全国中学生物理竞赛集锦原子物理学新课标人教版Word版
- 格式:doc
- 大小:842.50 KB
- 文档页数:13
第三讲运动定律§3.1牛顿定律3.1.1、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。
这是牛顿第一定律的内容。
牛顿第一定律是质点动力学的出发点。
物体保持静止状态或匀速直线运动状态的性质称为惯性。
牛顿第一定律又称为惯性定律,惯性定律是物体的固有属性,可用质量来量度。
无论是静止还是匀速直线运动状态,其速度都是不变的。
速度不变的运动也就是没有加速度的运动,所以物体如果不受到其他物体的作用,就作没有加速度的运动,牛顿第一定律指出了力是改变物体运动状态的原因。
牛顿第一定律只在一类特殊的参照系中成立,此参照系称为惯性参照系。
简称惯性系。
相对某一惯性系作匀速运动的参照系必定也是惯性系,牛顿第一定律不成立的参照系称为非惯性参照系,简称非惯性系,非惯性系相对惯性系必作变速运动,地球是较好的惯性系,太阳是精度更高的惯性系。
3.1.2.牛顿第二定律(1)定律内容:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同(2)数学表达式:maFmFa= =∑∑或(3)理解要点①牛顿第二定律不仅揭示了物体的加速度跟它所受的合外力之间的数量关系,而且揭示了加速度方向总与合外力的方向一致的矢量关系。
在应用该定律处理物体在二维平面或三维空间中运动的问题,往往需要选择适当的坐标系,把它写成分量形式②牛顿第二定律反映了力的瞬时作用规律。
物体的加速度与它所受的合外力是时刻对应的,即物体所受合外力不论在大小还是方向上一旦发生变化,其加速度也一定同时发生相应的变化。
③当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就如同其他力不存在—样;物体受几个力共同作用时,产生的加速度等于每个力单独作用时产生的加速度的矢量和,如图3-1-1示。
这个结论称为力的独立作用原理。
④牛顿第二定律阐述了物体的质量是惯性大小的量度,公式∑=aFm/反映了对同—物体,其所受合外跟它的加速度之比值是个常数,而对不同物体其比值不同,这个比值的大小就是物体的质量,它是物体惯性大小量度,当合外力不变时,物体加速度跟其质量成反比,即质量越大,物体加速度越小,运动状态越难改变,惯性也就越大。
40届中学生物理竞赛决赛试题第40届全国中学生物理竞赛决赛试题于2023年举行,试题内容涵盖了物理学的多个领域,包括力学、热学、电磁学、光学、原子物理学等。
试题的设计旨在考查学生的物理基础知识、科学思维方法和实验能力。
以下是对第40届全国中学生物理竞赛决赛试题的详细介绍:一、试题结构1. 选择题:选择题共计一定数量,每题分值根据题目难度有所不同,主要考查学生对物理概念、规律的理解和运用。
2. 填空题:填空题共计一定数量,每题分值根据题目难度有所不同,主要考查学生对物理概念、公式、定理的记忆和应用。
3. 解答题:解答题共计一定数量,每题分值根据题目难度有所不同,主要考查学生的逻辑思维能力、计算能力和解决实际问题的能力。
4. 实验题:实验题共计一定数量,每题分值根据题目难度有所不同,主要考查学生的实验操作能力、数据处理能力和实验结论的得出。
二、试题内容特点1. 基础知识考查:试题涵盖了物理学的基本概念、规律和原理,注重考查学生的基本知识。
2. 科学思维方法考查:试题设计了涉及分析、综合、推理等科学思维方法的题目,培养学生的科学思维能力。
3. 实验能力考查:试题中的实验题不仅考查学生的实验操作能力,还考查数据处理能力和实验结论的得出,强调实验的重要性。
4. 实际问题解决:试题结合生活实际,引导学生运用物理知识解决实际问题。
5. 创新能力的考查:试题中设计了一些具有挑战性的题目,激发学生的创新思维和解决问题的能力。
三、使用建议1. 重视基础知识学习:学生在学习中应重视基础知识的学习,掌握物理学的基本概念、规律和原理。
2. 培养科学思维方法:学生应培养科学的思维方法,提高分析、综合、推理等能力。
3. 加强实验能力培养:学生应加强实验能力的培养,掌握实验操作技巧,提高数据处理和实验结论得出能力。
4. 联系生活实际:学生应在学习过程中,将所学知识与生活实际相结合,提高知识的运用能力。
5. 注重创新能力培养:学生应注重创新能力的培养,参加各类竞赛和科研项目,提升自己的创新能力。
全国中学生物理竞赛真题汇编---热学1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为31He 4.00310kg mol μ--=⨯⋅在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0ºC 的1.200kg 的热水外,无其他热源。
试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0ºC 升温到66.0ºC 以上(含66.0ºC),并通过计算验证你的方案.已知铝合金的比热容c =0.880×103J ·(k g·ºC)-1, 水的比热容c =4.20×103J ·(kg ·ºC)-1,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。
两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。
磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。
最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (5)一、高中物理奥赛概况 (5)二、知识体系 (5)第一部分力&物体的平衡 (6)第一讲力的处理 (6)第二讲物体的平衡 (8)第三讲习题课 (9)第四讲摩擦角及其它 (13)第二部分牛顿运动定律 (15)第一讲牛顿三定律 (16)第二讲牛顿定律的应用 (16)第二讲配套例题选讲 (24)第三部分运动学 (24)第一讲基本知识介绍 (24)第二讲运动的合成与分解、相对运动 (26)第四部分曲线运动万有引力 (28)第一讲基本知识介绍 (28)第二讲重要模型与专题 (30)第三讲典型例题解析 (38)第五部分动量和能量 (38)第一讲基本知识介绍 (38)第二讲重要模型与专题 (40)第三讲典型例题解析 (53)第六部分振动和波 (53)第一讲基本知识介绍 (53)第二讲重要模型与专题 (57)第三讲典型例题解析 (66)第七部分热学 (66)一、分子动理论 (66)二、热现象和基本热力学定律 (68)三、理想气体 (70)四、相变 (77)五、固体和液体 (80)第八部分静电场 (81)第一讲基本知识介绍 (81)第二讲重要模型与专题 (84)第九部分稳恒电流 (95)第一讲基本知识介绍 (95)第二讲重要模型和专题 (98)第十部分磁场 (107)第一讲基本知识介绍 (107)第二讲典型例题解析 (111)第十一部分电磁感应 (117)第一讲、基本定律 (117)第二讲感生电动势 (120)第三讲自感、互感及其它 (124)第十二部分量子论 (127)第一节黑体辐射 (127)第二节光电效应 (130)第三节波粒二象性 (136)第四节测不准关系 (139)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称IPhO)① 1967年第一届,(波兰)华沙,只有五国参加。
最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (4)一、高中物理奥赛概况 (4)二、知识体系 (5)第一部分力&物体的平衡 (6)第一讲力的处理 (6)第二讲物体的平衡 (8)第三讲习题课 (9)第四讲摩擦角及其它 (15)第二部分牛顿运动定律 (19)第一讲牛顿三定律 (19)第二讲牛顿定律的应用 (20)第二讲配套例题选讲 (31)第三部分运动学 (32)第一讲基本知识介绍 (32)第二讲运动的合成与分解、相对运动 (34)第四部分曲线运动万有引力 (38)第一讲基本知识介绍 (38)第二讲重要模型与专题 (40)第三讲典型例题解析 (51)第五部分动量和能量 (51)第一讲基本知识介绍 (51)第二讲重要模型与专题 (54)第三讲典型例题解析 (71)第六部分振动和波 (71)第一讲基本知识介绍 (71)第二讲重要模型与专题 (77)第三讲典型例题解析 (89)第七部分热学 (89)一、分子动理论 (90)二、热现象和基本热力学定律 (92)三、理想气体 (95)四、相变 (104)五、固体和液体 (109)第八部分静电场 (111)第一讲基本知识介绍 (111)第二讲重要模型与专题 (116)第九部分稳恒电流 (130)第一讲基本知识介绍 (130)第二讲重要模型和专题 (135)第十部分磁场 (148)第一讲基本知识介绍 (148)第二讲典型例题解析 (153)第十一部分电磁感应 (160)第一讲、基本定律 (161)第二讲感生电动势 (165)第三讲自感、互感及其它 (170)第十二部分量子论 (174)第一节黑体辐射 (174)第二节光电效应 (178)第三节波粒二象性 (187)第四节测不准关系 (190)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称IPhO)①1967年第一届,(波兰)华沙,只有五国参加。
全国中学生物理竞赛试题一、选择题(每题4分,共40分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
如果一个物体受到的力为10N,质量为2kg,那么它的加速度是多少?A. 5 m/s²B. 20 m/s²C. 10 m/s²D. 40 m/s²2. 光在真空中的传播速度是3×10^8 m/s。
如果一束光从地球到月球需要1.28秒,那么月球距离地球大约是多少?A. 3.84×10^8 mB. 3.84×10^5 kmC. 384,000 kmD. 3.84×10^6 m3. 一个理想气体的体积从2L增加到4L,同时压强从1atm减少到0.5atm。
如果气体的温度保持不变,那么这个过程中气体经历了什么过程?A. 等温过程B. 等压过程C. 等容过程D. 绝热过程4. 一个物体在水平面上以恒定速度v运动,摩擦系数为μ。
如果物体的质量为m,那么摩擦力的大小是多少?A. μmgB. (1-μ)mgC. 0D. μN5. 一个电子在电场中受到的电场力大小为F,如果电子的电荷量为e,那么电场强度E是多少?A. F/eB. eFC. e/FD. F*e6. 一个电路中串联了一个电阻R1和一个电容C,电源电压为V。
当电路接通时,电容开始充电。
如果电路的总电阻为R,那么充电电流I是多少?A. V/RB. V/(R1+1/(Cω))C. V/(R1+R)D. V/(R1+1/(C*2πf))7. 一个物体在竖直方向上做自由落体运动,忽略空气阻力。
如果物体从静止开始下落,那么在第1秒末的速度是多少?A. 9.8 m/sB. 10 m/sC. 19.6 m/sD. 0 m/s8. 根据能量守恒定律,在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
以下哪个现象不违反能量守恒定律?A. 永动机B. 摩擦生热C. 物体在没有外力作用下突然加速D. 物体在没有外力作用下保持匀速直线运动9. 一个单摆的周期T与摆长L和重力加速度g有关。
全国中学生物理竞赛试题21到25届(力学)第21届全国中学生物理竞赛预赛题试卷二、(15分)质量分别为m1和m2的两个小物块用轻绳连结,绳跨过位于倾角α=30︒的光滑斜面顶端的轻滑轮,滑轮与转轴之间的磨擦不计,斜面固定在水平桌面上,如图所示。
第一次,m1悬空,m2放在斜面上,用t表示m2自斜面底端由静止开始运动至斜面顶端所需的时间。
第二次,将m1和m2位置互换,使m2悬空,m1放在斜面上,发现m1自斜面底端由静止开始运动至斜面顶端所需的时间为t/3。
求m l与m2之比。
四、(15分)要使一颗人造地球通讯卫星(同步卫星)能覆盖赤道上东经75.0︒到东经135.0︒之间的区域,则卫星应定位在哪个经度范围内的上空?地球半径R0=6.37×106m。
地球表面处的重力加速度g=9.80m/s2。
七、(15分)如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上。
A是质为m A的细长直杆,被固定的光滑套管C约束在竖直方向,A可自由上下运动。
碗和杆的质量关系为:m B=2m A。
初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图)。
然后从静止开始释放A,A、B便开始运动。
设A杆的位置用θ表示,θ为碗面的球心O至A杆下端与球面接触点的连线方向和竖直方向之间的夹角。
求A与B速度的大小(表示成θ的函数)。
九、(18分)如图所示,定滑轮B、C与动滑轮D组成一滑轮组,各滑轮与转轴间的摩擦、滑轮的质量均不计。
在动滑轮D上,悬挂有砝码托盘A,跨过滑轮组的不可伸长的轻线的两端各挂有砝码2和3。
一根用轻线(图中穿过弹簧的那条坚直线)拴住的压缩轻弹簧竖直放置在托盘底上,弹簧的下端与托盘底固连,上端放有砝码1(两者未粘连)。
已加三个砝码和砝码托盘的质量都是m,弹簧的劲度系数为k,压缩量为l0,整个系统处在静止状态。
现突然烧断栓住弹簧的轻线,弹簧便伸长,并推动砝码1向上运动,直到砝码1与弹簧分离。
全国中学生物理竞赛真题汇编--- 热学1. ( 19Y4)四、( 20 分)如图预19-4 所示,三个绝热的、容积相同的球状容器A、B、C,用带有阀门 K1、K2的绝热细管连通,相邻两球球心的高度差h 1.00 m .初始时,阀门是关闭的,A 中装有 1mol 的氦( He) ,B 中装有 1mol 的氪( Kr ) ,C 中装有 lmol 的氙( Xe),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门 K 、K ,三种气体相互混合,1 2最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为4.003 10 3 kg mol 1He3kg mol 1Kr 83.8 103 kg mol 1Xe 131.3 10在体积不变时,这三种气体任何一种每摩尔温度升高1K,所吸收的热量均为3R/ 2,R为普适气体常量.2.( 20Y3)( 20 分)在野外施工中,需要使质量m= 4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t = 90.0 oC的 1.200kg 的热水外,无其他热源。
试提出一个操作方案,能利用这些热水使构件从温度t 0= 10.0 oC升温到66.0 oC 以上 ( 含 66.0 oC),并通过计算验证你的方案.已知铝合金的比热容 c=0.880 × 103 J· (k g·o C)-1,水的比热容 c=4.20 × 103J·(kg ·o C)-1,不计向周围环境散失的热量.3.( 22Y6)(25 分 ) 如图所示。
两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。
磁场方向与导轨所在平面垂直.一质量为m的均匀导体细杆,放在导轨上,并与导轨垂直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为尺 0 的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为 S 的小液柱 ( 质量不计 ) ,液柱将 l mol 气体 ( 可视为理想气体 ) 封闭在容器中.已知温度升高1K时,该气体的内能的增加量为5R/2(R 为普适气体常量 ) ,大气压强为po,现令细杆沿导轨方向以初速V0向右运动,试求达到平衡时细管中液柱的位移.4.( 16F1)20 分)一汽缸的初始体积为V0,其中盛有2 mol的空气和少量的水(水的体积可以忽略)。
全国初中物理竞赛精选题及答案全国初中物理竞赛精选题及答案初中物理知识要点一览与初中物理基本概念概要(一)初中物理知识要点一览速度:V(m/S)v= S:路程/t:时间重力G (N)G=mg(m:质量;g:9.8N或者10N)密度:ρ(kg/m3)ρ=m(m:质量;V:体积)合力:F合(N)方向相同:F合=F1+F2 ;方向相反:F合=F1—F2 方向相反时,F1>F2浮力:F浮(N) F浮=G物—G视(G视:物体在液体的重力)浮力:F浮(N) F浮=G物(此公式只适用物体漂浮或悬浮)浮力:F浮(N) F浮=G排=m排g=ρ液gV排(G排:排开液体的重力;m排:排开液体的质量;ρ液:液体的密度;V 排:排开液体的体积(即浸入液体中的体积) )杠杆的平衡条件:F1L1= F2L2 (F1:动力;L1:动力臂;F2:阻力;L2:阻力臂)定滑轮:F=G物S=h (F:绳子自由端受到的拉力;G物:物体的重力;S:绳子自由端移动的距离;h:物体升高的距离)动滑轮:F= (G物+G轮)/2 S=2 h (G物:物体的重力;G轮:动滑轮的重力)滑轮组:F= (G物+G轮)S=n h (n:通过动滑轮绳子的段数)机械功:W (J)W=Fs (F:力;s:在力的方向上移动的距离)有用功:W有=G物h总功:W总W总=Fs 适用滑轮组竖直放置时机械效率: η=W有/W总×100%功率:P (w)P= w/t (W:功; t:时间)压强p (Pa)P= F/s (F:压力; S:受力面积)液体压强:p (Pa)P=ρgh(ρ:液体的密度;h:深度【从液面到所求点的竖直距离】)热量:Q (J)Q=cm△t(c:物质的比热容;m:质量;△t:温度的变化值)燃料燃烧放出的热量:Q(J)Q=mq (m:质量;q:热值)串联电路电流I(A)I=I1=I2=……电流处处相等串联电路电压U(V)U=U1+U2+……串联电路起分压作用串联电路电阻R(Ω)R=R1+R2+……并联电路电流I(A)I=I1+I2+……干路电流等于各支路电流之和(分流)并联电路电压U(V)U=U1=U2=……并联电路电阻R(Ω)1/R =1/R1 +1/R2 +……欧姆定律:I= U/I电路中的电流与电压成正比,与电阻成反比电流定义式I= Q/t (Q:电荷量(库仑);t:时间(S))电功:W (J)W=UIt=Pt (U:电压;I:电流;t:时间;P:电功率)电功率:P=UI=I2R=U2/R (U:电压;I:电流;R:电阻)电磁波波速与波长、频率的关系:C=λν(C:波速(电磁波的波速是不变的,等于3×108m/s);λ:波长;ν:频率)(二)初中物理基本概念概要一、测量⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位.⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表.1时=3600秒,1秒=1000毫秒.⒊质量m:物体中所含物质的多少叫质量.主单位:千克;测量工具:秤;实验室用托盘天平.二、机械运动⒈机械运动:物体位置发生变化的运动.参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物.⒉匀速直线运动:①比较运动快慢的两种方法:a 比较在相等时间里通过的路程.b 比较通过相等路程所需的时间.②公式:1米/秒=3.6千米/时.三、力⒈力F:力是物体对物体的作用.物体间力的作用总是相互的.力的单位:牛顿(N).测量力的仪器:测力器;实验室使用弹簧秤. 力的作用效果:使物体发生形变或使物体的运动状态发生改变.物体运动状态改变是指物体的速度大小或运动方向改变.⒉力的三要素:力的大小、方向、作用点叫做力的三要素.力的图示,要作标度;力的示意图,不作标度.⒊重力G:由于地球吸引而使物体受到的力.方向:竖直向下.重力和质量关系:G=mg m=G/gg=9.8牛/千克.读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛.重心:重力的作用点叫做物体的重心.规则物体的重心在物体的几何中心.⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上.物体在二力平衡下,可以静止,也可以作匀速直线运动.物体的平衡状态是指物体处于静止或匀速直线运动状态.处于平衡状态的物体所受外力的合力为零.⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;方向相反:合力F=F1-F2,合力方向与大的力方向相同.⒍相同条件下,滚动摩擦力比滑动摩擦力小得多.滑动摩擦力与正压力,接触面材料性质和粗糙程度有关.【滑动摩擦、滚动摩擦、静摩擦】7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态. 惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性.四、密度⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性.公式:m=ρV国际单位:千克/米3 ,常用单位:克/厘米3, 关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;读法:103千克每立方米,表示1立方米水的质量为103千克.⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积.面积单位换算:1厘米2=1×10-4米2,1毫米2=1×10-6米2.五、压强⒈压强P:物体单位面积上受到的压力叫做压强.压力F:垂直作用在物体表面上的力,单位:牛(N).压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关. 压强单位:牛/米2;专门名称:帕斯卡(Pa)公式:F=PS 【S:受力面积,两物体接触的公共部分;单位:米2.】改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强.⒉液体内部压强:【测量液体内部压强:使用液体压强计(U型管压强计).】产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强.规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大. [深度h,液面到液体某点的竖直高度.]公式:P=ρgh h:单位:米;ρ:千克/米3;g=9.8牛/千克.⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家).托里拆利管倾斜后,水银柱高度不变,长度变长.1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高测定大气压的仪器:气压计(水银气压计、盒式气压计).大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低.六、浮力1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力.方向:竖直向上;原因:液体对物体的上、下压力差.2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力.即F浮=G液排=ρ液gV排. (V排表示物体排开液体的体积)3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差4.当物体漂浮时:F浮=G物且ρ物G物且ρ物2f f。
第届中学生物理竞赛决赛试题w o r d版精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】第35届全国中学生物理竞赛决赛理论考试试题(上海交大)1、(35分)如图,半径为R 、质量为M 的半球静置于光滑水平桌面上,在半球顶点上有一质量为m 、半径为r 的匀质小球。
某时刻,小球收到微扰由静止开始沿半球表面运动。
在运动过程中,小球相对半球的位置由角位置?描述,?为两球心连线与竖直线的夹角。
己知小球绕其对称轴的转动惯量为225mr ,小球与半球间的动摩擦因数为?,假定最大静摩擦力等于滑动摩擦力。
重力加速度大小为g 。
(1)(15分)小球开始运动后在一段时间内做纯滚动,求在此过程中,当小球的角位置为?1时,半球运动的速度大小1()M V θ和加速度大小1()M a θ;(2)(15分)当小球纯滚动到角位置?2时开始相对于半球滑动,求?2所满足的方程(用半球速度大小2()M V θ和加速度大小2()M a θ以及题给条件表示);(3)(5分)当小球刚好运动到角位置?3时脱离半球,求此时小球质心相对于半球运动速度的大小3()m v θ2、(35分)平行板电容器极板1和2的面积均为S ,水平固定放置,它们之间的距离为d ,接入如图所示的电路中,电源的电动势记为U 。
不带电的导体薄平板3(厚度忽略不计)的质量为m 、尺寸与电容器极板相同。
平板3平放在极板2的正上方,且与极板2有良好的电接触。
整个系统置于真空室内,真空的介电常量为0ε。
合电键K 后,平板3与极板1和2相继碰撞,上下往复运动。
假设导体板间的电场均可视为匀强电场;导线电阻和电源内阻足够小,充放电时间可忽略不计;平板3与极板1或2碰撞后立即在极短时间内达到静电干衡;所有碰撞都是完全非弹性的。
重力加速度大小为g 。
(1)(17分)电源电动势U 至少为多大?(2)(18分)求平板3运动的周期(用U 和题给条件表示)。
全国中学生物理竞赛集锦原子物理学第21届预赛2004.9.5一、(15分)填空1.a .原子大小的数量级为__________m 。
b .原子核大小的数量级为_________m 。
c .氦原子的质量约为_________kg 。
(普朗克常量 h =6.63×10-34J ·s )2.已知某个平面镜反射的光能量为入射光能量的80%。
试判断下列说法是否正确,并简述理由。
a . 反射光子数为入射光子数的80%;b .每个反射光子的能量是入射光子能量的80%。
第21届复赛三、(15分)子在相对自身静止的惯性参考系中的平均寿命s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反应产生一批子,以v = 0.99c 的速度(c 为真空中的光速)向下运动并衰变.根据放射性衰变定律,相对给定惯性参考系,若t = 0时刻的粒子数为N (0), t 时刻剩余的粒子数为N (t ),则有()()τt N t N -=e 0,式中为相对该惯性系粒子的平均寿命.若能到达地面的子数为原来的5%,试估算子产生处相对于地面的高度h .不考虑重力和地磁场对子运动的影响.第20届预赛二、(20分)一个氢放电管发光,在其光谱中测得一条谱线的波长为4.86×10-7m .试计算这是氢原子中电子从哪一个能级向哪一个能级(用量子数n 表示)跃迁时发出的?已知氢原子基态(n=1)的能量为E l =一13.6eV =-2.18×10-18J ,普朗克常量为 h =6.63×10-34J ·s 。
第20届复赛 (无) 第19届预赛 (无) 第19届复赛六、(20分)在相对于实验室静止的平面直角坐标系S 中,有一个光子,沿x 轴正方向射向一个静止于坐标原点O 的电子.在y 轴方向探测到一个散射光子.已知电子的静止质量为0m ,光速为c ,入射光子的能量与散射光子的能量之差等于电子静止能量的1/10.1.试求电子运动速度的大小v ,电子运动的方向与x 轴的夹角θ;电子运动到离原点距离为0L (作为已知量)的A 点所经历的时间t ∆.2.在电子以1中的速度v 开始运动时,一观察者S '相对于坐标系S 也以速度v 沿S 中电子运动的方向运动(即S '相对于电子静止),试求S '测出的OA 的长度.第18届预赛四、(1 8分)在用铀 235作燃料的核反应堆中,铀 235核吸收一个动能约为0.025eV 的热中子(慢中子)后,可发生裂变反应,放出能量和2~3个快中子,而快中子不利于铀235的裂变.为了能使裂变反应继续下去,需要将反应中放出的快中子减速。
有一种减速的方法是使用石墨(碳12)作减速剂.设中子与碳原子的碰撞是对心弹性碰撞,问一个动能为0 1.75MeV E =的快中子需要与静止的碳原子碰撞多少次,才能减速成为0.025eV 的热中子?第18届复赛三、(22分)有两个处于基态的氢原子A 、B ,A 静止,B 以速度0v 与之发生碰撞.己知:碰撞后二者的速度A v 和B v 在一条直线上,碰撞过程中部分动能有可能被某一氢原子吸收。
从而该原子由基态跃迁到激发态,然后,此原子向低能级态跃迁,并发出光子.如欲碰后发出一个光子,试论证:速度0v 至少需要多大(以m/s 表示)?己知电子电量为191.60210C e =⨯-,质子质量为271.67310kg p m =⨯-。
电子质量为310.91110kg e m =⨯-.氢原子的基态能量为113.58eV E =-.第17届预赛七、(20分)当质量为m 的质点距离—个质量为M 、半径为R 的质量均匀分布的致密天体中心的距离为r (r ≥R ) 时,其引力势能为P /E GMm r =-,其中11226.6710N m kg G =⨯⋅⋅--为万有引力常量.设致密天体是中子星,其半径10km R =,质量 1.5M M =⊙(301 2.010kg M ⨯⊙=,为太阳的质量).1.1Kg 的物质从无限远处被吸引到中子星的表面时所释放的引力势能为多少? 2.在氢核聚变反应中,若参加核反应的原料的质量为m ,则反应中的质量亏损为0.0072 m ,问1kg 的原料通过核聚变提供的能量与第1问中所释放的引力势能之比是多少?3.天文学家认为:脉冲星是旋转的中子星,中子星的电磁辐射是连续的,沿其磁轴方向最强,磁轴与中子星的自转轴方向有一夹角(如图预17-7所示),在地球上的接收器所接收到的一连串周期出现的脉冲是脉冲星的电磁辐射。
试由上述看法估算地球上接收到的两个脉冲之间的时间间隔的下限.第17届复赛三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEVATRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J s h =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗?第16届预赛 (无) 第16届复赛 (无)全国中学生物理竞赛集锦(原子物理学)答案 第21届预赛2004.9.5一、1. a. 10-10b. 10-15c. 6.6×10-272. a 正确,b 不正确。
理由:反射时光频率 不变,这表明每个光子能量h 不变。
评分标准:本题15分,第1问10分,每一空2分。
第二问5分,其中结论占2分,理由占3分。
第21届复赛三、因子在相对自身静止的惯性系中的平均寿命s 100.260-⨯≈τ根据时间膨胀效应,在地球上观测到的子平均寿命为,()21c v -=ττ (1)代入数据得= 1.4×10-5s(2)相对地面,若子到达地面所需时间为t ,则在t 时刻剩余的子数为()()τt N t N -=e 0(3)根据题意有()()%5e 0==-τt N t N (4)对上式等号两边取e 为底的对数得1005lnτ-=t (5)代入数据得s 1019.45-⨯=t(6)根据题意,可以把子的运动看作匀速直线运动,有t h v =(7)代入数据得m 1024.14⨯=h (8)评分标准:本题15分. (1)式或(2)式6分,(4)式或(5)式4分,(7) 式2分,(8) 式3分.第20届预赛二、参考解答波长λ与频率ν的关系为 cνλ=, (1)光子的能量为 E h νν=, (2) 由式(1)、(2)可求得产生波长74.8610λ-=⨯m 谱线的光子的能量194.0910E ν-=⨯J (3)氢原子的能级能量为负值并与量子数n 的平方成反比: 21n E kn =-,n =1,2,3,… (4) 式中k 为正的比例常数。
氢原子基态的量子数n =1,基态能量1E 已知,由式(4)可得出1k E =- (5)把式(5)代入式(4),便可求得氢原子的n =2,3,4,5,… 各能级的能量,它们是192215.45102E k -=-=-⨯J , 193212.42103E k -=-=-⨯J ,194211.36104E k -=-=-⨯J ,205218.72105E k -=-=-⨯J 。
比较以上数据,发现1942 4.0910E E E ν-=-=⨯J 。
(6)所以,这条谱线是电子从4n =的能级跃迁到2n =的能级时发出的。
评分标准:本题20分。
式(3)4分,式(4)4分,式(5)4分,式(6)及结论共8分。
第20届复赛 (无) 第19届预赛 (无) 第19届复赛六、参考解答(1)由能量与速度关系及题给条件可知运动电子的能量为220022 1.101(/)m c v c =- (1)由此可解得0.210.4170.42v c c ==≈ (2) 入射光子和散射光子的动量分别为h p c ν=和h p cν''=,方向如图复解19-6所示。
电子的动量为mv ,m 为运动电子光子散射方向的相对论质量。
由动量守恒定律可得hcνθ=(3)hcνθ'=(4)已知20.10h h m cνν'-=(5)由(2)、(3)、(4)、(5)式可解得20.37/m c hν=(6)20.27/m c hν'=(7)127tan arctan()36.137νθν'===︒-(8)电子从O点运动到A所需时间为2.4/Lt L cv∆==(9)(2)当观察者相对于S沿OA方向以速度v运动时,由狭义相对论的长度收缩效应得L L=(10)0.91L L=(11)第18届预赛四、参考解答设中子和碳核的质量分别为m和M,碰撞前中子的速度为0v,碰撞后中子和碳核的速度分别为v和v',因为碰撞是弹性碰撞,所以在碰撞前后,动量和机械能均守恒,又因v、v和v'沿同一直线,故有mv mv Mv'=+(1)222111222mv mv Mv'+=(2)解上两式得m Mv vm M-=+(3)因12M m=代入(3)式得1113v v=-(4)负号表示v的方向与v方向相反,即与碳核碰撞后中子被反弹.因此,经过一次碰撞后中子的能量为2221011112213E mv m v ⎛⎫==- ⎪⎝⎭于是2101113E E ⎛⎫= ⎪⎝⎭(5)经过2,3,…,n 次碰撞后,中子的能量依次为2E ,3E ,4E ,…,n E ,有2421011111313E E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭6301113E E ⎛⎫= ⎪⎝⎭……210001113nnn E E E E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(6)因此 0lg(/)12lg(11/13)n E E n =(7)已知 7600.02511071.7510n E E ==⨯⨯- 代入(7)式即得71lg(10)7lg 77.8451754112(0.07255)0.14512lg()13n ⨯--===≈-- (8) 故初能量0 1.75MeV E =的快中子经过近54次碰撞后,才成为能量为0.025 eV 的热中子。