交流磁滞回线实验
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
磁滞回线实验报告磁滞回线实验报告引言:磁滞回线实验是物理学中的基础实验之一,通过观察和分析磁场强度与磁化强度之间的关系,可以了解材料的磁性特性。
本实验旨在探究不同材料的磁滞回线形状及其对磁场的响应。
实验原理:磁滞回线是指在磁场强度逐渐增加和减小的过程中,磁化强度发生变化的曲线。
在磁场强度逐渐增加时,材料的磁化强度也逐渐增加,但当磁场强度开始减小时,磁化强度并不立即减小,而是形成一个闭合的回线。
这种现象被称为磁滞回线。
实验步骤:1. 准备实验所需材料:磁铁、铁砂、铁钉、铜线、磁场强度计等。
2. 将铁砂填充至玻璃试管中,并用胶带封口,确保铁砂不会外溢。
3. 将铁钉缠绕铜线,形成线圈,并将线圈固定在试管外部。
4. 将磁场强度计放置在试管旁边,并将其连接至计算机。
5. 将磁铁靠近试管,使磁场强度计读数开始增加。
6. 缓慢移动磁铁,观察磁场强度计读数的变化,并记录下来。
7. 当磁场强度计读数达到最大值后,缓慢将磁铁远离试管,继续观察并记录读数的变化。
8. 根据记录的数据,绘制磁滞回线图。
实验结果及分析:通过实验观察和数据记录,我们得到了一条典型的磁滞回线。
在磁场强度逐渐增加时,磁化强度也随之增加,但在磁场强度减小时,磁化强度并不立即减小,而是形成一个闭合的回线。
根据实验结果,我们可以得出以下几点结论:1. 不同材料的磁滞回线形状不同。
铁砂的磁滞回线相对较宽,而铁钉的磁滞回线相对较窄。
这是因为不同材料的磁性特性不同,磁滞回线的形状取决于材料的磁化过程和磁化强度的变化。
2. 磁滞回线的形状与外加磁场的变化速度有关。
当外加磁场的变化速度较快时,磁滞回线的形状可能会发生变化,呈现出不规则的曲线。
这是因为快速变化的磁场会导致材料内部的磁畴无法充分调整,从而影响磁滞回线的形状。
3. 磁滞回线的形状与材料的磁饱和性有关。
磁饱和性是指材料在外加磁场作用下,磁化强度达到最大值后无法继续增加的能力。
当材料的磁饱和性较强时,磁滞回线的形状相对较窄,而当磁饱和性较弱时,磁滞回线的形状相对较宽。
磁滞回线的测量实验报告一、实验目的1.了解磁滞回线的概念和特点;2.学习使用霍尔传感器测量磁场强度;3.掌握利用实验数据绘制磁滞回线的方法。
二、实验仪器和材料仪器:霍尔元件、磁力计、示波器、直流电源;材料:螺线管、磁铁、导线、万用表。
三、实验原理磁滞回线是磁化物质在外磁场作用下,磁感应强度与磁场强度之间的关系曲线。
当外磁场强度H由小到大变化时,磁感应强度B不仅不是单调变化的,而且在H改变方向时,B经过零点有回弹现象。
这种B-H的关系曲线即为磁滞回线。
磁滞回线可以揭示磁材料的磁化、变磁和反磁过程中的磁场调整以及应力状态等内部状况,对于磁性材料的性能评价具有重要的意义。
四、实验步骤1.准备工作:搭建实验电路,连接霍尔元件、示波器和直流电源;2.将磁力计放置在霍尔元件附近并调整合适的位置;3.施加一定外磁场强度H,并记录示波器上测得的霍尔输出电压UH 与电流电压表测得的霍尔电流IH的数值;4.改变外磁场强度的大小和方向,重复第三步,直到完成一次完整的磁滞回线的测量;5.将测得的磁场强度H和磁感应强度B的数据进行整理。
五、实验注意事项1.实验过程中需保持实验环境的稳定和安静;2.实验中需注意安全,避免磁铁和螺线管等物品的碰撞和意外伤害;3.在调整霍尔元件和磁力计位置时,需保证测量准确性和稳定性;4.测量数据需及时记录并整理,以免丢失。
六、实验结果及数据处理根据实验步骤记录的UH、IH数据,可以得到对应的磁感应强度B和磁场强度H的测量结果。
整理数据后,可以将B-H数据绘制成磁滞回线图。
七、实验结果分析通过实验数据的分析,可以得到磁滞回线的面积、对称性、磁饱和状态等信息。
此外,对于不同材料的磁滞回线,还可以比较其形状和性能差异。
八、实验总结通过本次实验,我们了解了磁滞回线的概念和特点,学习并掌握了使用霍尔传感器测量磁场强度的方法,熟悉了利用实验数据绘制磁滞回线的步骤和技巧。
此外,我们还通过实验结果对不同材料的磁滞回线进行了分析比较,深入了解了磁材料的性能差异和应用前景。
铁磁材料的磁滞回线实验报告磁滞回线是描述铁磁材料磁化特性的重要参数之一,它反映了材料在外加磁场作用下磁化状态的变化规律。
本实验旨在通过测量铁磁材料在不同外加磁场下的磁感应强度,绘制出相应的磁滞回线曲线,从而研究铁磁材料的磁化特性。
实验仪器与材料:1. 信号发生器。
2. 交流电桥。
3. 励磁线圈。
4. 磁滞回线测试线圈。
5. 铁磁材料样品。
6. 示波器。
7. 直流电源。
8. 万用表。
实验步骤:1. 将交流电桥接通,调节信号发生器输出频率和幅度,使得电桥平衡。
2. 通过励磁线圈对铁磁材料进行励磁,同时接通示波器,观察磁感应强度随时间的变化曲线。
3. 逐渐增大励磁电流,记录不同外加磁场下的磁感应强度值。
4. 根据实验数据,绘制铁磁材料的磁滞回线曲线。
实验结果与分析:通过实验测得的数据,我们成功绘制出了铁磁材料的磁滞回线曲线。
从曲线图中可以看出,在外加磁场逐渐增大时,铁磁材料的磁感应强度也随之增大,但在去除外加磁场后,并不完全回到初始磁化状态,出现了磁感应强度残留的现象,这就是磁滞回线的特征之一。
通过对磁滞回线曲线的分析,我们可以得出铁磁材料的磁滞回线是一个闭合的环形曲线,表征了铁磁材料在周期性外加磁场作用下的磁化-去磁化过程。
磁滞回线的面积大小反映了铁磁材料的磁滞损耗,面积越大表示磁滞损耗越大,材料的磁化特性越差。
结论:本实验通过测量铁磁材料的磁滞回线,成功揭示了铁磁材料在外加磁场作用下的磁化特性。
磁滞回线曲线的绘制和分析为我们深入了解铁磁材料的磁化特性提供了重要的实验数据,对于材料的磁性能评价具有一定的参考价值。
综上所述,本实验取得了预期的实验结果,成功实现了铁磁材料的磁滞回线实验,并对实验结果进行了详细的分析和总结,为进一步研究铁磁材料的磁化特性奠定了基础。
磁性测量实验 软磁直流静态磁性测量(用冲击/扫描法测量磁性材料的磁化曲线及磁滞回线)一、 实验原理1、 静态磁性参数如果不计及磁化时间效应,磁性材料在稳恒磁场作用下所定义和测量得到的磁参数就是所谓的静态磁参数。
磁化曲线记录了材料磁化过程的磁化信息,而磁滞回线则表征和包含了磁性材料的全部磁性信息,有磁性材料身份证之称。
下左图C 为磁化曲线,A 和B 为初始和最大磁化率,M 和H 分别为磁化强度和外磁场。
下右图为典型磁性材料的磁滞回线,B s 、B r 、B r /B s 、H c 、(BH)max 、μ0和μM 分别为饱和磁感应强度、剩余磁感应强度、矩形比、矫顽力、最大磁能积、初始磁导率和最大磁导率。
2、 测量方法本实验课采用冲击法和磁场扫描法这两种方法来进行。
两种方法由于磁化速度的不同,在磁场方面数据稍有不同,而磁感方面的数据则差不多。
在进行一些饱和场不高或矫顽力小的试样测试时用冲击法;而矫顽力较大的磁滞材料是用扫描法。
本实验中提供两种不同矫顽力大小的磁性材料。
整个测量过程完全由微机控制,实验者可根据自己的要求选择不同的测量方法和输入参数来完成测量。
二、 实验内容及步骤1、 直流冲击法A. 启动测量程序,进入测量程序主菜单。
B. 测量前的准备工作HHBMBAC在进行正式测量之前,用户必须输入样品的有关参数。
主要包括“样品参数”和“测试条件”。
样品参数有“截面积、磁路长度、磁化匝数和测量匝数”。
由于输入参数随测量磁性材料变化而不同,因此具体的输入参数可向实验指导老师咨询。
C.正式测量如果步骤B中设定的参数无误,就可以开始测量了。
通过点击相应功能模块就可以完成测量工作。
2、磁场扫描法磁场扫描法与冲击法类似,材料参数和测量参数的选择可参考冲击法类似步骤。
三、实验结果1.直流冲击法实验样品为坡莫合金。
由测量所得数据绘出样品的磁化曲线,如下图:μm=133.279 mℎ/m实验所得曲线为S型,符合经验。
实验测得样品初始磁导率μ0=30.789mℎ/m,最大磁导率μm=133.279mℎ/m。
磁滞回线测量实验报告磁滞回线测量实验报告引言:磁滞回线是描述磁性材料磁化特性的重要参数。
通过对磁滞回线的测量和分析,我们可以深入了解材料的磁性行为,并从中获得有用的信息。
本篇实验报告旨在介绍磁滞回线测量实验的目的、步骤和结果,并对实验所获得的数据进行分析和讨论。
一、实验目的:本次实验的主要目的是通过对某一磁性材料的磁滞回线测量,了解该材料的磁化特性以及磁滞回线的含义。
具体的目标包括:1. 测量和绘制材料的磁滞回线;2. 分析磁滞回线的特征,如饱和磁感应强度、剩余磁感应强度、矫顽力等;3. 通过实验数据,讨论磁滞回线对材料磁性的影响。
二、实验步骤:1. 准备磁性样品和测量设备。
选择一块磁性样品,并将其放置在测量设备中,确保设备已经校准。
2. 施加外加磁场。
通过调节测量设备中的磁场源,逐渐增加外加磁场的强度,使其达到最大值,并将之后逐渐减小。
3. 测量磁滞回线数据。
在每个磁场强度值下,测量并记录材料的磁感应强度。
4. 绘制磁滞回线曲线。
将实验所得的磁感应强度值绘制成磁滞回线曲线。
三、实验结果:在本次实验中,我们测量了某磁性材料的磁滞回线,并得到了以下结果。
磁滞回线曲线如下图所示:[插入磁滞回线曲线图]从图中可以观察到以下几个主要特征:1. 饱和磁感应强度:磁滞回线中的一段水平线段代表材料的饱和磁感应强度。
在这段区域内,无论外加磁场的强度如何增加,材料的磁感应强度都不再增加。
2. 剩余磁感应强度:磁滞回线的起点对应着剩余磁感应强度。
当外加磁场为零时,材料仍然保持一定的磁感应强度,即剩余磁感应强度。
3. 矫顽力:磁滞回线中的一个特征点,即退磁点,表示了磁场逐渐减小时材料需要的磁场强度。
矫顽力越大,说明材料越难退磁。
四、数据分析和讨论:通过实验测量的磁滞回线数据,我们可以对该磁性材料的性质和行为进行一些分析和讨论。
磁滞回线的饱和磁感应强度可以告诉我们材料的磁性能。
当外加磁场的强度超过一定值时,材料将达到饱和,不再对外加磁场变化做出响应。
一、实验目的1. 理解磁滞回线的概念和特性;2. 掌握磁滞回线的测量方法;3. 分析磁滞回线与材料性能之间的关系。
二、实验原理磁滞回线是铁磁材料在外加磁场作用下,磁化强度(磁感应强度B)随磁场强度(磁场强度H)变化的关系曲线。
在磁滞回线中,磁化强度和磁场强度之间存在滞后现象,即当磁场强度减小到零时,磁化强度并不立即为零,而是保持一定的数值,这种现象称为磁滞。
磁滞回线的形状反映了铁磁材料的磁滞特性,主要包括以下参数:1. 矫顽力(Hc):磁化强度为零时,所需的反向磁场强度;2. 饱和磁感应强度(Bs):磁场强度达到饱和时,磁化强度达到的最大值;3. 剩磁(Br):磁场强度为零时,磁化强度所保持的值。
三、实验仪器与材料1. 磁滞回线测量仪;2. 待测铁磁材料;3. 示波器;4. 磁场发生器;5. 信号发生器;6. 测量磁感应强度和磁场强度的传感器。
四、实验步骤1. 将待测铁磁材料放置在磁滞回线测量仪中,调整磁场发生器,使磁场强度逐渐增加;2. 使用信号发生器产生一定频率的交流信号,输入到磁滞回线测量仪中;3. 示波器显示磁滞回线图形,记录不同磁场强度下的磁化强度值;4. 根据实验数据,绘制磁滞回线曲线;5. 分析磁滞回线与材料性能之间的关系。
五、实验结果与分析1. 磁滞回线图形:根据实验数据,绘制磁滞回线曲线,如图1所示。
图1 磁滞回线曲线2. 磁滞回线参数:根据磁滞回线曲线,测量矫顽力(Hc)、饱和磁感应强度(Bs)和剩磁(Br)等参数。
3. 分析:(1)矫顽力(Hc):矫顽力是磁滞回线中的最大磁场强度,反映了材料抵抗磁化退磁的能力。
矫顽力越大,材料越难退磁,即磁滞特性越好。
(2)饱和磁感应强度(Bs):饱和磁感应强度是磁化强度达到的最大值,反映了材料的磁导率。
饱和磁感应强度越大,材料的磁导率越高。
(3)剩磁(Br):剩磁是磁场强度为零时,磁化强度所保持的值,反映了材料的剩磁特性。
剩磁越大,材料的剩磁特性越好。
磁铁的磁滞回线实验磁滞回线实验是一种常见的物理实验,通过制作磁滞回线图来展示磁铁在不同磁场强度下的磁化特性。
本文将介绍磁滞回线实验的原理、实验步骤和实验结果的分析。
一、实验原理磁滞回线实验是通过改变磁铁的外部磁场,测量磁铁的磁化强度与外部磁场强度的关系。
在应用过程中,磁铁的磁化强度并不是简单地随外部磁场强度的升高而线性增加,而是出现一定的滞后现象,这种滞后现象被称为磁滞。
二、实验步骤1. 准备实验所需材料:一块铁芯、螺线管、直流电源、电流表以及磁场强度计等。
2. 将螺线管绕在铁芯上,固定好,并将电流表接在螺线管两端。
3. 将铁芯置于电磁铁的磁场中,并调整直流电源的电流,使其产生不同的磁场强度。
4. 测量电流表的读数和磁场强度计的读数,并记录下来。
5. 依次改变磁场强度,并重复步骤4,直到得到一条完整的磁滞回线。
三、实验结果分析通过实验得到的磁滞回线图能够直观地表达磁铁的磁滞现象。
在图中,横轴表示外部磁场强度,纵轴表示磁化强度。
磁滞回线的形状会告诉我们关于磁铁的磁化特性。
磁滞回线图的形状可以呈现出以下几种情况:1. 矩形:矩形回线表示磁铁完全磁化时的特征,当外部磁场的方向与磁铁相同时,磁滞回线为一个闭合的矩形。
2. S形:当外部磁场的方向与磁铁相反时,磁滞回线呈现出S 形,这是因为磁铁开始磁化时,其磁感应强度增大速度比较快,而当磁铁接近饱和时,磁感应强度增大速度减慢,因此形成曲线较为平缓的部分。
3. 弯曲:弯曲的磁滞回线表明磁铁的磁化特性具有不对称性,也就是当外部磁场强度减小或增大时,磁滞回线出现了偏移。
通过观察磁滞回线图,我们可以了解磁铁的磁化特性,包括饱和磁感应强度、残余磁感应强度、矫顽力等参数。
在实际应用中,磁滞回线的形状也会对磁铁的使用产生一定的影响,因此对磁滞回线进行研究具有重要的意义。
总结起来,磁滞回线实验是一种用来展示磁铁磁化特性的常见实验方法。
通过测量磁铁在外部磁场作用下的磁化强度,并制作磁滞回线图,可以直观地了解磁铁的磁化特性和滞后现象。
磁滞回线的测量许康麟 11000113G4 10#May 12, 2013一、实验目的1.用示波器观测软磁材料的交流磁滞回线;2.学习标定磁场强度、磁感应强度.测定样品的磁参数。
二、仪器用具磁滞回线实验仪器台〔两个带测样品,一个软铁、一个硅钢片,其他部分见实验原理),市电低压交流源,电感,示波器,直流电压源,数字万用表,导线若干。
三、实验原理1.铁磁材料的磁化规律B,:当材料磁化的时候,磁感应强度B和磁场强度H之间的关系因为磁滞的原因,B和H并不是-一对应的关系。
但是当H足够大的时候,H继续增大,B几乎不变了,这时饱和的磁感应强度用&表示。
当磁化饱和之后,若去掉磁场.材料仍保留一定的磁性,此时的B称为剩余磁感应强度,用d表示。
Z:这时加足够的反向磁场,材料才完全退磁•使材料完全退磁所需的反向磁场称为铁磁材料的娇顽力,用弘•表示。
磁滞回线.即铁磁材料的磁感应强度B和磁场强度H之间的关系,大致如图1所示。
2.測量的原理和方法采用如图2所示的电路图来进行测量.磁场强度和磁感应强度分别由R.Q CU CN2SRil给出。
这里可以这么做是因为再探测线圈恥中如果有磁通嚴△①的变化. 则会产生感生电动势,其值为而又有△G = — J Cjdt , G = N2BS测虽中用一个积分电路来计算①,得到6最后得到RC2N2S四、实验内容1.观測铁氧体(样品1)的饱和磁滞回线1)取R] = 2.0Q ・ R? = 50kQ. C = 10.0/iF, f = 100Hz.在示波器磁滞回线的上半支取9个点测最其H和B•画出磁滞回线,并给出反,比。
2)测虽比较/ = 50Hz和f = 150Hz时的和九。
3)取R] = 2.0Q… f = 50Hz励磁电流幅值/桝=0.2A、积分常数分别为03秒,0.05秒和0.5秒时,观察并画出其李萨如图形的示童图。
2.观测铁氧体的基本磁化曲线.1)取Ra = 2.0Q. R2 = 50kQ, C = lO.O/xF. f = lOOIIz.让H从0到耳单调变化.画出基本磁化曲线。
实验11 用示波器法观测磁滞回线【实验目的】学习使用示波器来观测铁氧体的磁滞回线,并从回线上定量的求出材料的几个主要磁参数H C (矫顽力)、Bm (饱和磁感应强度)、P (损耗)的数值。
【实验原理】磁性材料在交流磁场下的特性比起直流特性要复杂得多。
这是由于涡流和磁滞造成的。
在交流情况下的特点是用种种方法测得的磁性参数都不再象直流情况下那样仅仅取决于被测材料本身的磁性,而与材料的厚度、试样的尺寸以及测量时磁化电源频率等因素有关。
交流磁滞回线的测量是交流测量工作中的重要课题之一,它之所以需要,是因为交流回线最能反映在交变磁场作用下样品内部的磁状态的变化历程。
在交变磁场作用下的B -H 关系。
我们通称之为交流磁滞回线,下面我们介绍用普通示波器观测磁滞回线的原理。
示波器为我们提供了显示交流回线的最方便的条件,对示波器的水平和垂直偏向极分别输入与磁场H 和磁感B 成正比的电压,就可以在它的荧光屏上得到交流回线,如图1所示。
图1 交流回线的显示 【实验方法】从理论上讲,将V x 、V y 分别加到示波器的水平及垂直偏向极上即可得到B -H 曲线。
但由于除磁滞和涡流等因素造成的样品内部B 要对H 之间的滞后关系外,还存在讯号传输过程中产生不同的相移。
从而造成输出电压的相位移,那么在示波器上显示出的回线将不一定准确反映样品中的B 随H 的变化关系。
为了清除磁滞回线的失真,以得到真正无畸变的磁滞回线,我们在积分放大器的输出端引入一相移电路。
对于荧光屏上显示出的回线,我们还需要定量地进行测量,即要求得B m 、B r 、H m 、H c 和P 值的数值为此我们必须对回线进行定标。
定标的方法很多,我们实验中采用直接测量法。
将真空管毫伏表(或平均值电压表)按在样品次级线圈上测出感应电压的平均值V ev ,然后根据下式8282104104⨯=⨯=S fN V S fN V B r ev m (高斯)其中:f 为磁化电流的频率;N 2为次线圈的函数;S 为样品截面;V r 为mV 表读得的电压有效值。
实验报告(示例)【实验名称】铁磁材料的磁化曲线和磁滞回线【实验目的】1、掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、剩磁和磁导率的理解。
2、学会用示波法测绘基本磁化曲线和磁滞回线。
3、根据磁滞回线确定磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽力He 的数值。
4、研究不同频率下动态磁滞回线的区别,并确定某一频率下的磁感应强度Bs、剩磁Br和矫顽力He数值。
5、改变不同的磁性材料,比较磁滞回线形状的变化。
【实验仪器】实验使用的仪器由测试样品、功率信号源、可调标准电阻、标准电容和接口电路等组成。
测试样品有两种,一种是圆形罗兰环,材料是锰锌功率铁氧体,磁滞损耗较小;另一种是EI型硅钢片,磁滞损耗较大些。
信号源的频率在20〜200Hz 间可调;可调标准电阻R i的调节范围为0.1〜11 Q; R2的调节范围为1〜110k Q; 标准电容有0.1卩〜11 H可选。
实验样品的参数如下:样品1:平均磁路长度L=0.130m,铁芯实验样品截面积S=1.24X 10-4m2,线圈匝数:N1=150T, N2=150T; N3=150T。
样品2:平均磁路长度L=0.075m,铁芯实验样品截面积S=1.20X 10-4m2,线圈匝数:N1=150T, N2=150T; N3=150T。
【实验原理】1、磁化曲线此处说明什么是磁化曲线,什么是起始磁化曲线2、磁滞回线此处图示说明以下几个概念:起始磁化曲线,磁滞回线,退磁曲线,剩磁,矫顽力,磁滞现象,极限磁滞回线,基本磁化曲线,磁锻炼3、示波器显示B —H曲线的原理此处图示说明以下概念与公式:图1 B — H 曲线的原理图 加在示波器X 端和Y 端的U X 和U Y ,各参数的意义U X 弋 H U Y 二CR 23、示波器相关旋钮的功能与操作步骤及 H-X 、B-Y 的关系式 此处说明示波器相关旋钮的功能与操作步骤及 H-X 、B-Y 的关系式中各参数的 含义【实验内容】1、 显示和观察2种样品在25Hz 、50Hz 、100Hz 、150Hz 交流信号下的磁滞回线 图形。
磁性材料磁滞回线及磁化曲线的测量
一、实验目的:
1、通过实验研究磁性材料的性质,按回线形状初步区分硬磁性材料和软磁
性材料。
2、掌握用示波器观察磁滞回线及其基本磁化曲线的绘制方法,从而能从理
论到实际应用上加深对磁性材料的认识。
二、实验内容:
1、电路连接:选样品1按实验仪上所给的电路图连接线路,并令R1=4.0?,“∩
选择”开关K
1置于0.5V。
U
H
和U
B
(即U
1
和U
2
)分别接示波器的:“X输入”和
“Y输入”,插孔“⊥”为公共端。
2、样品退磁:开启实验仪电源,对试样1进行退磁,即顺时针方向转动:电压选择“旋钮K1,令U从0.5V增至5V,然后逆时针方向转动旋动旋钮,将U 从最大值降为0.5V,其目的是消除剩磁,确保样品处于磁中性状态,即B=U=O。
3、观察磁滞回线:开启示波器电源,令光点位于坐标网格中心,令U=4.0V,并分别调节示波器X和Y轴的灵敏度,使显示屏上出现图形大小合适的磁滞回线(若图形顶部出现编织状的小环,这时可降低励磁电压U予以消除)。
4、观察基本磁化曲线:按步骤2对样品进行退磁。
从U=0.5开始,逐档提高励磁电压,将在显示屏上得到面积由小到大一个套一个的一族磁滞回线。
这些磁滞回线顶点的连线就是样品的基本磁化曲线,借助长余辉示波器,便可观察到曲线的轨迹。
5、观察,,比较样品1和样品2饿磁化性能。
6、测绘µ-H曲线:(仔细阅读测试仪的使用说明)接通实验仪和测试仪之间的
连线,开启电源,对样品进行退磁,依次测定U=0.5、1.0…5.0V+组H
M 和B
M
的
值,作µ-H曲线。
7、令U=4.5V,R
1=4.0?测定样品1的B
M,
Br,H
M,
H
C
和BH等参数。
8、取步骤7中的H和其相应的B值,用坐标纸绘制B-H曲线(如何取数?取多少组数据?自行考虑),并估算曲线所围面积。
三、实验装置:
1、长余辉示波器1台
2、QS-M磁滞回线实验组合仪1套
四、实验原理图:
五、实验记录:
表一基本磁化曲线与µ-H曲线
六、实验结果分析:
1、经过认真观察样品的磁滞回线的形状如何区别硬磁材料和软磁材料。
2、根据所测量的B、H,绘制出:磁导率与H的关系曲线,磁化曲线。