高中数学选修2-3 条件概率(附解析)
- 格式:doc
- 大小:91.02 KB
- 文档页数:7
第二章 §3一、选择题1.一个电路上装有甲、乙两根保险丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根保险丝熔断与否相互独立,则两根保险丝都熔断的概率为( )A .1B .0.629C .0D .0.74或0.85[答案] B[解析] 事件“两根保险丝都熔断”即事件“甲保险丝熔断”“乙保险丝熔断”同时发生,依题意得事件“两根保险丝都熔断”的概率为0.85×0.74=0.629.2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512B.12C.712D.34[答案] C[解析] 依题意得P (A )=12,P (B )=16,事件A ,B 中至少有一件发生的概率等于1-P (AB )=1-P (A )P (B )=1-(1-12)×(1-16)=1-512=712.3.(2014·哈师大附中高二期中)一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率是( )A.12 B.13 C.14 D.23[答案] A[解析] 解法1:设A =“第一次取到二等品”,B =“第二次取得一等品”,则AB =“第一次取到二等品且第二次取到一等品”,∴P (A |B )=P (AB )P (B )=2×35×42×3+3×25×4=12.解法2:设一等品为a 、b 、c ,二等品为A 、B ,“第二次取到一等品”所含基本事件有(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c )共12个,其中第一次取到一等品的基本事件共有6个,∴所求概率为P =612=12.二、填空题4.3人独立地破译一个密码,每人破译出密码的概率分别为15,14,13,则此密码被破译出的概率为________.[答案] 35[解析] 可从对立事件考虑,此密码不被译出的概率是⎝⎛⎭⎫1-15×⎝⎛⎭⎫1-14×⎝⎛⎭⎫1-13=45×34×23=25,所以此密码被破译出的概率是1-25=35. 5.若P (A )=0.5,P (B )=0.3,P (AB )=0.2,则P (A |B )=________,P (B |A )=________. [答案] 23 25[解析] P (A |B )=P (AB )P (B )=0.20.3=23,P (B |A )=P (AB )P (A )=0.20.5=25. 三、解答题6.(2014·陕西理,19)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元的概率.[解析] (1)设A 表示事件“作物产量为300kg ”,B 表示事件“作物市场价格为6元/kg ”,由题设知P (A )=0.5,P (B )=0.4, ∵利润=产量×市场价格-成本, ∴X 所有可能的取值为500×10-1000=4000,500×6-1000=2000, 300×10-1000=2000,300×6-1000=800,P (X =4000)=P (A -)P (B -)=(1-0.5)×(1-0.4)=0.3,P (X =2000)=P (A -)P (B )+P (A )P (B -)=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.5×0.4=0.2, 所以X 的分布列为(2)设C i 表示事件“第i 由题意知C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =4000)+P (X =2000)=0.3+0.5=0.8(i =1,2,3), 3季的利润均不少于2000元的概率为 P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季利润不少于2000元的概率为P (C -1C 2C 3)+P (C 1C -2C 3)+P (C 1C 2C -3)=3×0.82×0.2=0.384, 所以,这3季中至少有2季的利润不少于2000元的概率为 0.512+0.384=0.896.一、选择题1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56 B.910 C.215 D.115[答案] C[解析] 本题主要考查由条件概率分式变形得到的乘法公式,P (AB )=P (B |A )·P (A )=13×25=215,故选C. 2.假日期间,甲去黄山的概率是14,乙去黄山的概率是15,假定两人的行动相互之间没有影响,那么在假日期间甲、乙两人至少有一人去黄山的概率是( )A.320 B.15 C.25 D.920 [答案] C[解析] 设甲、乙去黄山分别为事件A 、B ,则P (A )=14,P (B )=15,∴P =1-P (A B )=1-34×45=25.3.甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女同学15名,则在碰到甲班同学时,正好碰到一名女同学的概率为( )A.12B.13 C.14 D.15[答案] A[解析] 设“碰到甲班同学”为事件A ,“碰到甲班女同学”为事件B ,则P (A )=37,P (AB )=37×12,所以P (B |A )=P (AB )P (A )=12,故选A.4.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12[答案] B[解析] ∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110,∴P (B |A )=P (AB )P (A )=14. 5.已知每门大炮射击一次击中目标的概率是0.3,现用n 门这样的大炮同时对某一目标射击一次,若要使目标被击中的概率超过95%,则n 的最小整数值为( )A .8B .9C .10D .11[答案] B[解析] 把每门大炮射击一次看成做了一次试验,击中目标看成试验成功,则试验成功的概率为0.3,用X 表示这n 门大炮击中目标的次数.事件“目标被击中”即{X >0},则“目标被击中”的概率为P (X >0)=1-P (X =0)=1-(1-0.3)n .为使目标被击中的概率超过95%,则有1-(1-0.3)n >95%,解得n >8.4.根据实际意义,至少要用9门这样的大炮才能使目标被击中的概率超过95%,即n 的最小整数值为9.二、填空题6.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.[答案] 0.128[解析] 由题设,分两类情况:(1)第1个正确,第2个错误,第3、4个正确,由概率乘法公式得P 1=0.8×0.2×0.8×0.8=0.102 4;(2)第1、2个错误,第3、4个正确, 此时概率P 2=0.2×0.2×0.8×0.8=0.025 6.由互斥事件概率公式得P =P 1+P 2=0.102 4+0.025 6=0.128.7.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关. [答案] ②④[解析] P (B )=P (BA 1)+P (BA 2)+P (BA 3)=5×510×11+2×410×11+3×410×11=922,故①⑤错误;②P (B |A 1)=5×510×1112=511,正确;③事件B 与A 1的发生有关系,故错误; ④A 1,A 2,A 3不可能同时发生,是互斥事件. 三、解答题8.甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少?[分析] 设A =“甲地为雨天”,B =“乙为雨天”,则根据题意有P (A )=0.20,P (B )=0.18,P (A ∩B )=0.12.问题(1)为求P (A |B ),(2)为求P (B |A ).[解析] 设A =“甲地为雨天”,B =“乙地为雨天”,则 (1)乙地为雨天时甲地也为雨天的概率是P (A |B )=P (A ∩B )P (B )=0.120.18=0.67. (2)甲地为雨天时乙地也为雨天的概率是 P (B |A )=P (A ∩B )P (A )=0.120.20=0.60. [点评] 要弄清所求事件的概率是在什么条件下的发生的概率,以便正确地运用条件概率公式.9.(2014·北京理,16)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛互相独立):(1)的概率; (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x -为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x -的大小.(只需写出结论)[解析] (1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C =A B -∪A -B ,A ,B 独立.根据投篮统计数据,P (A )=35,P (B )=25,P (C )=P (A B -)+P (A -B ) =35×35+25×25 =1325.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX =x -.10.(2012·全国大纲文,20)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙在一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.[解析] 记A 1表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; B 1表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先. (1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A ) =P (A 0·A )+P (A 1·A ) =P (A 0)P (A )+P (A 1)P (A ) =0.16×0.4+0.48×(1-0.4) =0.352.(2)P (B 0)=0.62=0.36, P (B 1)=2×0.4×0.6=0.48, P (B 2)=0.42=0.16, P (A 2)=0.62=0.36. C =A 1·B 2+A 2·B 1+A 2·B 2 P (C )=P (A 1·B 2+A 2·B 1+A 2·B 2) =P (A 1·B 2)+P (A 2·B 1)+P (A 2·B 2) =P (A 1)P (B 2)+P (A 2)P (B 1)+P (A 2)P (B 2) =0.48×0.16+0.36×0.48+0.36×0.16 =0.307 2.。
2.3 独立性 2.3.1 条件概率1.了解条件概率的概念,掌握条件概率的计算公式.(重点) 2.利用条件概率计算公式解决一些简单的实际问题.(难点)[基础·初探]教材整理 条件概率阅读教材P 56~P 57“例1”以上部分,完成下列问题. 1.条件概率一般地,对于两个事件A 和B ,在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为P (A |B ).若A ,B 互斥,则P (A |B )=P (B |A )=0.2.条件概率公式(1)一般地,若P (B )>0,则事件B 发生的条件下A 发生的条件概率是P (A |B )=P (AB )P (B ). (2)乘法公式:P (AB )=P (A |B )P (B ).设A ,B 为两个事件,且P (A )>0,若P (AB )=13,P (A )=23,则P (B |A )=________.【导学号:29440042】【解析】由P(B|A)=P(AB)P(A)=1323=12.【答案】12[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型],现有一只20岁的这种动物,问它能活到25岁的概率是________.(2)抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”.①求P(A),P(B),P(AB);②当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.【精彩点拨】(1)直接应用公式P(B|A)=P(AB)P(A)求解.(2)①利用古典概型求P(A),P(B)及P(AB).②借助公式P(B|A)=P(AB)P(A)求概率.【自主解答】(1)设事件A为“能活到20岁”,事件B为“能活到25岁”,则P(A)=0.8,P(B)=0.4,而所求概率为P(B|A),由于B⊆A,故AB=B,于是P (B |A )=P (AB )P (A )=P (B )P (A )=0.40.8=0.5,所以一只20岁的这种动物能活到25岁的概率是0.5.【答案】 0.5(2)①设x 为掷红骰子得到的点数,y 为掷蓝骰子得到的点数,则所有可能的事件与(x ,y )建立对应如图.显然:P (A )=1236=13, P (B )=1036=518,P (AB )=536. ②P (B |A )=P (AB )P (A )=53613=512.1.用定义法求条件概率P (B |A )的步骤 (1)分析题意,弄清概率模型; (2)计算P (A ),P (AB ); (3)代入公式求P (B |A )=P (AB )P (A ). 2.在(2)题中,首先结合古典概型分别求出了事件A ,B 的概率,从而求出P (B |A ),揭示出P (A ),P (B )和P (B |A )三者之间的关系.[再练一题]1.(1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________.(2)(2016·南通高二检测)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.【解析】(1)由公式P(A|B)=P(AB)P(B)=23,P(B|A)=P(AB)P(A)=35.(2)设“种子发芽”为事件A,“种子成长为幼苗”为事件AB(发芽,又成活为幼苗),出芽后的幼苗成活率为P(B|A)=0.8,又P(A)=0.9,P(B|A)=P(AB) P(A),得P(AB)=P(B|A)·P(A)=0.8×0.9=0.72.【答案】(1)2335(2)0.72如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.【精彩点拨】第(1)、(2)问属古典概型问题,可直接代入公式;第(3)问为条件概率,可以借用前两问的结论,也可以直接利用基本事件个数求解.【自主解答】设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事件AB.(1)从6个节目中不放回地依次抽取2个的事件数为n(Ω)=A26=30,根据分步计数原理n(A)=A14A15=20,于是P(A)=n(A)n(Ω)=2030=23.(2)因为n(AB)=A24=12,于是P(AB)=n(AB)n(Ω)=1230=25.(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A)=P(AB)P(A)=2523=35.法二:因为n(AB)=12,n(A)=20,所以P(B|A)=n(AB)n(A)=1220=35.1.本题第(3)问给出了两种求条件概率的方法,法一为定义法,法二利用基本事件个数直接作商,是一种重要的求条件概率的方法.2.计算条件概率的方法(1)在缩小后的样本空间ΩA中计算事件B发生的概率,即P(B|A).(2)在原样本空间Ω中,先计算P(AB),P(A),再利用公式P(B|A)=P(AB) P(A)计算求得P(B|A).(3)条件概率的算法:已知事件A发生,在此条件下事件B发生,即事件AB 发生,要求P(B|A),相当于把A看作新的基本事件空间计算事件AB发生的概率,即P(B|A)=n(AB)n(A)=n(AB)n(Ω)n(A)n(Ω)=P(AB)P(A).[再练一题]2.盒内装有16个球,其中6个是玻璃球,10个是木质球.玻璃球中有2个是红色的,4个是蓝色的;木质球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是玻璃球的概率是多少?【解】由题意得球的分布如下:设A={则P(A)=1116,P(AB)=416=14.∴P(B|A)=P(AB)P(A)=141116=411.[探究共研型]探究1系?随机事件出现“大于4的点”包含哪些基本事件?【提示】掷一枚质地均匀的骰子,可能出现的基本事件有“1点”“2点”“3点”“4点”“5点”“6点”,共6个,它们彼此互斥.“大于4的点”包含“5点”“6点”两个基本事件.探究2“先后抛出两枚质地均匀的骰子”试验中,已知第一枚出现4点,则第二枚出现“大于4”的事件,包含哪些基本事件?【提示】“第一枚4点,第二枚5点”“第一枚4点,第二枚6点”.探究3先后抛出两枚质地均匀的骰子,已知第一枚出现4点,如何利用条件概率的性质求第二枚出现“大于4点”的概率?【提示】设第一枚出现4点为事件A,第二枚出现5点为事件B,第二枚出现6点为事件C.则所求事件为(B+C)|A.∴P((B+C)|A)=P(B|A)+P(C|A)=16+16=13.将外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则试验成功.求试验成功的概率.【精彩点拨】设出基本事件,求出相应的概率,再用基本事件表示出“试验成功”这件事,求出其概率.【自主解答】设A={从第一个盒子中取得标有字母A的球},B={从第一个盒子中取得标有字母B的球},R={第二次取出的球是红球},W={第二次取出的球是白球},则容易求得P(A)=710,P(B)=310,P(R|A)=12,P(W|A)=12,P(R|B)=45,P(W|B)=15.事件“试验成功”表示为RA+RB,又事件RA与事件RB互斥,所以由概率的加法公式得P(RA+RB)=P(RA)+P(RB)=P(R|A)·P(A)+P(R|B)·P(B)=12×710+45×310=59100.条件概率的解题策略分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.[再练一题]3.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.【解】设“任选一人是男人”为事件A,“任选一人是女人”为事件B,“任选一人是色盲”为事件C.(1)此人患色盲的概率P(C)=P(AC)+P(BC)=P(A)P(C|A)+P(B)P(C|B)=5100×100200+0.25100×100200=21800.(2)P (A |C )=P (AC )P (C )=520021800=2021.[构建·体系]1.已知P (AB )=310,P (B )=35,则P (A |B )=________. 【解析】 P (A |B )=P (AB )P (B )=31035=12.【答案】 122.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.【解析】 设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则P (AB )=C 25C 2100,所以P (B |A )=P (AB )P (A )=5×4100×995100=499. 【答案】 4993.把一枚硬币投掷两次,事件A ={第一次出现正面},B ={第二次出现正面},则P (B |A )=________.【解析】 ∵P (AB )=14,P (A )=12,∴P (B |A )=12.【答案】 124.抛掷骰子2次,每次结果用(x 1,x 2)表示,其中x 1,x 2分别表示第一次、第二次骰子的点数.若设A ={(x 1,x 2)|x 1+x 2=10},B ={(x 1,x 2)|x 1>x 2}.则P (B |A )=________. 【导学号:29440043】【解析】 ∵P (A )=336=112,P (AB )=136, ∴P (B |A )=P (AB )P (A )=136112=13.【答案】 135.一个口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少?【解】 (1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸出白球”为事件AB ,“先摸一球不放回,再摸一球”共有4×3种结果,所以P (A )=12,P (AB )=2×14×3=16,所以P (B |A )=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A 1,“再摸出1个白球”为事件B 1,“两次都摸出白球”为事件A 1B 1,P (A 1)=12,P (A 1B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1B 1)P (A 1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、填空题1.(2016·徐州高二检测)抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过3,则出现的点数是奇数的概率为________.【解析】设A={出现的点数不超过3},B={出现的点数为奇数},∴n(A)=3,n(AB)=2,∴P(B|A)=n(AB)n(A)=23.【答案】2 32.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________. 【导学号:29440044】【解析】设“第一天空气质量为优良”为事件A,“第二天空气质量为优良”为事件B,则P(A)=0.75,P(AB)=0.6,由题知要求的是在事件A发生的条件下事件B发生的概率,根据条件概率公式得P(B|A)=P(AB)P(A)=0.60.75=0.8.【答案】0.83.用集合A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是________.【解析】A={取出的两个数中有一个数为12},B={取出的两个数构成可约分数}.则n(A)=7,n(AB)=4,所以P(B|A)=n(AB)n(A)=47.【答案】4 74.有下列说法:①P(B|A)=P(AB);②P(B|A)=P(B)P(A)是可能的;③0<P(B|A)<1;④P(A|A)=0.其中正确的说法有________.(填序号)【解析】∵P(B|A)=P(AB)P(A),而0<P(A)≤1,∴1P(A)≥1,∴P(B|A)≥P(AB),∴①不正确.当P(A)=1时,P(AB)=P(B),P(B|A)=P(AB)P(A)=P(B)P(A),故②正确.又∵0≤P(B|A)≤1,P(A|A)=1,∴③④不正确.【答案】②5.已知某种产品的合格率是95%,合格品中的一级品率是20%,则这种产品的一级品率为________.【解析】A={产品为合格品},B={产品为一级品},P(B)=P(AB)=P (B |A )P (A )=0.2×0.95=0.19.所以这种产品的一级品率为19%.【答案】 19%6.某种电子元件用满3 000小时不坏的概率为34,用满8 000小时不坏的概率为12.现有一此种电子元件,已经用满3 000小时不坏,还能用满8 000小时的概率是________.【解析】 记事件A :“用满3 000小时不坏”,P (A )=34;记事件B :“用满8 000小时不坏”,P (B )=12.因为B ⊆A ,所以P (AB )=P (B )=12,则P (B |A )=P (AB )P (A )=1234=12×43=23. 【答案】 237.一个家庭中有两个小孩,假定生男,生女是等可能的,已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是________.【解析】 一个家庭的两个小孩只有4种可能{两个都是男孩},{第一个是男孩,第二个是女孩},{第一个是女孩,第二个是男孩},{两个都是女孩},由题意知,这4个事件是等可能的.设基本事件空间为Ω,A =“其中一个是女孩”,B =“其中一个是男孩”,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)},∴P (B |A )=P (AB )P (A )=2434=23. 【答案】 238.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.【解析】设事件A为“其中一瓶是蓝色”,事件B为“另一瓶是红色”,事件C为“另一瓶是黑色”,事件D为“另一瓶是红色或黑色”,则D=B∪C,且B与C互斥,又P(A)=C12C13+C22C25=710,P(AB)=C12·C11C25=15,P(AC)=C12C12C25=25,故P(D|A)=P((B∪C)|A) =P(B|A)+P(C|A)=P(AB)P(A)+P(AC)P(A)=67.【答案】6 7二、解答题9.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,第一次取后不放回.求第一只是好的,第二只也是好的概率.【解】设A i={第i只是好的}(i=1,2).由题意知要求出P(A2|A1).因为P(A1)=610=35,P(A1A2)=6×510×9=13,所以P(A2|A1)=P(A1A2)P(A1)=59.10.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.【解】设“第i次按对密码”为事件A i(i=1,2),则A=A1+(A1A2)表示“不超过2次就按对密码”.(1)因为事件A1与事件A1A2互斥,由概率的加法公式得P(A)=P(A1)+P(A1A2)=110+9×110×9=15.(2)设“最后一位按偶数”为事件B,则P(A|B)=P(A1|B)+P(A1A2|B)=15+4×15×4=25.[能力提升]1.(2016·常州高二检测)甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A为“三个人去的景点不相同”,B为“甲独自去一个景点”,则概率P(A|B)等于________. 【导学号:29440045】【解析】由题意可知,n(B)=C1322=12,n(AB)=A33=6.∴P(A|B)=n(AB)n(B)=612=12.【答案】1 22.如图2-3-1所示,EFGH是以O为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B 表示事件“豆子落在扇形OHE(阴影部分)内”,则图2-3-1(1)P(A)=________;(2)P(B|A)=________.【解析】用A表示事件“豆子落在正方形EFGH内”,∴P(A)=2·2π×12=2π.B表示事件“豆子落在扇形OHE(阴影部分)内”,P(AB)=2π×14=12π.∴P(B|A)=P(AB)P(A)=12π2π=14.【答案】2π143.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是________.【解析】A=“数学不及格”,B=“语文不及格”,P(B|A)=P(AB)P(A)=0.030.15=0.2.所以数学不及格时,该生语文也不及格的概率为0.2.【答案】0.24.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问从2号箱取出红球的概率是多少?【解】记事件A={从2号箱中取出的是红球},事件B={从1号箱中取出的是红球}.P(B)=46=23,P(B)=1-P(B)=13,P(A|B)=49,P(A|B)=39=13.从而P(A)=P(A B)+P(AB)=13×13+49×23=1127.即从2号箱取出红球的概率是11 27.。
条件概率一、知识概述条件概率的定义:一般地,设A,B为两个事件,且P(A)>0,则称为在事件A发生的条件下,事件B发生的条件概率.一般把P(B|A)读作A发生的条件下B的概率.注意:(1)条件概率的取值在0和1之间,即0≤P(B|A)≤1.(2)如果B和C是互斥事件,则P(B∪C|A)= P(B|A)+P(C|A).(3)要注意P(B|A)与P(AB)的区别,这是分清条件概率与一般概率问题的关键.注:概率P(B|A)与P(AB)的区别与联系:联系:事件A,B都发生了.区别:样本空间不同:在P(B|A)中,事件A成为样本空间;在P(AB)中,样本空间仍为W.二、例题讲解:例1、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).①;②;③事件B与事件A1相互独立;④是两两互斥的事件;⑤P(B)的值不能确定,因为它与中哪一个发生有关.解:答案:②④例2、从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞.求2张都是假钞的概率.解:令A表示“2张中至少有1张假钞”,B表示“2张都是假钞”..则所求概率为P(B|A).,..即所求概率为.例3、甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?(3)甲乙两市至少一市下雨的概率是多少?解:记A为“甲地为雨天”,B为“乙地为雨天”.(1).(2).(3).∴在乙地下雨时甲地也下雨的概率为.在甲地下雨时乙地也下雨的概率为.甲、乙两地至少一地下雨的概率为26%.例4、有外形相同的球分别装在三个盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有8个红球,2个白球.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在二号盒子中任取一个球;若第一次取得标有字母B的球,则在三号盒子中任取一个球,如果第二次取出的是红球,则称试验为成功.求试验成功的概率.解:设事件A={从第一个盒子中取出字母为A的球},B={从第一个盒子中取出字母为B的球},C={第二次取球取出的是红球},D={第二次取球取出的是白球},则P(A)=0.7,P(B)=0.3,P(C|A)=0.5,P(D|A)=0.5,P (C|B)=0.8,P(D|B)=0.2.试验成功表示,∵AC与BC互斥,∴试验成功的概率为0.59.例5.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.解:(1).(2)记事件A={乙箱中取出的一个产品是正品},事件B1={甲箱中取出的2个产品均为正品},B2={甲箱中取出的2个产品均为次品},B3={甲箱中取出的2个产品一正品一次品}...∴P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=.∴所求的概率为.。
2.2二项分布及其应用2.2.1条件概率1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)[基础·初探]教材整理条件概率阅读教材P51~P53,完成下列问题.1.条件概率的概念一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).1.设A,B为两个事件,且P(A)>0,若P(AB)=13,P(A)=23,则P(B|A)=________.【解析】由P(B|A)=P(AB)P(A)=1323=12.【答案】1 22.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是________.【解析】根据条件概率公式知P=0.40.8=0.5.【答案】0.5[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]利用定义求条件概率一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A;事件“第二次抽到黑球”为 B.(1)分别求事件A,B,AB发生的概率;(2)求P(B|A).【精彩点拨】首先弄清“这次试验”指的是什么,然后判断该问题是否属于古典概型,最后利用相应公式求解.【自主解答】由古典概型的概率公式可知(1)P(A)=2 5,P(B)=2×1+3×25×4=820=25,P(AB)=2×15×4=110.(2)P(B|A)=P(AB)P(A)=11025=14.1.用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型;(2)计算P(A),P(AB);(3)代入公式求P(B|A)=P(AB)P(A).2.在(2)题中,首先结合古典概型分别求出了事件A、B的概率,从而求出P(B|A),揭示出P(A),P(B)和P(B|A)三者之间的关系.[再练一题]1.(1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________. 【导学号:97270036】(2)(2016·烟台高二检测)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.【解析】(1)由公式P(A|B)=P(AB)P(B)=23,P(B|A)=P(AB)P(A)=35.(2)设“种子发芽”为事件A,“种子成长为幼苗”为事件AB(发芽,又成活为幼苗),出芽后的幼苗成活率为P(B|A)=0.8,又P(A)=0.9,P(B|A)=P(AB)P(A),得P(AB)=P(B|A)·P(A)=0.8×0.9=0.72.【答案】(1)2335(2)0.72利用基本事件个数求条件概率现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.【精彩点拨】第(1)、(2)问属古典概型问题,可直接代入公式;第(3)问为条件概率,可以借用前两问的结论,也可以直接利用基本事件个数求解.【自主解答】设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事件A B.(1)从6个节目中不放回地依次抽取2个的事件数为n(Ω)=A26=30,根据分步计数原理n(A)=A14A15=20,于是P(A)=n(A)n(Ω)=2030=23.(2)因为n(AB)=A24=12,于是P(AB)=n(AB)n(Ω)=1230=25.(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A)=P(AB)P(A)=2523=35.法二:因为n(AB)=12,n(A)=20,所以P(B|A)=n(AB)n(A)=1220=35.1.本题第(3)问给出了两种求条件概率的方法,法一为定义法,法二利用基本事件个数直接作商,是一种重要的求条件概率的方法.2.计算条件概率的方法(1)在缩小后的样本空间ΩA中计算事件B发生的概率,即P(B|A).(2)在原样本空间Ω中,先计算P(AB),P(A),再利用公式P(B|A)=P(AB) P(A)计算求得P(B|A).(3)条件概率的算法:已知事件A发生,在此条件下事件B发生,即事件AB 发生,要求P(B|A),相当于把A看作新的基本事件空间计算事件AB发生的概率,即P(B|A)=n(AB)n(A)=n(AB)n(Ω)n(A)n(Ω)=P(AB)P(A).[再练一题]2.盒内装有16个球,其中6个是玻璃球,10个是木质球.玻璃球中有2个是红色的,4个是蓝色的;木质球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是玻璃球的概率是多少?【解】由题意得球的分布如下:玻璃木质总计红23 5蓝4711总计61016设A={取得蓝球}则P(A)=1116,P(AB)=416=14.∴P(B|A)=P(AB)P(A)=141116=411.[探究共研型]利用条件概率的性质求概率探究1掷一枚质地均匀的骰子,有多少个基本事件?它们之间有什么关系?随机事件出现“大于4的点”包含哪些基本事件?【提示】掷一枚质地均匀的骰子,可能出现的基本事件有“1点”“2点”“3点”“4点”“5点”“6点”,共6个,它们彼此互斥.“大于4的点”包含“5点”“6点”两个基本事件.探究2“先后抛出两枚质地均匀的骰子”试验中,已知第一枚出现4点,则第二枚出现“大于4”的事件,包含哪些基本事件?【提示】“第一枚4点,第二枚5点”“第一枚4点,第二枚6点”.探究3先后抛出两枚质地均匀的骰子,已知第一枚出现4点,如何利用条件概率的性质求第二枚出现“大于4点”的概率?【提示】设第一枚出现4点为事件A,第二枚出现5点为事件B,第二枚出现6点为事件C.则所求事件为B∪C|A.∴P(B∪C|A)=P(B|A)+P(C|A)=16+16=13.将外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则试验成功.求试验成功的概率.【精彩点拨】设出基本事件,求出相应的概率,再用基本事件表示出“试验成功”这件事,求出其概率.【自主解答】设A={从第一个盒子中取得标有字母A的球},B={从第一个盒子中取得标有字母B的球},R={第二次取出的球是红球},W={第二次取出的球是白球},则容易求得P(A)=710,P(B)=310,P(R|A)=12,P(W|A)=12,P(R|B)=45,P(W|B)=15.事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,所以由概率的加法公式得P(RA∪RB)=P(RA)+P(RB)=P(R|A)·P(A)+P(R|B)·P(B)=1 2×710+45×310=59100.条件概率的解题策略分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.[再练一题]3.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.【解】设“任选一人是男人”为事件A,“任选一人是女人”为事件B,“任选一人是色盲”为事件C.(1)此人患色盲的概率P(C)=P(A∩C)+P(B∩C)=P(A)P(C|A)+P(B)P(C|B)=5100×100200+25100×100200=21800.(2)P(A|C)=P(AC)P(C)=520021800=2021.[构建·体系]1.已知P(B|A)=13,P(A)=25,则P(AB)等于()A.56 B.910 C.215 D.115【解析】由P(B|A)=P(AB)P(A),得P(AB)=P(B|A)·P(A)=13×25=215.【答案】 C2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是()A.14 B.13 C.12D.1【解析】因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率,显然是1 3.【答案】 B3.把一枚硬币投掷两次,事件A={第一次出现正面},B={第二次出现正面},则P(B|A)=________.【解析】∵P(AB)=14,P(A)=12,∴P(B|A)=12.【答案】1 24.抛掷骰子2次,每次结果用(x1,x2)表示,其中x1,x2分别表示第一次、二次骰子的点数.若设A={(x1,x2)|x1+x2=10},B={(x1,x2)|x1>x2}.则P(B|A)=________. 【导学号:97270037】【解析】∵P(A)=336=112,P(AB)=136,∴P(B|A)=P(AB)P(A)=136112=13.【答案】135.一个口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少?(2)先摸出1个白球后放回,再摸出1个白球的概率是多少?【解】(1)设“先摸出1个白球不放回”为事件A,“再摸出1个白球”为事件B,则“先后两次摸出白球”为事件AB,“先摸一球不放回,再摸一球”共有4×3种结果,所以P(A)=12,P(AB)=2×14×3=16,所以P(B|A)=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A1,“再摸出1个白球”为事件B1,“两次都摸出白球”为事件A1B1,P(A1)=12,P(A1B1)=2×24×4=14,所以P(B1|A1)=P(A1B1)P(A1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.18 B.14C.25 D.12【解析】∵P(A)=C22+C23C25=410,P(AB)=C22C25=110,∴P(B|A)=P(AB)P(A)=14.【答案】 B2.下列说法正确的是()A.P(B|A)<P(AB) B.P(B|A)=P(B)P(A)是可能的C.0<P(B|A)<1 D.P(A|A)=0【解析】由条件概率公式P(B|A)=P(AB)P(A)及0≤P(A)≤1知P(B|A)≥P(AB),故A选项错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=P(B) P(A),故B选项正确,由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.故选B.【答案】 B3.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【解析】已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P=0.60.75=0.8.【答案】 A4.(2016·泉州期末)从1,2,3,4,5中任取两个不同的数,事件A为“取到的两个数之和为偶数”,事件B为“取到的两个数均为偶数”,则P(B|A)等于()A.18 B.14 C.25 D.12【解析】法一:P(A)=C23+C22C25=25,P(AB)=C22C25=110,P(B|A)=P(AB)P(A)=14.法二:事件A包含的基本事件数为C23+C22=4,在A发生的条件下事件B包含的基本事件为C22=1,因此P(B|A)=1 4.【答案】 B5.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是()A.13 B.118 C.16 D.19【解析】设“至少有一枚出现6点”为事件A,“两枚骰子的点数不同”为事件B,则n(B)=6×5=30,n(AB)=10,所以P(A|B)=n(AB)n(B)=1030=13.【答案】 A二、填空题6.已知P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________.【解析】P(A|B)=P(AB)P(B)=0.120.18=23;P(B|A)=P(AB)P(A)=0.120.2=35.【答案】23357.设A,B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为________. 【导学号:97270038】【解析】由题意知,P(AB)=310,P(B|A)=12.由P(B|A)=P(AB)P(A),得P(A)=P(AB)P(B|A)=35.【答案】3 58.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.【解析】设事件A为“其中一瓶是蓝色”,事件B为“另一瓶是红色”,事件C为“另一瓶是黑色”,事件D为“另一瓶是红色或黑色”,则D=B∪C,且B与C互斥,又P(A)=C12C13+C22C25=710,P(AB)=C12·C11C25=15,P(AC)=C12C12C25=25,故P(D|A)=P(B∪C|A) =P(B|A)+P(C|A)=P(AB)P(A)+P(AC)P(A)=67.【答案】6 7三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n个.从一个袋子中任取两个球,取到的标号都是2的概率是1 10.(1)求n的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.【解】(1)由题意得:C2nC2n+3=n(n-1)(n+3)(n+2)=110,解得n=2.(2)记“其中一个标号是1”为事件A ,“另一个标号是1”为事件B ,所以P (B |A )=n (AB )n (A )=C 22C 25-C 23=17. 10.任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间⎝ ⎛⎭⎪⎫0,13内的概率是多少?(2)在(1)的条件下,求该点落在⎝ ⎛⎭⎪⎫15,1内的概率.【解】 由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A =⎩⎨⎧⎭⎬⎫x |0<x <13,由几何概率的计算公式可知. (1)P (A )=131=13. (2)令B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪15<x <1,则AB =⎩⎨⎧⎭⎬⎫x |15<x <13,P (AB )=13-151=215.故在A 的条件下B 发生的概率为 P (B |A )=P (AB )P (A )=21513=25.[能力提升]1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A.14B.23C.12D.13【解析】 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知P (A )=34,P (AB )=14.问题是求在事件A 发生的情况下,事件B 发生的概率,即求P(B|A),由条件概率公式,得P(B|A )=1434=13.【答案】 D2.(2016·开封高二检测)将3颗骰子各掷一次,记事件A表示“三个点数都不相同”,事件B表示“至少出现一个3点”,则概率P(A|B)等于()A.91216 B.518 C.6091 D.12【解析】事件B发生的基本事件个数是n(B)=6×6×6-5×5×5=91,事件A,B同时发生的基本事件个数为n(AB)=3×5×4=60.所以P(A|B)=n(AB)n(B)=6091.【答案】 C3.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________.【解析】记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,“第二次才取到黄球”为事件C,所以P(C)=P(AB)=P(A)P(B|A)=410×69=415.【答案】4 154.如图2-2-1,三行三列的方阵有9个数a ij(i=1,2,3,j=1,2,3),从中任取三个数,已知取到a22的条件下,求至少有两个数位于同行或同列的概率.()a11a12a13a21a22a23a31a32a33图2-2-1【解】事件A={任取的三个数中有a22},事件B={三个数至少有两个数位于同行或同列},则B={三个数互不同行且不同列},依题意得n(A)=C28=28,n(A B)=2,故P(B|A)=n(A B)n(A)=228=114,则P(B|A)=1-P(B|A)=1-114=1314.即已知取到a22的条件下,至少有两个数位13 14.于同行或同列的概率为。
2.2二项分布及其应用2.2。
1 条件概率错误!教材分析条件概率的概念在概率理论中占有十分重要的地位,教科书只是简单介绍条件概率的初等定义.为了便于学生理解,教材以简单事例为载体,逐步通过探究,引导学生体会条件概率的思想.课时分配1课时教学目标知识与技能通过对具体情境的分析,了解条件概率的定义,掌握简单的条件概率的计算.过程与方法发展抽象、概括能力,提高解决实际问题的能力.情感、态度与价值观使学生了解数学来源于实际,应用于实际的唯物主义思想.重点难点教学重点:条件概率定义的理解.教学难点:概率计算公式的应用.错误!错误!抓阄游戏:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.活动结果:法一:若抽到中奖奖券用“Y”表示,没有抽到用“错误!”表示,那么三名同学的抽奖结果共有三种可能:Y错误!错误!,错误!Y错误!和错误!错误! Y.用B表示事件“最后一名同学抽到中奖奖券”,则B仅包含一个基本事件错误!错误!Y。
由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为P(B)=1 3。
故三名同学抽到中奖奖券的概率是相同的.法二:(利用乘法原理)记A i表示:“第i名同学抽到中奖奖券"的事件,i=1,2,3,则有P(A1)=错误!,P(A2)=错误!=错误!,P(A3)=错误!=错误!.提出问题:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?设计意图:引导学生深入思考,小组内同学合作讨论,得出以下结论,教师因势利导.学情预测:一些学生缺乏用数学语言来表述问题的能力,教师可适当辅助完成.师生共同指出:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有错误!错误!Y和错误!Y错误!。
而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y错误!Y。
由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为错误!,不妨记为P(B|A),其中A表示事件“第一名同学没有抽到中奖奖券”.进一步提出:已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?共同指出:在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A一定会发生,导致可能出现的基本事件必然在事件A中,从而影响事件B发生的概率,使得P(B|A)≠P(B).提出问题:对于上面的事件A和事件B,P(B|A)与它们的概率有什么关系呢?活动结果:用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y,错误!Y错误!,错误!错误!Y}.既然已知事件A必然发生,那么只需在A={错误!Y错误!,错误!错误!Y}的范围内考虑问题,即只有两个基本事件错误!Y错误!和错误!错误!Y。
§3条件概率与独立事件Q错误!错误!在一次英语口试中,共有10道题可选择.从中随机地抽取5道题供考生回答,答对其中3道题即可及格.假设作为考生的你,只会答10道题中的6道题;那么,你及格的概率是多少?在抽到的第一题不会答的情况下你及格的概率又是多少?X错误!错误!1.条件概率一般地,设A、B为两个事件,且P(A)>0,称P(B|A)=__P ABP A__为在事件A发生的条件下事件B发生的条件概率.一般把P(B|A)读作__A发生的条件下B发生的概率__.如果事件A发生与否,会影响到事件B的发生,显然知道了A的发生,研究事件B时,基本事件发生变化,从而B发生的概率也相应的发生变化,这就是__条件概率__要研究的问题.2.条件概率的性质性质1:0≤P(B|A)≤1;性质2:如果B和C是两个互斥事件,那么P(B∪C|A)=P(B|A)+P(C|A).3.相互独立事件(1)概念①设A,B为两个事件,若事件A是否发生对事件B发生的概率没有影响,即__P(B|A)=P(B)__,则称两个事件A,B相互独立,并把这两个事件叫作__相互独立事件__。
②对于n个事件A1,A2,…,A n,如果其中任一个事件发生的概率不受__其他事件是否发生__的影响,则称n个事件A1,A2,…,A n相互独立.(2)性质①如果事件A与B相互独立,那么事件A与__错误!__,错误!与__B__,错误!与错误!也都相互独立.②若事件A与B相互独立,则P(A|B)=__P(错误!)__,P(A∩B)=__P(A)×P(B)__。
③若事件A1,A2,…,A n相互独立,那么这n个事件都发生的概率,等于__每个事件发生的概率积__,即P(A1∩A2∩…∩A n)=P(A1)×P(A2)×…×P(A n).并且上式中任意多个事件A i换成其对立事件后等式仍成立.Y错误!错误!1.已知P(AB)=错误!,P(A)=错误!,则P(B|A)为( B )A.错误!B.错误!C.错误!D.错误!2.国庆节放假,甲、乙、丙去北京旅游的概率分别是13、错误!、错误!.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( B )A.5960B.错误!C.错误!D.错误![解析] 设甲、乙、丙去北京旅游分别为事件A、B、C,则P(A)=13,P(B)=错误!,P(C)=错误!,P(错误!)=错误!,P(错误!)=错误!,P(错误!)=错误!,由于A,B,C相互独立,故错误!,B,错误!也相互独立,故P(错误!错误!错误!)=错误!×错误!×错误!=错误!,因此甲、乙、丙三人至少有1人去北京旅游的概率P=1-P(A,-错误!错误!)=1-错误!=错误!.3.据某地区气象台统计,在某季节该地区下雨的概率是错误!,刮四级以上风的概率为错误!,既刮四级以上风又下雨的概率为错误!,设事件A为下雨,事件B为刮四级以上的风,那么P(B|A)=__错误!__。
条件概率一、知识概述条件概率的定义:一般地,设A,B为两个事件,且P(A)>0,则称为在事件A 发生的条件下,事件B发生的条件概率.一般把P(B|A)读作A发生的条件下B的概率.注意:(1)条件概率的取值在0和1之间,即0≤P(B|A)≤1.(2)如果B和C是互斥事件,则P(B∪C|A)= P(B|A)+P(C|A).(3)要注意P(B|A)与P(AB)的区别,这是分清条件概率与一般概率问题的关键.注:概率 P(B|A)与P(AB)的区别与联系:联系:事件A,B都发生了.区别:样本空间不同:在P(B|A)中,事件A成为样本空间;在P(AB)中,样本空间仍为W.二、例题讲解:例1、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).①;②;③事件B与事件A1相互独立;④是两两互斥的事件;⑤P(B)的值不能确定,因为它与中哪一个发生有关.解:答案:②④例2、从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞.求2张都是假钞的概率.解:令A表示“2张中至少有1张假钞”,B表示“2张都是假钞”..则所求概率为P(B|A).,..即所求概率为.例3、甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?(3)甲乙两市至少一市下雨的概率是多少?解:记A为“甲地为雨天”,B为“乙地为雨天”.(1).(2).(3).∴在乙地下雨时甲地也下雨的概率为.在甲地下雨时乙地也下雨的概率为.甲、乙两地至少一地下雨的概率为26%.例4、有外形相同的球分别装在三个盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有8个红球,2个白球.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在二号盒子中任取一个球;若第一次取得标有字母B的球,则在三号盒子中任取一个球,如果第二次取出的是红球,则称试验为成功.求试验成功的概率.解:设事件A={从第一个盒子中取出字母为A的球},B={从第一个盒子中取出字母为B的球},C={第二次取球取出的是红球},D={第二次取球取出的是白球},则P(A)=0.7,P(B)=0.3,P(C|A)=0.5,P(D|A)=0.5,P(C|B)=0.8,P(D|B)=0.2.试验成功表示,∵AC与BC互斥,∴试验成功的概率为0.59.例5.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.解:(1).(2)记事件A={乙箱中取出的一个产品是正品},事件B1={甲箱中取出的2个产品均为正品},B2={甲箱中取出的2个产品均为次品},B3={甲箱中取出的2个产品一正品一次品}...∴P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=.∴所求的概率为.。
2.3 条件概率
1.由“0”“1”组成的三位数组中,若用事件A表示“第二位数字为0”,用事件B表示“第一位数字为0”,则P(A|B)等于()
A. B. C. D.
【解析】选A.由题知P(A)=,P(B)=,P(AB)=,[
P(A|B)===.
2.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是()
A. B. C. D.
【解析】选C.设A i表示事件“第i次(i=1,2)取到白球”,因为P(A1)=,P(A1A2)=×=,
在放回取球的情况下P(A2|A1)==.
3.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班所占的概率为.
【解析】设事件A为“周日值班”,事件B为“周六值班”,
则P(A)=,P(AB)=,故P(B|A)= =.
答案:
4.气象台统计,某地区下雨的概率为,刮四级以上风的概率为,既刮四级以上的风又下雨的概率为,设事件A为下雨,事件B为刮四级以上的风,则P(B|A)=,P(A|B)=.
【解析】由已知可得P(A)=,P(B)=,P(AB)=,
所以P(B|A)===,P(A|B)==.
答案:
5.5个乒乓球,其中3个新的,2个旧的,每次取一个,不放回地取两次,求第一次取到新球的情况下,第二次取到新球的概率.
【解析】设“第一次取到新球”为事件A,“第二次取到新球”为事件B.
方法一:因为n(A)=3×4=12,n(AB)=3×2=6,
所以P(B|A)===.
方法二:P(A)=,P(AB)==,
所以P(B|A)===.。
高中数学选修2-3条件概率学习目标:1、通过自学课本48-49页,知道条件概率的定义及条件概率的计算公式。
2、通过探究1及变式的学习,会用定义法求条件概率。
3、通过探究2及变式的学习,会用基本事件个数求条件概率。
自学指导:1、符合什么条件的概率为条件概率?2、对条件概率有几种求法?自学检测:1、把一枚硬币任意抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,求()P B A|2、抛掷红、蓝两个骰子,事件A=“红骰子出现4点”,事件B=“蓝骰子出现的点数是偶数”,求()P A B|3、盒子中有25个外形相同的球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一球,已知他不是黑球,试求它是黄球的概率。
4、设某种灯管使用了500h还能继续使用的概率是0.94,使用到700h后还能继续使用的概率是0.87,问已经使用了500h的灯管还能继续使用到700h的概率是多少?合作探究:探究1:一个家庭中有三个小孩,假定生男、生女是等可能的,已知这个家庭有俩个是女孩,问这时另一个小孩是男孩的概率是多少?探究2:一个家庭中有三个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时至少有一个是男孩的概率是多少?变式1:一个袋中有2个黑球和3个白球,如果不放回的抽取两个球,记事件A=“第一次抽到黑球”,事件B=“第二次抽到黑球”(1)分别求事件A,B,AB发生的概率。
(2)求()|P B A(3)求()P A B|探究2:设某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,问它能活到25岁的概率是多少?变式训练2:现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回的依次抽取2个节目,求(1)第一次抽到舞蹈节目的概率(2)第一次和第二次都抽到舞蹈节目的概率(3)在第一次抽到舞蹈节目的条件下,第二次抽到舞蹈节目的概率变式训练3:某个班级有学生40人,其中有共青团员15人,全班分成四个小组,第一小组有学生10人,其中共青团员4人,现在要在班内任选一名共青团员当代表,求这个代表恰好在第一组内的概率探究3:甲、乙两地都位于长江下游,根据一百年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?变式训练4:把一副扑克(不含大小王)的52张随机均分给赵、钱、孙、李四家,A=“赵家得到6张草花(梅花),B=”孙家得到3张草花“(1)计算()P AB|P B A(2)计算()练习1:若10件产品中包含2件废品,今在其中任取两件,求(1)取出的两件中至少有一件是废品的概率;(2)已知取出的两件中有一件是废品的条件下,另一件也是废品的概率;(3)已知取出的两件中有一件不是废品的条件下,另一件是废品的概率;课堂小结:自查反馈表(掌握情况可用A、好 B较好 C一般)当堂检测:1、下列正确的是:A. ()|P B A=()|P A B B.()()|P A B A P B=C.()()P ABP B=()|P B A D. ()|P A B=()()n ABn B3、掷两枚均匀的骰子,已知点数不同,求至少有一个是6点的概率。
条件概率课时分层作业(十一)(建议用时:40分钟)[基础达标练]一、选择题1.下列说法正确的是()A.P(B|A)<P(AB)B.P(B|A)=P(B)P(A)是可能的C.0<P(B|A)<1 D.P(A|A)=0B[由条件概率公式P(B|A)=P(AB)P(A)及0≤P(A)≤1知P(B|A)≥P(AB),故A选项错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=P(B)P(A),故B选项正确,由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.故选B.] 2.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6 D.0.45A[已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P=0.60.75=0.8.]3.从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)等于()A.18 B.14C.25 D.12B[P(A)=C23+C22C25=25,P(AB)=C22C25=110,由条件概率的计算公式得P(B|A)=P (AB )P (A )=11025=14.故选B.] 4.在10个形状大小均相同的球中有7个红球和3个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A.710B.15C.110D.23D [法一:(定义法)设第一次摸到的是红球为事件A ,则P (A )=710,设第二次摸得红球为事件B ,则P (AB )=7×610×9=715. 故在第一次摸得红球的条件下第二次也摸得红球的概率为P (B |A )=P (AB )P (A )=23.法二:(直接法)第一次抽到红球,则还剩下9个,红球有6个,所以第二次也摸到红球的概率为69=23.]5.某种电子元件用满3 000小时不坏的概率为34,用满8 000小时不坏的概率为12.现有一只此种电子元件,已经用满3 000小时不坏,还能用满8 000小时的概率是( )A.34B.23C.12D.13B [记事件A :“用满3 000小时不坏”,P (A )=34;记事件B :“用满8 000小时不坏”,P (B )=12.因为B ⊆A ,所以P (AB )=P (B )=12.故P (B |A )=P (AB )P (A )=P (B )P (A )=12÷34=23.] 二、填空题6.已知P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )=________,P (B |A )=________.23 35 [P (A |B )=P (AB )P (B )=0.120.18=23;P (B |A )=P (AB )P (A )=0.120.2=35.] 7.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再取到不合格品的概率为________.499 [第一次取到不合格品后,还剩99件产品,其中4件不合格品,则第二次再取到不合格品的概率为P =499.]8.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.35 [由题意知P (AB )=310, P (B |A )=12,∴P (A )=P (AB )P (B |A )=31012=35.]三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n 个.从一个袋子中任取两个球,取到的标号都是2的概率是110.(1)求n 的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.[解] (1)由题意得:C 2nC 2n +3=n (n -1)(n +3)(n +2)=110,解得n =2.(2)记“其中一个标号是1”为事件A ,“另一个标号是1”为事件B ,所以P(B|A)=n(AB)n(A)=C22C25-C23=17.10.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功.求试验成功的概率.[解]设A={从第一个盒子中取得标有字母A的球}.B={从第一个盒子中取得标有字母B的球},R={第二次取出的球是红球},W={第二次取出的球是白球}.则容易求得P(A)=710,P(B)=310,P(R|A)=1 2,P(W|A)=1 2,P(R|B)=4 5,P(W|B)=1 5.事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,故由概率的加法公式,得P(RA∪RB)=P(RA)+P(RB)=P(R|A)·P(A)+P(R|B)·P(B)=12×710+45×310=59100.[能力提升练]一、选择题1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是()A.14 B.23 C.12D.13D [一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知P (A )=34,P (AB )=14.问题是求在事件A 发生的情况下,事件B 发生的概率,即求P (B |A ),由条件概率公式,得P (B |A )=1434=13.]2.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率是12,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是13,则两次闭合都出现红灯的概率为( )A.16B.56C.13D.23A [记第一次闭合出现红灯为事件A ,第二次闭合出现红灯为事件B ,则P (A )=12,P (B |A )=13,所以P (AB )=P (B |A )·P (A )=13×12=16.]二、填空题3.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________.415 [记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B ,“第二次才能取到黄球”为事件C ,所以P (C )=P (AB )=P (A )P (B |A )=410×69=415.]4.先后掷两次骰子(骰子的六个面上分别有1,2,3,4,5,6个点),落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为“x +y 为偶数”,事件B 为“x ,y中有偶数且x≠y”,则概率P(B|A)=________.13[根据题意,若事件A为“x+y为偶数”发生,则x,y两个数均为奇数或均为偶数,共有2×3×3=18个基本事件,∴事件A的概率为P(A)=2×3×36×6=12.而A,B同时发生,基本事件有“2+4”,“2+6”,“4+2”,“4+6”,“6+2”,“6+4”一共6个基本事件,因此事件A,B同时发生的概率为P(AB)=66×6=1 6.因此,在事件A发生的条件下,B发生的概率为P(B|A)=1 3.]三、解答题5.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率.(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.[解](1)从甲箱中任取2个产品的事件数为C28=28,这2个产品都是次品的事件数为C23=3.所以这2个产品都是次品的概率为3 28.(2)设事件A为“从乙箱中取一个正品”,事件B1为“从甲箱中取出2个产品都是正品”,事件B2为“从甲箱中取出1个正品1个次品”,事件B3为“从甲箱中取出2个产品都是次品”,则事件B1、事件B2、事件B3彼此互斥.P(B1)=C25C28=514,P(B2)=C15C13C28=1528,P(B3)=C23C28=328,P(A|B1)=6 9,P(A|B2)=59,P(A|B3)=49,所以P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=514×69+1528×59+328×49=712.。