§4用向量讨论垂直与平行
- 格式:ppt
- 大小:1.83 MB
- 文档页数:21
用向量讨论垂直于平行部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑设计人:雷义平教师寄语:不要等待机会,而要创造机会。
时间---------------- 班级---------- 学生姓名-------- -----------§2-4《用向量讨论平行与垂直》问题导读---评价单学习目标:1.理解用向量方法解决立体几何问题的思想。
2.掌握用向量方法证明立体几何中的线、面的垂直与平行问题。
学习重难点:1、空间直角坐标系的正确建立,空间向量的运算及其坐标表示2、用向量语言证明立体几何中有关垂直、平行关系的问题.学习过程:一、阅读文本,解决以下问题。
1.怎样确定直线的方向向量?2.怎样确定平面的法向量?3.如何利用向量知识判断直线与平面间的平行或垂直问题?4.用向量语言表述线与面之间的平行与垂直关系. 设空间直线、的方向向量分别为、,平面的法向量分别为、,则:b5E2RGbCAP①线线平行:或与重合即:两直线平行或重合两直线的方向向量共线。
②线线垂直:即:两直线垂直两直线的方向向量垂直。
③线面平行:且在平面外即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外。
④面面平行:或与重合即:两平面平行或重合两平面的法向量共线。
⑤线面垂直:即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直。
⑥面面垂直: 5. 求平面法向量的方法步骤:p1EanqFDPw6. 三垂线定理:二.我的疑惑:问题解决---评价单1、平面α的一个法向量为(1,2,0>,平面β的一个法向量为(2,-1,0>,则平面α与平面β的关系是( >DXDiTa9E3dA.平行 B.相交但不垂直C.相交且垂直 D.无法判定2、在空间四边形ABCD中,E,F分别是AB,BC的中点,则AC与平面DEF的位置关系是( >A.平行 B.相交C.在平面内 D.不能确定3、已知一平面的法向量为(1,2,-1>,则与此平面垂直的向量可以是( >A.(2,4,-2> B.(1,-1,-1>C.(0,1,2> D.(1,0,-1>4、在正方体AC1中,O1为B1D1的中点,求证:BO1∥平面ACD1.问题拓展---评价单1 如下图所示,在平行六面体ABCD-A1B1C1D1中,E,F,G分别是A1D1,D1D,D1C1的中点.求证:平面EFG∥平面AB1C.RTCrpUDGiT2 ABC-A1B1C1是各条棱长均为a的正三棱柱,D 是侧棱CC1的中点.求证:平面AB1D⊥平面ABB1A1.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2.4 用向量讨论垂直与平行 第一课时教案一、教学目标:1.理解直线的方向向量和平面的法向量; 2.会用待定系数法求平面的法向量。
二、教学重点:直线的方向向量和平面的法向量;教学难点:求平面的法向量 三、教学方法:探究归纳,讲练结合 四、教学过程 (一)、创设情景1、平面坐标系中直线的倾斜角及斜率,直线的方向向量,直线平行与垂直的判定;2、如何用向量描述空间的两条直线、直线和平面、平面和平面的位置关系? (二)、探析新课 1、直线的方向向量我们把直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量 2、平面的法向量如果表示向量n 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥,那么向量叫做平面α的法向量。
(三)、知识运用1、例1 在正方体1111D C B A ABCD -中,求证:1DB 是平面1ACD 的法向量证:设正方体棱长为1,以1,,DD 为单位正交基底, 建立如图所示空间坐标系xyz D -)1,1,1(1=DB ,)0,1,1(-=AC ,)1,0,1(1-=AD 01=⋅DB ,所以DB ⊥1同理11AD DB ⊥ 所以⊥1DB 平面ACD从而1DB 是平面1ACD 的法向量。
2、 例2 在空间直角坐标系内,设平面α经过点),,(000z y x P ,平面α的法向量为),,(C B A =,),,(z y x M 为平面α内任意一点,求z y x ,,满足的关系式。
解:由题意可得),,(000z z y y x x PM ---= 0=⋅即0),,(),,(000=---⋅z z y y x x C B A 化简得0)()()(000=-+-+-z z C y y B x x A 3、课堂练习已知点P 是平行四边形ABCD 所在平面外一点,如果(2,1,4)AB =-,(4,2,0)AD =,(1,2,1)AP =--(1)求证:AP 是平面ABCD 的法向量; (2)求平行四边形ABCD 的面积.(1)证明:∵(1,2,1)(2,1,4)0AP AB ⋅=--⋅--=,(1,2,1)(4,2,0)0AP AD ⋅=--⋅=,∴AP AB ⊥,AP AD ⊥,又AB AD A =,AP ⊥平面ABCD ,∴AP 是平面ABCD 的法向量.(2)||(2)AB ==2||4AD ==, ∴(2,1,4)(4,2,0)6AB AD ⋅=--⋅=,∴cos(,)105AB AD ==,∴sin BAD ∠==∴||||sin ABCDSAB AD BAD =⋅∠=(四)、回顾总结:1、直线得方向向量与平面法向量得概念;2、求平面法向量的方法。
用向量的方法证明平行与垂直关系平行与垂直是向量的重要性质,可以用向量的方法进行证明。
接下来,我将介绍如何用向量的方法证明平行和垂直关系,以及一些相关的性质和定理。
1.平行性质的证明:两个向量a和b平行的定义是它们的方向相同或相反,并且它们的长度可以不相等。
下面是两个向量平行的证明方法:方法一:向量比例法如果向量a和b平行,那么可以找到一个非零实数k,使得a=k*b。
可以通过比较向量的坐标分量来找到这个常数k。
如果两个向量平行,它们的对应坐标分量之间的比值应该相等。
举例来说,如果有向量a=(1,2,3)和向量b=(2,4,6),我们可以通过将它们的相同位置的坐标分量相除来证明它们平行,如下所示:1/2=2/4=3/6=1/2这表明向量a和b的对应坐标分量比值相等,因此它们是平行的。
方法二:向量点乘法如果两个向量a和b平行,那么它们的点乘等于它们的长度之积。
即a·b=,a,*,b,其中,a,和,b,分别表示向量a和b的长度。
假设有向量a=(x1, y1, z1)和向量b=(x2, y2, z2),那么它们的点乘为a·b = x1*x2 + y1*y2 + z1*z2、另一方面,它们的长度之积为,a,*,b, = sqrt(x1^2 + y1^2 + z1^2) * sqrt(x2^2 + y2^2 + z2^2)。
如果将这两个等式相等,即a·b = ,a,*,b,那么可以得出向量a和b平行。
2.垂直性质的证明:两个向量a和b垂直的定义是它们的点乘为零,即a·b=0。
下面是两个向量垂直的证明方法:方法一:向量内积法两个向量a和b的点乘为a·b=x1*x2+y1*y2+z1*z2、如果a·b=0,那么可以证明向量a和b垂直。
举例来说,如果有向量a=(1,2,3)和向量b=(2,-1,-2),我们可以计算它们的点乘为:a·b=1*2+2*(-1)+3*(-2)=0因此,向量a和b垂直。
用向量方法证明平行与垂直要证明两个向量是平行的,我们需要证明它们的方向相同或相反。
而要证明两个向量是垂直的,我们需要证明它们的内积为零。
首先,我们考虑平行向量的证明。
设有两个向量u和v,我们可以将它们表示为:u = (u1, u2, ..., un)v = (v1, v2, ..., vn)其中n代表向量的维度。
如果u和v是平行的,那么它们的方向相同或相反,可以用以下方式进行证明:1.方向相同:我们可以证明向量u和v的比例关系。
即对于任意的i,我们有:ui/vi = u1/v1 = u2/v2 = ... = un/vn如果我们找到一个非零常数k,使得:ui = k * vi,则u和v是平行的。
2.方向相反:我们可以找到一个常数k,使得:ui = -k * vi,则u和v的方向相反,它们也是平行的。
下面我们来看一个具体的例子。
例1:证明(1,2,3)和(2,4,6)是平行的。
解:我们可以计算向量的比例:(1/2)=(2/4)=(3/6)=1/2这意味着我们可以找到一个非零常数k=1/2,使得:(1,2,3)=(1/2)*(2,4,6)因此,向量(1,2,3)和(2,4,6)是平行的。
接下来,我们考虑垂直向量的证明。
设有向量u和v,我们可以将它们表示为:u = (u1, u2, ..., un)v = (v1, v2, ..., vn)如果u和v垂直,那么它们的内积为零,可以用以下方式进行证明:u·v=0我们可以将内积展开为标量乘积的形式:u · v = u1 * v1 + u2 * v2 + ... + un * vn = 0这意味着对于任意的i,我们有:ui * vi = -u1 * v1 - u2 * v2 - ... - un * vn如果我们能找到满足上述等式的向量u和v,则u和v是垂直的。
下面我们来看一个具体的例子。
例2:证明(1,2,3)和(-1,2,-1)是垂直的。