实际问题与一元二次方程题型归纳总结
- 格式:doc
- 大小:143.00 KB
- 文档页数:8
实际问题与一元二次方程公式总结一元二次方程,这个听起来有点高深的名词,其实在生活中随处可见,像是一个调皮的小孩,总是在我们不经意间出现。
你有没有想过,为什么有些时候我们在路上走着,突然发现了一道题目,问你这条路到底有多长?就是这时候,一元二次方程就可以派上用场了。
简单来说,它的形式就是ax² + bx + c = 0,这个公式里,a、b、c都是数字,而x就是我们要找的那个神秘的变量。
咱们先别被这几个字母吓着,想象一下,这就像是在解一个宝藏的谜题,越往下挖,越能发现里面的精彩。
说到这里,或许你会想,为什么这个方程在生活中如此重要呢?想想看,当我们想要知道一个物体的运动轨迹,比如一颗小球从空中掉下来的过程,或者在运动会上,跳远的同学是如何飞出去的,这些都是一元二次方程的应用。
很多时候,生活中的问题都可以变成数学题。
甚至你在计划一次旅行,想知道什么时候能到达目的地,速度和时间的问题都可以用到它,真的是“处处是学问”。
我们来聊聊求解方法吧!哎,解这个方程有好几种方法,其中最经典的就是“求根公式”,听起来是不是特别高级?它就像是一把万能钥匙,能帮你打开通往答案的大门。
公式是这样的:x = (b ± √(b² 4ac)) / (2a)。
听起来有点复杂,但别担心,只要我们把a、b、c代入进去,轻轻一算,答案就会乖乖地跑出来,像小猫一样,蹦跶着来到你面前。
你可能会问,这个“±”符号是个啥?哈哈,这可是个关键的角色。
它告诉我们,可能有两个不同的答案,就像在选择午餐时,一边是披萨,一边是汉堡,你可以随意选择。
如果b² 4ac这个部分大于零,嘿,那就有两个不同的答案。
如果等于零,那只有一个答案,就像你今天的午餐只有一个选择。
而如果它小于零,哎,那就没办法了,答案就像是被藏起来的宝藏,无论你怎么找也找不到。
光会解方程可不够,我们还得学会如何把这些答案应用到实际中。
比如,当你计算出一个物体的运动轨迹时,结合一下时间和速度,你就能知道它在什么时候到达什么地方。
一元二次方程与实际问题题型一元二次方程与实际问题题型是数学中常见的题目类型之一。
以下是一些实例,并给出了相应的答案:利率问题题目:小华将100元存入银行,年利率为2.25%,存期为2年。
请问小华到期后可以取出多少钱?设本金为P,年利率为r,存期为t年,到期后的总金额为A。
根据公式:A = P(1 + r)^t,代入数值解得:A = 104.5元。
投资问题题目:小李和小张分别投资了10万元和15万元,年回报率为5%,3年后的总资产为多少?设投资金额为P,年回报率为r,t年后总资产为A。
根据公式:A = P(1 + r)^t,代入数值解得:A = 16.4万元。
销售问题题目:某商品原价为100元,经过两次降价后售价为81元,每次降价的百分比相同。
请问每次降价的百分比是多少?设每次降价的百分比为x。
根据公式:原价*(1-百分比)^次数=现价,代入数值解得:x = 10%。
相遇问题题目:甲、乙两车分别从A、B两地同时出发相向而行,相遇时甲车比乙车多走了10公里。
已知甲车的速度为60公里/小时,乙车的速度为40公里/小时。
请问A、B两地之间的距离是多少?设相遇时的时间为t小时,A、B两地之间的距离为d公里。
根据公式:(60t + 40t) = d + 10,代入数值解得:d = 210公里。
追及问题题目:甲、乙两车同时从A、B两地出发相向而行,相遇后甲车继续前行到达B地比乙车迟到了1小时。
已知甲车的速度为60公里/小时,乙车的速度为40公里/小时。
请问A、B两地之间的距离是多少?设相遇时的时间为t小时,A、B两地之间的距离为d公里。
根据公式:(60t - 40t) = d,代入数值解得:d = 20公里。
一元二次方程的实际应用题型总结【一】一元二次方程的定义与解【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a -1)x |a|+1+2x -7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a -1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x -2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?写出这个一元二次方程的二次项系数、一次项系数、常数项。
巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x -1)+1=2x 2C. x 2+3x=2xD. ax 2+bx+c -0 2、已知关于x 的方程mx 2+(m -1)x -1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a -2)x 2+ 是一元二次方程,则a 的取值范围是4、把方程 (x -1)2-3x (x -2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a -2+231a +的值6、若关于x 的方程ax 2+bx+c=0(a≠0)中,abc 满足a+b+c=0和a -b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx -40=0的一个解,且a≠b ,求2222a b a b--的值【二】一元二次方程的解法一、直接开平方法1、下列方程能用直接开平方法求解的是( )A. 5x 2+2=0B. 4x 2-2x -1=0C. 12(x -2)2=4 D. 3x 2+4=2 2、若关于x 的一元二次方程5x 2-k=0有实数根,则k 的取值范围是_________3、已知(a 2+b 2-1)2=9,则a 2+b 2=_________4、已知一元二次方程ax 2+bx+c=0的一个根是1,且a ,b 满足等式4,求方程13y 2-2c=0的根5、用开平方法解下列方程(1)2 9(x 1)25-= (2)()26x 181-= (3)(x -1)2=(3x -4)2二、配方法1、(1)x 2--____)2 (2)3x 2+12x+____=3(x+____)2 (3)12x 2-5x+____=12(x -____)2 2、若x 2+ax+9是关于x 的完全平方式,则常数a 的值是__________3、多项式4x 2+1加上一个单项式后,成为一个整式的完全平方,那么加上的这个单项式可以是4、一元二次方程x 2-px+1=0配方后为(x -q)2=15,那么一元二次方程x 2-px -1=0配方后为( )A. (x -4)2=17B. (x+4)2=15C. (x+4)2=17D. (x -4)2=17或(x+4)2=175、若x 为任意实数,则x 2+4x+7的最小值为__________★★★★当x=_______时,代数式3x 2-2x+1有最_______(填大或小)值为_______6、用配方法证明:关于x 的方程(m 2-12m+37)x 2+3mx+1=0,无论m 为何值,此方程都是一元二次方程。
实际问题与一元二次方程知识点总结及重难点精析一、知识点总结1.在九年级数学中,实际问题与一元二次方程这一章知识点主要包括:一元二次方程的基本概念、性质及其在实际问题中的应用。
2.一元二次方程的基本概念:一元二次方程是一个含有未知数x 的整式方程,其一般形式为ax²+bx+c=0(a≠0)。
其中a、b、c为常数,a≠0.且x的最高次数为2.3.一元二次方程的性质:一元二次方程有四个性质,分别是:(1) 有两个解,即x1和x2;(2) 两解的和为-b/a;(3) 两解的积为c/a;(4) 判别式△=b²-4ac,当△>0时,方程有两个不相等的实数解;当△=0时,方程有两个相等的实数解;当△<0时,方程没有实数解。
4.一元二次方程的应用:在实际问题中,一元二次方程通常用于解决一些二次关系的问题,比如物体的运动轨迹、建筑物的面积和体积、经济利润最大化等问题。
二、重难点精析在本章节中,重难点主要包括如何将实际问题转化为数学问题、一元二次方程的解法以及根的性质和应用。
1.如何将实际问题转化为数学问题:在解决实际问题时,需要从题目中提取出有用的信息,并转化为数学语言。
这需要学生具备一定的阅读理解能力和数学建模能力。
2.一元二次方程的解法:一元二次方程的解法有公式法和因式分解法两种。
公式法是通过公式直接求解,但需要学生记忆公式。
因式分解法是通过将方程左边分解成两个一次因式的乘积,再分别令每个因式等于0来求解。
这种方法更直观易懂,但需要学生掌握因式分解的技巧。
3.根的性质和应用:根的性质包括前面提到的两个解的和、积和判别式。
这些性质在解决实际问题时具有重要应用。
例如,利用判别式可以判断方程是否有实数解,从而确定实际问题是否有解;利用两解的和可以计算实际问题的某些物理量,如位移等。
三、总结通过以上知识点总结和重难点精析,我们可以看到实际问题与一元二次方程这一章知识点的重要性和应用价值。
实际问题与一元二次方程题型归纳总结实际问题与一元二次方程题型归纳总结一、列一元二次方程解应用题的一般步骤:列一元二次方程解应用题的步骤可归纳为:“审、找、设、列、解、验、答”七个步骤。
1.审清题意,弄清已知量与未知量;2.找出等量关系;3.设未知数,有直接和间接两种设法,因题而异;4.列出一元二次方程;5.求出所列方程的解;6.检验方程的解是否正确,是否符合题意;7.作答。
二、典型题型1、数字问题例1:有两个连续整数,它们的平方和为25,求这两个数。
例2:有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。
练:1.两个连续的整数的积是156,求这两个数。
2.一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A。
25 B。
36 C。
25或36 D。
-25或-362、传播问题公式:(a+x)=M,其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数例3:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?练:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?3、相互问题(循环、握手、互赠礼品等)问题循环问题:又可分为单循环问题n(n-1),双循环问题n(n-1)和复杂循环问题2n(n-3)例4:1.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?2.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?例5:一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人?例6:生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了182件,设全组有x个同学,则根据题意列出的方程是()A。
实际问题与一元二次方程(知识点考点一站到底)考点☀梳理 考点1:一元二次方程的应用 解题指导: 1.增长(或降低)率问题 解决这类问题的关键是理解“增长了”与“增长到”、“降低了”与“降低到”的区别,尤其要理解第二次变化是在第一次变化的基础上发生的.分析、归纳、解决问题的同时,务必要记住公式b x a n =±)1(,其中a 为增长(或降低)的基础数,x 为增长(或降低)率,n 为增长(或降低)的次数,b 为增长(或降低)后的数量2.几何图形面积问题几何图形的面积问题是中考的热点问题,通常涉及三角形、长方形、正方形等图形的面积,需利用图形面积公式,从中找到等量关系解决问题.有关面积的应用题,均可借助图形加以分析,以便于理解题意.3.利润或利润率向題在日常生活中,经常遇到有关商品利润的问题,解决这类问题的关键是利用其中巳知量与未知量之同的等量美系建立方程模型,并通过解方程来解决问题.要正确解答利润或利润率问题,首先要理解进价、售价、利润及利润率之同的关系:利润=售价一进价;利润率=进价利润X 100%. 4.分裂(传播)问题分裂与传播类问题是一元二次方程实际应用中的常见题型,解决此类问题的关键是原细胞或传染源在不在总数中.其一般思路是先分析问题情6境,明确是分裂问题还是传播问题,然后找出问题中的数量关系,再建立适当的数学模型求解.(1)传播问题:传染源在传播过程中,原传染源的数量计入传染结果,若传染源数量为1,每一个传染源传染x 个个体,则第一轮传染后,感染个体的总数为 1+x,第二轮传染后感染个体的总数为(1+x)2.(2)分裂问题:细胞在分裂过程中,原细胞数目不计入分裂总数中,若原细胞数目为1,每一个细胞分裂为x 个细胞,则第一次分裂;后的细胞总数为x ,第二次分裂后的细胞总数为x 2.5.握手、送礼物、比赛问题握手、送礼物、比赛问题是一元二次方程实际应用中的常见题型,解决此类问题的关键是搞清楚是否存在重复计算的情况,例如互赠礼物就不重复,两两比赛一场,两两握手一次就存在重复现象。
一元二次方程实际问题常见题型1. 概述一元二次方程是高中数学中常见的一个重要知识点。
它不仅是数学理论的重要组成部分,更是解决实际问题的有效工具。
本文将围绕一元二次方程实际问题常见题型展开探讨,帮助读者更好地理解和应用这一知识点。
2. 垂直抛物线问题垂直抛物线问题是一元二次方程实际问题中的常见题型之一。
一架飞机从高空垂直向下抛出一个物体,根据物体运动的时间和速度等因素,可以建立相应的一元二次方程模型。
通过解方程,可以求解物体的运动轨迹、最大高度、落点坐标等相关问题。
3. 开口方向问题开口方向问题也是一元二次方程实际问题中的重要内容。
在现实生活中,有许多与开口方向相关的问题,如抛物线运动、水流喷射等。
通过构建一元二次方程模型,并结合相关的条件和约束条件,可以有效地解决这类问题。
4. 面积最大最小值问题求取一元二次方程的最值是解决实际问题的重要应用之一。
在求解面积最大最小值的问题中,一元二次方程的应用十分广泛。
求解围墙围成的最大面积、矩形花坛的最大面积等问题,都可以通过建立一元二次方程模型,并求解其最值来得到最优解。
5. 个人观点和理解一元二次方程实际问题常见题型是数学与实际问题相结合的典型案例,深入理解和掌握这些题型对于培养学生的数学建模能力和解决实际问题的能力具有重要意义。
通过这些题型的学习和实践,学生可以更好地理解数学知识与实际问题的联系,培养批判性思维和创新能力。
6. 总结通过以上的讨论,我们对一元二次方程实际问题常见题型有了更加全面、深入的理解。
这些题型的学习不仅有助于提高学生的数学水平,更能够培养学生解决实际问题的能力,从而更好地应对未来的学习和工作挑战。
文章总结大致如上,希望对您有所帮助。
一元二次方程实际问题常见题型涉及各个领域,从物理学到经济学,从工程学到生物学,都有着广泛的应用。
在实际问题中,一元二次方程常常用来描述抛物线运动、最大最小值、面积和体积等问题。
下面将围绕这些内容展开更具体的讨论。
1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?单(双)循环问题1.参加一次足球赛的每两队之间都进行两次比赛,共赛90场,共有多少队参加?2.参加一次聚会的每两人都握了一次手,所有人共握手66次,有多少人参加聚会?3.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?4.初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?数字问题1.两个相邻偶数的积为168,则这两个偶数是多少?2.一个两位数,十位数字与个位数字之和为5,把这个数的十位数字与个位数字对调后,所得的新两位数与原两位数乘积为736,求原两位数。
增长率问题1.某厂去年3月份的产值为50万元,5月份上升到72万元,这两个月平均每月增长的百分率是多少?2.某厂一月份产值为10万元,第一季度产值共33.1万元。
若每个月比上月的增长百分数相同,求这个百分数。
销售问题1.将进价为40元的商品按50元的价格出售时,能卖出500个,已知该商品每涨价1元,其销售量就要减少10个,为了赚取8000元的利润,售价应定为多少元?2.商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,已知这种衬衫每件降价1元,商场平均每天可多售出2件,若商场要想平均每天盈利1200元,那么每件衬衫应降价多少元?围圈问题1.借助一面长6米的墙,用一根13米长的铁丝围成一个面积为20平方米的长方形,求长方形的两边?2.如图所示,利用22米长的墙为一边,用篱笆围成一个长方形养鸡场,中间用篱笆分割出两个小长方形,总共用去篱笆36米,为了使这个长方形ABCD的面积为96平方米,问AB和BC边各应是多少? A E DB F C边框问题在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽为多少?面积问题1.要在长32m,宽20m的长方形绿地上修建宽度相同的道路,六块绿地面积共570m2,问道路宽应为多宽?2.在宽为20m、长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551m2,则修建的路宽应为多少?工程问题1.甲、乙两建筑队完成一项工程,若两队同时开工,12天可以完成全部工程,乙队单独完成该工程比甲队单独完成该工程多用10天,问单独完成该工程,甲、乙各需多少天?行程问题汽车需行驶108km的距离,当行驶到36km处时发生故障,以后每小时的速度减慢9km,到达时比预定时间晚24min,求汽车原来的速度。
实际问题与一元二次方程题型归纳总结一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)审:审清题意,弄清已知量与未知量;(2)找:找出等量关系;(3)设:设未知数,有直接和间接两种设法,因题而异;(4)列:列出一元二次方程;(5)解:求出所列方程的解;(6)验:检验方程的解是否正确,是否符合题意;(7)答:作答。
二、典型题型1、数字问题例1、有两个连续整数,它们的平方和为25,求这两个数。
例2、有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。
练习:1、两个连续的整数的积是156,求这两个数。
2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A. 25 B. 36 C. 25或36 D. -25或-362、传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?3、相互问题(循环、握手、互赠礼品等)问题循环问题:又可分为单循环问题21n(n-1),双循环问题n(n-1)和复杂循环问题212n(n-3) 例4、(1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?(2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?例5、一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人?例6、生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了182件,设全组有x 个同学,则根据题意列出的方程是( )A.()1821=+x xB. ()1821=-x xC.()18212=+x xD.()21821⨯=-x x练习:1、甲A 联赛中的每两队之间都要进行两次比赛,若某一赛季共比赛110场,则联赛中共有多少个队参加比赛?2、参加一次聚会的每两人都握了一次手,所有人共握手15次,有多少人参加聚会?3、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?4、平均增长率问题:M=a(1±x)n , n 为增长或降低次数 , M 为最后产量,a 为基数,x 为平均增长率或降低率例7、某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
例8、市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为多少?练习:1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.2、从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精5升.问每次倒出溶液的升数?5、商品销售问题例9、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?例10、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?练习:1、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。
当每吨售价为260元时,月销售量为45吨。
该经销店为提高经营利润,准备采取降价的方式进行促销。
经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。
综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。
(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。
(3)小静说:“当月利润最大时,月销售额也最大。
”你认为对吗?请说明理由。
2、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. 现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?6、面积问题例11、如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?例12、一张长方形铁皮,四个角各剪去一个边长为4cm 的小正方形,再折起来做成一个无盖的小 盒子。
已知铁皮的长是宽的2倍,做成的小盒子的容积是1536cm 3,求长方形铁皮的长与宽 。
练习:1、一个直角三角形的两条直角边的和是14cm,面积是24cm 2,两条直角边的长分别是 。
2、为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为 米,宽为 米。
7、工程问题例13、某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.(1)求甲、乙两工程队单独完成此项工程所需的天数.(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A .请甲队单独完成此项工程出.B 请乙队单独完成此项工程;C .请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少?练习:搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A 和B ,甲在A 仓库,乙在B 仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间?8、行程问题例14、A 、B 两地相距82km ,甲骑车由A 向B 驶去,9分钟后,乙骑自行车由B 出发以每小时比甲快2km 的速度向A 驶去,两人在相距B 点40km 处相遇。
问甲、乙的速度各是多少? X 2X练习:甲、乙二人分别从相距20千米的A 、B 两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B 地后乙还需30分钟才能到达A 地,求乙每小时走多少千米.9、银行问题例15、王明同学将100元第一次按一年定期储蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的50元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的一半,这样到期后可得本金利息共63元,求第一次存款时的年利率.练习:某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率。
(利息税为20%)动点几何问题例16、如图,△ABC 中,∠B=90°,AB=6,BC=8,点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动:(1)经过几秒,△PBQ 的面积等于8cm2;(2)△PBQ 的面积会等于10cm2吗?会请求出此时的运动时间,若不会请说明理由.例17、已知矩形ABCD 的边长AB=3cm ,BC=6cm 。
某一时刻,动点M 从A 点出发沿AB 方向以1s cm 的速度向B 点匀速运动;同时,动点N 从D 出发沿DA 方向以2s cm 的速度向A 点匀速运动,则经过多长时间,△AMN 的面积等于矩形ABCD面积的91?练习:已知:如图所示,在△ABC 中,cm 7cm,5,90==︒=∠BC AB B .点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果Q P ,分别从B A ,同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果Q P ,分别从B A ,同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.课后作业:1、有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之和的 3倍刚好等于这个两位数。
求这个两位数。
2、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出 小分支。
3、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?4、要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?5、为了绿化校园,某中学在2012年植树400棵,计划到2014年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数。
6、国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x 元(叫做税率x%), 则每年的产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?国家征收的附加税金总额=香烟的销售额(即单价×销售量)×征收的税率.7、合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?8、在一幅长80cm、宽50cm的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,求需要金色纸边的宽是多少?9、如图所示,某小区规划在一个长为40 m、宽为26 m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144 m2,求甬路的宽度.10、甲、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈?11、某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时?12、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)13、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P 运动到点B停止时,点Q也随之停止运动。