偏微分方程教程 Fourier变换及其应用
- 格式:pptx
- 大小:524.46 KB
- 文档页数:25
Fourier级数与Fourier变换的概念及应用Fourier级数与Fourier变换是数学中非常重要的概念,它们在许多领域都有着广泛的应用。
本文将为大家详细介绍这两个概念的含义、性质以及应用。
一、Fourier级数Fourier级数是一种将周期函数用三角函数的和表示的方法。
它的基本思想是,将任意一个周期为T的函数f(x)展开成如下的三角级数:f(x) = a0/2 + Σ(an*cos(nωt) + bn*sin(nωt))其中,T = 2π/ω是函数f(x)的周期;an和bn是函数f(x)的各阶余弦和正弦系数;a0是函数f(x)在一个周期内的平均值。
这个级数称为Fourier级数,其中n为奇数或偶数正整数。
其中,an和bn系数可以由如下公式计算:an = (2/T) ∫f(x)cos(nωt)dxbn = (2/T) ∫f(x)sin(nωt)dx其中∫表示积分。
这个公式被称为Fourier系数公式。
Fourier级数是一种十分常见的数学工具,被广泛应用于信号处理、图像处理、声学等领域。
例如,我们可以用Fourier级数分析音乐,找出其中的各个音调和音高。
此外,Fourier级数也在计算机图形学中被广泛使用,用于图像压缩等方面。
二、Fourier变换Fourier变换是一种将非周期函数分解成各个频率分量的方法。
它的基本思想是,将任意一个函数f(x)在全实数轴上分解成各个频率的复指数的和:F(ω) = ∫f(x) e^-iωxdx其中,F(ω)是函数f(x)的频率域表示。
它表示的是不同频率的分量在该函数中所占的权重,即振幅和相位信息。
如果知道了F(ω),我们可以通过它还原函数f(x)。
这个过程被称为Fourier逆变换:f(x) = (1/2π) ∫F(ω) e^iωxdωFourier变换在信号处理、图像处理、物理、工程等领域有着非常广泛的应用。
例如,我们可以用Fourier变换分析信号传输中的误差和失真情况,从而优化数据传输的效果。
2.1 Fourier 变换及其应用我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。
将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L ,即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。
定义2.1 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞-- (2.2)有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理2.1 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有 ),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ (2.3)公式(2.3)称为反演公式.左端的积分表示取Cauchy 主值. 通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此(2.3)亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理2.1的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理2.2 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a . 由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i x i ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具. 3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧.证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x f x f x f m 则())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f m则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫ ⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dye yf dt e tg dxe t xf dt e tg dtt g t x f dx e g f y i t i t x i t i x i =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf . 解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AA x i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x , 求)(ˆ2λf . ⎰+∞--=221)(ˆdx e e f x i x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121. 例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx ee f xi xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e x i xi λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x ex f -=求)(ˆ4λf⎰+∞∞---=dx e e f x i x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i e x i xλλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()Ae AA f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g x y i iyx ⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21 )()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.傅里叶变换和傅里叶积分公式 例1求单个矩形脉冲⎪⎩⎪⎨⎧><=2||,02||,)(ττx x h x f ,(其中常数0,0>≠τh )的傅里叶变换和傅里叶积分公式。
拉普拉斯变换的使用方法拉普拉斯变换是 Fourier 变换的一种推广,常用于处理时域信号的频率特性或者复杂微分方程。
一、拉普拉斯变换的定义在复平面上,有一个以原点为极点的复函数:$F(s)=\int_{0}^{\infty}f(t)e^{-st}$ dt,其中 $s=x+jy$,$f(t)$ 是一段时间内的信号。
这个复函数 $F(s)$ 叫做 $f(t)$ 的拉普拉斯变换,通常用$\mathcal{L}\{f(t)\}$ 表示。
在掌握了拉普拉斯变换一些基本的性质之后,我们就可以利用这种变换来简化复杂的微分方程和求解系统的稳定性等问题。
二、拉普拉斯变换的基本性质1. 线性性质:$\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{ g(t)\}$,其中 $a$ 和 $b$ 是常数。
2. 移位性质:$\mathcal{L}\{f(t-a)u(t-a)\}=e^{-as}\mathcal{L}\{f(t)\}$,其中$u(t-a)$ 是单位阶跃函数。
3. 放缩性质:$\mathcal{L}\{f(at)\}=\frac{1}{a}\mathcal{L}\{f(t)\}$,其中$a$ 是常数。
4. 差分性质:$\mathcal{L}\{\frac{df(t)}{dt}\}=s\mathcal{L}\{f(t)\}-f(0)$。
5. 积分性质:$\mathcal{L}\{\int_{0}^{t}f(\tau)d\tau\}=\frac{1}{s}\mathcal{L}\ {f(t)\}$。
三、拉普拉斯变换的应用1. 求解微分方程:考虑一个一阶微分方程 $y'+ay=f(t)$,我们可以在两边同时做拉普拉斯变换,得到:$sY(s)-y(0)+aY(s)=F(s)$于是,我们就可以直接求出 $Y(s)$ :$Y(s)=\frac{1}{s+a}\cdot F(s)+\frac{y(0)}{s+a}$然后再做逆变换,就可以得到原方程的解 $y(t)$。
Fourier变换的几何意义及其应用技巧Fourier变换是一种基础的数学工具,有着广泛的应用。
在工程学、物理学以及数学中,它常常被用于分析周期函数讯号。
但是,对于许多人来说,这一概念仍然有些抽象。
本文将讨论Fourier变换的几何意义及其应用技巧,帮助读者更好地理解这一数学工具。
一、Fourier变换的物理意义在物理学中,Fourier变换是一种解析周期函数讯号的工具,它代表了周期函数讯号中各个频率对应的振幅。
一个周期性信号可以被表示为若干个正弦和余弦函数相加的形式,这些正弦和余弦函数被称为基本频率。
基本频率可以依次加起来,通过线性组合就能表示出任何类型的周期性信号。
设一个长度为L、周期为T的函数为f(x),它可以表示为以下形式:f(x) = a0/2 + Σa_n cos(nπx/L) + Σb_n sin(nπx/L)其中,a0/2表示频率为0的项,a_n为正弦项的系数,b_n为余弦项的系数。
如果将每个频率对应的振幅看做一个向量的话,那么这些向量可以组成一个向量空间。
以周期函数讯号为例,这个向量空间可以被看作是起始点位于原点的一堆向量。
它们的长度代表了对应频率的振幅,从而可以捕捉到周期性信号的变化。
这个向量空间被称为Fourier空间。
二、Fourier变换的几何意义得到频域上的向量空间之后,我们就可以进行Fourier变换了。
实际上,这个变换可以被视为将周期性信号从时间域转化为频域的过程。
在Fourier变换中,我们称原始周期函数讯号的向量空间为时域,而将其转换后得到的向量空间为频域。
也就是说,时域和频域是相互对应的。
每一个频率都对应着一个向量空间,它们在Fourier变换中是互相独立的。
这意味着我们可以在这些向量空间之间任意转化,而不会影响它在其他向量空间中的表示。
为了更好地理解Fourier变换的几何意义,我们可以从以下两个方面来考虑:1. 旋转变换在二维空间中,我们可以通过旋转来改变一个向量的表示。
数学分析中的Fourier级数和Fourier变换是广泛应用于各个领域的重要数学工具。
无论是在工程领域还是物理领域,Fourier级数和Fourier变换都有着广泛的应用。
Fourier级数是指将任意函数表示为一系列正弦和余弦函数的线性组合。
它可以将一个周期函数分解为一系列简单的正弦和余弦函数,每个正弦和余弦函数都有一个特定的振幅和角频率。
使用Fourier级数可以将复杂的周期函数表示为简单的波形,从而方便分析和处理。
Fourier变换则是将一个信号从时域转换到频域的数学操作。
它可以将一个时域上的函数表示为一系列复数的线性组合,其中每个复数对应于一个特定的频率成分。
通过Fourier变换,我们可以获得一个信号在频域上的频谱,从而方便分析信号的频率分布和频域特性。
Fourier级数和Fourier变换在信号处理中有着广泛的应用。
在通信领域中,Fourier变换可以用于信号调制和解调,以及频谱分析和滤波等操作。
通过将信号从时域转换到频域,我们可以更方便地进行信号的处理和分析,从而提高通信系统的性能。
在图像处理领域,Fourier变换也有着重要的应用。
通过将图像进行Fourier变换,我们可以获得图像在频域上的频谱,从而方便进行图像增强、去噪和压缩等操作。
Fourier变换在数字图像处理中是一种常用的技术,它可以帮助我们改善图像的质量和清晰度。
此外,Fourier级数和Fourier变换在物理学中也有着重要的应用。
在量子力学中,Fourier变换被广泛应用于波函数的表示和分析。
通过对波函数进行Fourier变换,我们可以获得粒子在动量空间上的波函数,从而方便进行动量分析和动量算符的计算。
总结起来,数学分析中的Fourier级数和Fourier变换是一种重要的数学工具,在各个领域都有着广泛的应用。
无论是在通信领域、图像处理领域还是物理学领域,Fourier级数和Fourier变换都能够帮助我们进行信号的处理、图像的分析和波函数的表示。
应用偏微分方程与科学计算讲义(六)Lecture Notes onApplied Partial Differential Equations andScientific ComputingNo. 6马 石 庄2010.09.27.北京第6讲 Fourier方法教学目的:Fourier方法,又称分离变量法,是求解偏微分方程定解问题的一个重要方法,本质是把偏微分方程的定解问题通过变量分离转化为一个特征值问题,并把它的解表示成按特征函数展开的级数形式。
Fourier的思想影响深远。
主要内容:§1 Fourier方法 (4)1.1热传导问题 (4)1.2 Fourier方法 (7)1.3 Fourier要解决的困难 (11)§2.弦振荡问题 (13)2.1 世纪争论 (13)2.2 Fourier解法 (17)2.3 驻波法 (20)§3 运用Fourier方法 (22)3.1 二维热稳态问题 (22)3.2 非齐次问题 (25)3.3 特征函数法 (29)习题6 (33)1822年法国数学家、物理学家Fourier1的热的数学理论(TheorieAnalytique de la Chaleur)一书的出版,是应用数学发展中最重要的一个里程碑.该书不仅为一般类型边值问题提供了一种示范性的形式处理、也开拓了一类具有很大普遍性的数学方法的理论.在他的著作中写道;“深入研究自然是数学发现最丰富的泉源”,这也许是被人引用得最多的Fourier名言.虽然Fourier于热的分析理论的经典著作中缺乏显然的严格性,Kelvin爵士还是称它为“一首伟大的数学诗篇”。
Fourier的工作,更广泛地展现了函数究竟是什么的问题.动摇了18世纪的这样一个信念,即所有函数无论它们怎么坏,总都是代数函数的推广.代数函数、甚至初等超越函数,都不再是函数的原型了.由于代数函数的性质不再能搬到一切函数上去,所以人们说的函数、连续、可微性、可积性以及其它性质的真实意义究竟是什么的问题就提出来了。
毕 业 论 文题 目:傅里叶(Fourier )变换的应用分析学系 专年月 日摘要以Fourier变换为代表的积分变换在许多工程领域有着广泛应用,因此,总结和分析Fourier变换的主要应用案例,对于加深对积分变换理论和方法的理解有着重要的实际意义。
本文首先从Fourier变换的基本理论出发,对其常用性质和Fourier变换的几种重要变种进行了总结。
在此基础上,对Fourier变换在一些实际应用中的思想方法以及快速Fourier变换(FFT)的算法实现进行了分析,得出了Fourier变换的一些应用特点。
关键词:Fourier变换,应用分析,仿真模拟AbstractThe integral transformations, e.g., Fourier transformation, have the widespread application in many project domains. Therefore, summarizing and analyzing the Fourier transformation has the highly practical significance to deepen the understanding of the integral transformation theory and method. Begining with the basic theory of Fourier transformation, we summarizes its characters and several kinds of variants. On the basis of these, we further analyze the methods of Fourier transformation via some application examples and the realization of Fast Fourier transformation’s algorithm, and then obtains the festures of Fourier transformation in application.Keywords :Fourier transform, Application analysis, Simulation目录1绪论 (5)1.1Fourier变换概述 (5)1.2研究目的和意义 (6)2 Fourier变换基本理论 (8)2.1 Fourier级数的定义 (8)2.2 Fourier变换的定义...................................................... 错误!未定义书签。