B (2,0),则椭圆在A ,B 两点的切线方程分别为y =3和x =2,这两条切线的交点坐标为M (2,3).由题意可知,交点M 必在一个与椭圆C 同心的圆上,可得与椭圆C 同心的圆的半径r =22+(3)2=7.所以椭圆C 的蒙日圆方程为x 2+y 2=7.故选:B .以问题的特征为依据,对命题进行转化,将原问题转化为与之相关的㊁容易解决的新问题,这也是解决数学问题常见的转化思路,并且可以通过这种转化逐步培养识别关键信息的能力.2命题的等价转化把题目中已有的条件或者结论进行相应的转化,化难为易,是解决较难问题常用的转化手段.其主要方法包括:数与形的转化㊁正与反的转化㊁常量与变量的转化㊁图形形体及位置的转化等.例2㊀由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,得m 的取值范围是(-ɕ,a ),则实数a 的值是.分析:利用转化思想可以将命题 存在x 0ɪR ,使e |x -1|-m ɤ0 是假命题转化为 对任意x ɪR ,e|x -1|-m >0是真命题,由此得出m <e |x -1|恒成立,进而通过m 的取值范围来求a 的值.解:由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,可知 对任意x ɪR ,e |x -1|-m >0是真命题,由此可得m 的取值范围是(-ɕ,1),而(-ɕ,a )与(-ɕ,1)为同一区间,故a =1.例3㊀若对于任意t ɪ[1,2],函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是.分析:根据函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,可以利用正难则反的转化思想先找出g (x )在(t ,3)上单调的条件,再利用补集思想求出m 的取值范围.852023年12月上半月㊀解题研究㊀㊀㊀㊀解:求得g ᶄ(x )=3x 2+(m +4)x -2.若g (x )在(t ,3)上单调递增,则g ᶄ(x )ȡ0,即3x 2+(m +4)x -2ȡ0,亦即m +4ȡ2x-3x 在x ɪ(t ,3)上恒成立.故m +4ȡ2t-3t 在t ɪ[1,2]上恒成立,则m +4ȡ-1,即m ȡ-5.若g (x )在(t ,3)上单调递减,则g ᶄ(x )ɤ0,即m +4ɤ2x-3x 在x ɪ(t ,3)上恒成立,所以m +4ɤ23-9,即m ɤ-373.综上,符合题意的m 的取值范围为-373<m <-5.根据命题的等价性对题目条件进行明晰化处理是解题常见的思路;对复杂问题采用正难则反的转化思想,更有利于问题得到快速解答.3函数㊁方程㊁不等式之间的转化函数与方程㊁不等式之间有着千丝万缕的关联,通过结合函数y =f (x )图象可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例4㊀若2x -2y<3-x -3-y ,则(㊀㊀).A.l n (y -x +1)>0B .l n (y -x +1)<0C .l n |x -y |>0D.l n |x -y |<0分析:由题意,可将2x -2y<3-x -3-y 转化为2x -3-x <2y-3-y ,进而实现不等式与函数之间的转化,从而解得答案.解:由2x -2y <3-x -3-y ,得2x -3-x <2y -3-y .故构造函数y =2x -3-x ,即y =2x -(13)x.由于函数y =2x-(13)x 在R 上单调递增,因此x <y ,即y -x +1>1.所以l n (y -x +1)>l n 1=0.故选择:A .例5㊀已知函数f (x )=e l n x ,g (x )=1ef (x )-(x +1).(e =2.718 )(1)求函数g (x )的最大值;(2)求证:1+12+13+ +1n >l n (n +1)(n ɪN +).分析:第(1)问要求函数g (x )的最大值,关键在于需要运用转化与划归思想,通过g ᶄ(x )得出函数g (x )单调性,即可求出g (x )的最大值.将第(1)问得出的g (x )最大值-2转化成l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立),再利用换元法最终证明出结论.解:(1)由g (x )=1ef (x )-(x +1),即g (x )=l n x -(x +1),得g ᶄ(x )=1x-1(x >0).令g ᶄ(x )>0,则0<x <1;令g ᶄ(x )<0,则x >1.所以,函数g (x )在区间(0,1)上单调递增,在区间(1,+ɕ)上单调递减.故g (x )的最大值为=g (1)=-2.(2)证明:由(1)知x =1是函数g (x )的极大值点,也是最大值点,故g (x )ɤg (1)=-2.所以l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立).令t =x -1,则有t ȡl n (t +1)(t >-1).取t =1n (n ɪN +),则有1n >l n (1+1n)=l n(n +1n ).故1>l n2,12>l n 32,13>l n 43,,1n>l n(n +1n ).上面n 个不等式叠加,得1+12+13+ +1n>l n (2ˑ32ˑ43ˑ ˑn +1n)=l n (n +1).故1+12+13+ +1n >l n (n +1)(n ɪN +).在分析此类题目的过程中,利用函数㊁方程㊁不等式进行转化与化归更有利于问题的解决,因此,利用转化与划归思想不仅能让整个数学知识的体系变得更加紧密,同时也能对学生从系统性角度掌握数学知识之间的联系提供非常大的帮助.转化与化归思想所蕴含的内容丰富且深奥,为高中数学问题的解决提供了多种思路,对高中数学的学习也有极大的指导与启发作用,值得我们不断地探索与研究.因此,在解决高中数学问题的过程中,要灵活运用 转化与化归 的解题思想.有些数学问题看似复杂,但通过分析可知出题者采用的是 障眼法 ,其中有的是多余或无用的条件.同时,在高中数学课堂教学中,教师可以在解题教学过程中渗透转化与化归思想,加强学生在特殊与一般转化㊁命题的等价转化以及函数㊁方程㊁不等式之间的转化等方面的技能,逐步锻炼学生简化题目内容的能力和意识,最大程度提高解题效率.Z95。
GUAN GDONG JIAO YU GAO ZHONG2021年第2化归与转化思想在高考数学解题中的运用■甘肃省秦安县第二中学罗文军yxo化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.1.化归与转化的思想方法:解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.2.化归与转化应遵循的基本原则:(1)熟悉化原则;(2)简单化原则;(3)和谐化原则;(4)直观化原则;(5)正难则反原则3.化归与转化的途径:(1)从问题的反面思考;(2)局部向整体的转化;(3)未知向已知转化;(4)固定向重组的转化;(5)抽象向具体转化;(6)个别向一般的转化;(7)数向形的转化;(8)定量向定性的转化;(9)主元向辅元的转化.以下结合一些经典试题,谈谈化归与转化思想在高三解题中的运用.题型一:化归与转化思想简单化原则的体现化归与转化思想简单化原则在解题中的体现主要有:(1)将比较代数式的大小的问题,运用同构法,通过构造函数,化归为利用函数的单调性根据自变量的大小比较函数值的大小或者根据函数值的大小比较自变量的大小;(2)将概率与统计问题化归为集合间的基本关系与基本运算问题.例1.若2a +log 2a =4b +2log 4b ,则()A.a >2b B.a <2b C.a >b 2 D.a <b 2【解析】由指数幂的运算性质和对数的运算性质可得,2a +log 2a =4b +2log 4b =22b +log 2b ,又因为22b +log 2b <22b +log 22b =22b +1+log 2b ,所以2a +log 2a <22b +log 22b .令f(x)=2x +log 2x,由指数函数和对数函数性质以及函数单调性的性质可得f(x)在(0,+∞)上单调递增,由f(a )<f(2a ),可得a <2b .【评析】本题考查了指数幂和对数的运算,函数的单调性的性质,构造函数后,把问题化归与转化为根据函数单调性,由函数值的大小比较自变量的大小,体现了化归与转化思想的简单化原则.例2.设命题p ∶4x-3≤1,命题q ∶x 2-(2a+1)x +a (a +1)≤0.若劭p 是劭q 的必要不充分条件,则实数a 的取值范围是__________.【解析】由4x-3≤1,得12≤x ≤1,记A ={x │12≤x ≤1};由x 2-(2a+1)x+a (a+1)≤0,可得a ≤x ≤a +1,记B ={x │a ≤x ≤a +1}.因为劭p 是劭q 的必要不充分条件,所以q 是p 的必要不充分条件,所以p 是q 的充分不必要条件,所以A 芴B ,所以a ≤12,a+1≥11,解得0≤a ≤12,所以实数a 的取值范围是[0,12].【评注】本题的解答中,先把两个命题中的不等式的解集分别用集合A 和集合B 表示,再由劭p 是劭q 是的必要不充分条件转化为p 是q 的充分不必要条件,再转化为集合A 为集合B 的真子集,解得a 的范围.题型二:化归与转化思想直观化原则的体现化归与转化思想直观化原则在解题中的体现主要有:(1)画出函数图像后,利用函数图像研究函数的性质,进而直观的解决与函数有关的问题;(2)立体几何问题中,将立体问题平面化,画出轴截面或者中截面,利用平面几何问题破解题目.例3.设a ,b ∈R ,则|“a >b ”是“a a >b b ”的()A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件【解析】构造函数f(x)=x x =x2,x≥0-x 2,x<1函数图像如图1,由图像可知f(x)=x x 在R 上单调递增.当a >b 时,f(a )>f(b ),即a a >b b ,a >b 圯a a >b b .当f(a )>f(b ),即a a >b b 时,a >b ,a a >b b 圯a >b ,所以a >b 圳a a >b b ,“a >b ”是“a a >b b ”的充要条件,故选C.【评注】本题是一道比较复杂的充分必要条件问题,通过观察题目,通过类比和联想,运用化归与转化思想,构造函数f(x)=x x 后,画出这个函数的图像,运用图像法判断这个函数在其定义域R 上为单调递增函数,把a 和b 看成这个函数的两个自变量,a a 和b b 分别看成这个函数的函数值f(a )29数学有数和f(b),由增函数的性质可以得出,a>b圳a a>b b,所以a>b是a a>b b的充分必要条件,体现了化归与转化思想的简单化和直观化原则.例4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.【答案】22姨.【解析】由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+BC.由基本不等式可得AB×BC=AB+BC≥2AB×BC姨,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为22姨.【评注】本题的解答运用了化归与转化的思想,通过研究组合体和其内切球的轴截面,把空间立体几何问题化归为平面几何问题,做到了把问题直观化的原则.题型三:化归与转化思想熟悉化原则的体现化归与转化思想熟悉化原则在解题中的体现主要有:(1)不等式题目中,把含一个参数的不等式恒成立问题,通过分离变量,化归为求函数在给定区间上的最值问题;(2)立体几何题目中,利用长方体或者正方体模型,把一些三棱锥、四棱锥和三棱柱的外接球问题化归为熟悉的长方体或者正方体的外接球问题.例5.若对任意的x∈(0,+∞),ax-ln(2x)≥1恒成立,则实数a的最小值是_______【解析】由已知可得,对任意的x∈(0,+∞),a≥ln(2x)+1x恒成立,令g(x)=ln(2x)+1x,g′(x)=1x·x-ln(2x)x2=1-ln(2x)x2,令g′(x)=0,则1-ln(2x)=0,则x=e2,当0<x<e2时,g′(x)>0,g(x)单调递增;当x>e2时,g′(x)<0,g(x)单调递减,所以当x=e2时,g(x)取得最大值g(x)max=g(e2)=ln e+1e2=4e,所以a≥4e,所以a的最小值为4e.【评注】本题的解答运用了分离变量法,分离变量后,构造函数后,把a≥g(x)在(0,+∞)上恒成立等价转化为a≥[g(x)]max(x∈(0,+∞)),转化为求函数g(x)在(0,+∞)上的最大值问题,g(x)的最大值即为a的最小值,本题体现了化归与转化思想的熟悉化原则.例6.设数列{a n}的前n项为S n,a1=1,当n≥2时,a n=2a n S n-2S2n.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1姨对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.解:(1)因为当n≥2时,a n=2a n S n-2S2n,所以a n=2S2n2S n-1,n≥2,所以(S n-S n-1)(2S n-1)=2S2n,所以S n-S n-1=-2S n S n-1,所以1S n-1S n-1=2,n≥2,所以数列{1S n}是以1S1=1为首项,以2为公差的等差数列,所以1S n=1+2(n-1)=2n-1,所以S n=12n-1,所以,当n≥2时,a n=S n-S n-1=12n-1-12n-3=-2(2n-1)(2n-3),因为a1=S1=1,所以a n=1,n=1-2(2n-1)(2n-3).n≥≥2(2)设f(n)=(1+S1)(1+S2)…(1+S n)2n+1姨,则f(n+1)f(n)=2n+22n+1姨2n+3姨=4n2+8n+44n2+8n+3姨>1,所以f(n)在n∈N鄢上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,因为f(n)min=f(1)=23姨3,所以0<k≤23姨3.【评注】第(1)问运用了数列的前n项和S n与通项a n之间的关系a n=S n-S n-1(n≥2),把a n转化为S n-S n-1,再合并同类项后运用取倒数法,再根据等差数列的定义得出数列{1S n}的通项公式,再得出数列{a n}的通项公式;第(2)问分离变量后构造函数f(n),用作商法判断f(n)的单调性,把不等式f(n)≥k在n∈N鄢上恒成立等价转化为f(n)min≥k(n∈N鄢),两问都运用到了化归与转化思想.AEBFHDGOC302021年第2GUAN GDONG JIAO YU GAO ZHONG2021年第2题型四:化归与转化思想和谐化原则的体现化归与转化思想和谐化原则在解题中的体现主要有:(1)解三角形问题中利用正弦定理实现边角的互化;(2)在三角函数问题中,将形如y=a sin x+b cos x 的函数问题利用辅助角公式化归为形如y=A sin (棕x+渍)的函数问题;(3)解析几何中,将两直线垂直化归为斜率乘积为-1或者方向向量的数量积为0;(4)将形如滋=y -b x -a形式的最值问题,转化为动直线斜率的最值问题.例7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b -c =a ·cos C -c ·cos A .(1)求角A ;(2)若a =3,求b +2c 的最大值.【解析】(1)因为b -c =a ·cos C -c ·cos A ,由正弦定理可得,sin B -sin C =sin A cos C -sin C cos A ,所以sin B -sin C =sin (A -C )所以sin (A +C )-sin C =sin (A -C ),所以sin A cos C +cos A sin C -sin C =sin A cos C -cos A sin C ,所以cos A =12,因为0<A <仔,所以A =仔3.(2)由(1)可得,C =2仔3-B ,由正弦定理得,a sin A =b sin B =c sin C=2R ,所以3sin 仔3=b sin B =c sin (2仔3-B ),所以b =23姨sin B ,c =23姨sin (2仔3-B ),所以b +2c =23姨sin B +43姨sin (2仔3-B )=23姨(2sin B +3姨cos B )=221姨sin (B +渍),其中tan 渍=3姨2,渍∈(0,仔2),由B ∈(0,2仔3),存在B 使得B +渍=仔2,所以sin (B +渍)的最大值为1,所以b+2c 的最大值为221姨.【评注】第(1)问运用正弦定理实现边转化为角,再逆用两角差的正弦公式,运用内角和定理以及诱导公式,再运用两角和的正弦公式和两角差的正弦公式,得出cos A 的值,得出角A 的值;第(2)问运用了正弦定理将关于边的最值问题化为角的最值问题,运用三角形内角和定理以及诱导公式,再运用辅助角公式,化为三角函数在给定范围上的最值问题;两问都运用了化归与转化思想,体现了和谐化原则.例8.已知函数f (x)=x2x-1,则f (12019)+f (22019)+f (32019)+…+f (20182019)的值为_____.【解析】由于直接计算有困难,先探求一般的规律,因为f (x)=x2x-1,所以f (1-x)=1-x2(1-x)-1=1-x1-2x=x-12x-1,所以f (x)+f (1-x)=1,倒叙相加可得f (12019)+f (22019)+f (32019)+…+f (20182019)=1009.【评注】本题的解答中体现了特殊问题转化为一般化,运用了化归与转化思想,先通过探究在宏观上把握问题的一般规律,再将特殊问题破解.题型五:化归与转化思想的正难则反原则在解题中的体现化归与转化思想的正难则反原则在高中数学解题中的体现主要有:(1)间接证明方法中的反证法在解题中的运用;(2)概率问题中对立事件和互斥事件的概率公式的运用.例9.等差数列{a n }的前n 项和为S n ,a 1=1+2姨,S 3=9+32姨.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N 鄢),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解析】(1)设公差为d ,由已知得a1=2姨+1,3a1+3d =9+32姨姨,所以d =2,故a n =2n -1+2姨,S n =n (n +2姨).(2)证明:由(1)得b n =S n n=n +2姨.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2姨)2=(p +2姨)(r +2姨),所以(q 2-pr )+(2q -p-r )2姨=0.因为p ,q ,r ∈N 鄢,所以q 2-pr =0,2q-p-r =0姨,所以(p+r 2)2=pr ,(p-r )2=0,所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.【评注】本题的解答的第(2)问中运用了反证法,先反设假定要证的结论不成立,而设出结论的反面成立,将这个反设作为条件,运用等比数列的定义和通项公式,通过推理,得出p =r 与已知条件相矛盾,所以反设错误,所以要证明的结论成立,反证法归属于间接证明方法,第(2)问运用了化归与转化的思想.例10.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为____.【答案】23.【解析】掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,显然A 与B 互斥,从而P (A+B )=P (A )+P (B )=13+13=23.【评注】先由古典概型概率公式求出事件A 和事件B 的概率,再由对立事件概率公式求出事件B 的对立事件B 的概率,再由互斥事件概率公式,把事件A+B 的概率化归为求P (A )和P (B )的和,运用了化归与转化思想.责任编辑徐国坚31。