偏微分方程教程 Fourier变换及其应用
- 格式:pptx
- 大小:524.46 KB
- 文档页数:25
Fourier级数与Fourier变换的概念及应用Fourier级数与Fourier变换是数学中非常重要的概念,它们在许多领域都有着广泛的应用。
本文将为大家详细介绍这两个概念的含义、性质以及应用。
一、Fourier级数Fourier级数是一种将周期函数用三角函数的和表示的方法。
它的基本思想是,将任意一个周期为T的函数f(x)展开成如下的三角级数:f(x) = a0/2 + Σ(an*cos(nωt) + bn*sin(nωt))其中,T = 2π/ω是函数f(x)的周期;an和bn是函数f(x)的各阶余弦和正弦系数;a0是函数f(x)在一个周期内的平均值。
这个级数称为Fourier级数,其中n为奇数或偶数正整数。
其中,an和bn系数可以由如下公式计算:an = (2/T) ∫f(x)cos(nωt)dxbn = (2/T) ∫f(x)sin(nωt)dx其中∫表示积分。
这个公式被称为Fourier系数公式。
Fourier级数是一种十分常见的数学工具,被广泛应用于信号处理、图像处理、声学等领域。
例如,我们可以用Fourier级数分析音乐,找出其中的各个音调和音高。
此外,Fourier级数也在计算机图形学中被广泛使用,用于图像压缩等方面。
二、Fourier变换Fourier变换是一种将非周期函数分解成各个频率分量的方法。
它的基本思想是,将任意一个函数f(x)在全实数轴上分解成各个频率的复指数的和:F(ω) = ∫f(x) e^-iωxdx其中,F(ω)是函数f(x)的频率域表示。
它表示的是不同频率的分量在该函数中所占的权重,即振幅和相位信息。
如果知道了F(ω),我们可以通过它还原函数f(x)。
这个过程被称为Fourier逆变换:f(x) = (1/2π) ∫F(ω) e^iωxdωFourier变换在信号处理、图像处理、物理、工程等领域有着非常广泛的应用。
例如,我们可以用Fourier变换分析信号传输中的误差和失真情况,从而优化数据传输的效果。
2.1 Fourier 变换及其应用我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。
将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L ,即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。
定义2.1 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞-- (2.2)有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理2.1 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有 ),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ (2.3)公式(2.3)称为反演公式.左端的积分表示取Cauchy 主值. 通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此(2.3)亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理2.1的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理2.2 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a . 由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i x i ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具. 3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧.证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x f x f x f m 则())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f m则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫ ⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dye yf dt e tg dxe t xf dt e tg dtt g t x f dx e g f y i t i t x i t i x i =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf . 解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AA x i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x , 求)(ˆ2λf . ⎰+∞--=221)(ˆdx e e f x i x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121. 例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx ee f xi xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e x i xi λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x ex f -=求)(ˆ4λf⎰+∞∞---=dx e e f x i x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i e x i xλλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()Ae AA f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g x y i iyx ⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21 )()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.傅里叶变换和傅里叶积分公式 例1求单个矩形脉冲⎪⎩⎪⎨⎧><=2||,02||,)(ττx x h x f ,(其中常数0,0>≠τh )的傅里叶变换和傅里叶积分公式。
拉普拉斯变换的使用方法拉普拉斯变换是 Fourier 变换的一种推广,常用于处理时域信号的频率特性或者复杂微分方程。
一、拉普拉斯变换的定义在复平面上,有一个以原点为极点的复函数:$F(s)=\int_{0}^{\infty}f(t)e^{-st}$ dt,其中 $s=x+jy$,$f(t)$ 是一段时间内的信号。
这个复函数 $F(s)$ 叫做 $f(t)$ 的拉普拉斯变换,通常用$\mathcal{L}\{f(t)\}$ 表示。
在掌握了拉普拉斯变换一些基本的性质之后,我们就可以利用这种变换来简化复杂的微分方程和求解系统的稳定性等问题。
二、拉普拉斯变换的基本性质1. 线性性质:$\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{ g(t)\}$,其中 $a$ 和 $b$ 是常数。
2. 移位性质:$\mathcal{L}\{f(t-a)u(t-a)\}=e^{-as}\mathcal{L}\{f(t)\}$,其中$u(t-a)$ 是单位阶跃函数。
3. 放缩性质:$\mathcal{L}\{f(at)\}=\frac{1}{a}\mathcal{L}\{f(t)\}$,其中$a$ 是常数。
4. 差分性质:$\mathcal{L}\{\frac{df(t)}{dt}\}=s\mathcal{L}\{f(t)\}-f(0)$。
5. 积分性质:$\mathcal{L}\{\int_{0}^{t}f(\tau)d\tau\}=\frac{1}{s}\mathcal{L}\ {f(t)\}$。
三、拉普拉斯变换的应用1. 求解微分方程:考虑一个一阶微分方程 $y'+ay=f(t)$,我们可以在两边同时做拉普拉斯变换,得到:$sY(s)-y(0)+aY(s)=F(s)$于是,我们就可以直接求出 $Y(s)$ :$Y(s)=\frac{1}{s+a}\cdot F(s)+\frac{y(0)}{s+a}$然后再做逆变换,就可以得到原方程的解 $y(t)$。