液压凿岩台车液压系统故障诊断
- 格式:doc
- 大小:30.50 KB
- 文档页数:3
工程机械液压系统故障的几种常用诊断方法现场施工中的工程机械液压系统故障的诊断,往往受现场条件的限制,并且在出现故障后要求尽快排除,以免影响施工进度。
本文介绍几种现场常用的工程机械液压系统故障诊断方法,供参考。
1.直观检查法对于一些较为简单的故障,可以通过眼看、手模、耳听和嗅闻等手段对零部件进行检查。
例如,通过视觉检查能发现诸如破裂、漏油、松脱和变形等故障想象,从而可及时地维修或更换配件;用手握住油管(特别是胶管),当有压力油流过时会有振动地感觉,而无油液流过或压力过低时则没有这种现象。
另外,手摸还可用于判断带有机械传动部件地液压元件润滑情况是否良好,用手感觉一下元件壳体温度地变化,若元件壳体过热,则说明润滑不良;耳听可以判断机械零部件损坏造成的故障点和损坏程度,如液压泵吸空、溢流阀开启、元件发卡等故障都会发出如水的冲击声或“水锤声”等异常响声;有些部件会由于过热、润滑不良和气蚀等原因而发出异味,通过嗅闻可以判断出故障点。
2.对换诊断法在维修现场缺乏诊断仪器或被查元件比较精密不宜拆开时,应采用此法。
先将怀疑出现故障地元件拆下,换上新件或其他机器上工作正常、同型号的元件进行试验,看故障能否排除即可作出诊断。
如一台卡特E200B型挖掘机工作装置的液压系统工作压力,根据经验怀疑是主安全阀出了故障,遂将现场同一型号的挖掘机上的主安全阀与该安全阀进行了对换,试机时工作正常,证实怀疑正确。
用对换诊断法检查故障,尽管受到结构、现场元件储备或拆卸不便等因素的限制,操作起来也可能比较麻烦,但对于如平衡阀、溢流阀、单向阀之类的体积小、易拆装的元件,采用此法还是较方便的。
对换诊断法可以避免因盲目拆卸而导致液压元件的性能降低。
对上述故障如果不用对换法检查,而直接拆下可疑的主安全阀并对其进行拆解,若该元件无问题,装复后有可能会影响其性能。
3.仪表测量检查法仪表测量检查法就是借助对液压系统各部分液压油的压力、流量和油温的测量来判断该系统的故障点。
矿山机械液压系统常见故障及解决策略矿山机械液压系统作为矿山生产中关键的部件,其稳定运行是确保生产安全和提高生产效率的重要保障。
然而由于工作环境恶劣,加之使用频繁,容易出现故障。
下面将列举一些常见故障及解决策略。
1.液压系统漏油故障原因:液压系统出现密封不良、管路松脱等情况,导致油液泄漏。
解决策略:首先应检查液压路线的密封情况,如O形圈、密封垫是否老化损坏;接着检查液压管路的卡箍是否松动;最后检查管道接头是否正确。
2.液压系统温升过高故障原因:液压系统使用时间过长,液压油质量不佳,油温过高。
解决策略:检查液压油是否需要更换或是添加冷却装置;若是长时间使用,也要及时更换液压油。
3.液压缸无法运动故障原因:液压系统内部的液压缸受到侧向力或超载等外部因素而导致结构损坏。
解决策略:检查液压缸结构是否损坏、内部是否有异物或是液压缸攻卡现象,及时更换相应部件或使用液压扳手推动或落锤松卡缸体。
4.液压油渗出故障原因:液压系统的密封结构损坏、内部设备接缝面密不封、液压油启动时渗漏。
解决策略:可以通过检查密封结构、连接面、管道内部是否有杂物等情况排查故障。
5.液压系统泵噪音和振动过大故障原因:液压泵本身质量不佳或是选用不当,使用需求变化等原因都会导致泵噪音和振动过大。
解决策略:建议维修技术人员使用品质较好的液压泵;选用与液压泵相配套的阀体组件;调整液压泵的压力、流量、油箱内油面、油温等参数。
6.液压系统压力不足或无法达到工作压力故障原因:试验压力不足,液压油泄漏、原因是管阀工艺太低造成的液压损失过大且系统压力过低。
解决策略:应考虑选择管阀工艺较高的接头或阀体、不断优化系统结构以及加强对矿山机械液压系统的维护和保养。
综上所述,矿山机械液压系统采取及时检查、正确维修等方式,可以保证其正常运行。
针对长期维护的问题,矿山企业可以对员工进行相关技术培训,提高整个团队的技能水平,从而减少不必要的故障和损失。
矿山机械液压系统常见故障及解决策略
1. 液压油温过高
原因:液压油流量不足、系统负载过重、液压油污染严重等
解决策略:增加液压油流量、降低负载、更换清洁的液压油、提高液压油冷却效果等。
2. 液压系统泄露
原因:密封不良、损坏和过度使用等。
解决策略:消除密封不良、更换磨损的密封件、加大油管直径等。
3. 液压系统压力不足
原因:泵的流量不足、调节阀的损坏等。
解决策略:增加泵的流量、更换损坏的调节阀、调整调节阀等。
4. 液压系统压力过高
原因:调节阀的故障、系统负载过轻等。
解决策略:更换磨损或故障的调节阀、降低系统负载等。
5. 液压泵异响
原因:油液稠度太低、泵的进口堵塞、泵的零件磨损等。
解决策略:更换液压油、清洗泵的进口、更换磨损的泵零件等。
6. 液压缸动作不顺畅
原因:液压缸内部故障、液压缸密封不良等。
解决策略:更换故障的液压缸零件、提高密封效果等。
总之,正确的维护与保养,以及及时解决液压系统故障,可以有效降低设备故障率,提高设备利用率,延长设备的寿命,节约维修成本。
液压系统故障诊断的方法与步骤
液压系统是工业生产中常用的一种传动系统,但是其在使用过程中会出现故障,严重影响生产效率。
因此,液压系统故障诊断成为维护液压系统的重要环节。
本文将介绍液压系统故障诊断的方法与步骤。
一、液压系统故障的种类
液压系统故障可以分为机械故障和液压故障。
机械故障包括液压泵、油缸、阀门的损坏等;液压故障包括油液污染、泄漏、回油不畅等。
二、液压系统故障诊断的方法
1. 现场观察法:通过观察液压系统的工作状态,找出故障原因。
比如:液压系统无法工作,可能是油液不足或泵失效。
液压系统有异响或振动,可能是系统存在气体或是某个部件磨损。
2. 系统分析法:通过分析液压系统的结构、工作原理和工作参数,找出故障原因。
比如:液压缸无法运动,可以分析是液压泵输出压力不够,或是液压缸内部密封损坏。
3. 试验检测法:通过对液压系统进行试验检测,找出故障原因。
比如:对液压泵进行试验,检测泵的输出压力和流量是否正常。
三、液压系统故障诊断的步骤
1. 确认故障现象和发生时间。
2. 进行现场观察,找出故障原因。
3. 根据故障现象,分析液压系统的结构和工作原理,锁定故障
部件。
4. 进行试验检测,确认故障原因。
5. 修理或更换故障部件。
6. 对液压系统进行测试,确认故障已经解决。
维护液压系统是一项复杂的工作,在故障发生时,需要迅速采取有效措施,尽快恢复液压系统的正常工作状态。
液压系统故障诊断的方法和步骤可以帮助维护人员快速准确地找出故障原因,提高故障处理效率。
液压系统常见故障的诊断及消除方法液压系统是工程设备中非常重要的一个组成部分,常常用于提供大功率的传动和控制。
但是由于液压系统的复杂性和工作环境的复杂性,常常会出现各种故障。
本文将介绍液压系统常见故障的诊断及消除方法。
1.压力不足或无压力故障原因可能是液压泵失效、泵吸入空气、油箱液面过低等。
解决方法可以是检查液压泵的工作状态,检查泵入口是否有空气,检查油箱液面。
2.压力过高或超压故障原因可能是过载阀调节不当、过载阀损坏、压力调节阀失效等。
解决方法可以是调整过载阀的设置值、更换过载阀、检查压力调节阀。
3.泄漏泄漏是液压系统常见的故障之一,可能是密封件老化、螺纹松动、管路磨损等原因造成的。
解决方法可以是更换密封件、紧固螺纹、更换磨损的管路。
4.油温过高或过低油温过高可能是由于油液粘度过高、油液冷却器失效等原因造成的。
解决方法可以是更换合适的液压油、检查冷却器的工作状态。
油温过低可能是由于油液粘度过低、冷却器冷却不足等原因造成的。
解决方法可以是更换合适的液压油、检查冷却器的工作状态。
5.油液污染油液污染可能是由于油箱没有过滤装置、油液中杂质过多等原因造成的。
解决方法可以是安装合适的过滤装置、定期更换油液。
6.阀门卡死阀门卡死可能是由于阀芯与阀套间配合间隙过大、阀芯表面磨损等原因造成的。
解决方法可以是更换阀芯、研磨阀芯表面。
7.液压缸无法伸缩液压缸无法伸缩可能是由于缸内部部件损坏、密封件老化、液压系统压力不足等原因造成的。
解决方法可以是更换缸内部部件、更换密封件、检查液压系统压力。
8.油液乳化油液乳化可能是由于油液中含水过多、机械零件摩擦产生热量等原因造成的。
解决方法可以是更换干燥的液压油、检查液压系统的冷却状态。
以上是液压系统常见故障的诊断及消除方法的简要介绍,液压系统的故障诊断需要从系统整体入手,综合分析故障原因,采取相应的解决方法。
同时,定期检查和维护液压系统,保持系统的清洁和正常工作状态,可以预防故障的发生。
工程机械液压系统常见故障诊断与排除工程机械液压系统常见故障诊断与排除方法液压系统是工程机械中非常重要的一个组成部分,常见于挖掘机、装载机、推土机等设备中。
由于液压系统具有传动力大、灵活性好、反应速度快等优点,但同时也存在一些常见的故障问题。
本文将介绍工程机械液压系统常见故障的诊断与排除方法,希望能对有需要的读者有所帮助。
一、液压系统压力不稳定或无法建立压力不稳定或无法建立的故障可能有多个原因,常见的有以下几种情况:1. 液压泵故障:液压泵无法提供足够的流量或压力。
可能原因有泵中异物、泵内部密封件损坏、泵内部磨损、泵的齿轮间隙不合适等。
解决方法是清洗泵内异物、更换密封件、修复或更换泵的齿轮。
2. 液压阀故障:液压阀内部存在堵塞、卡阀、密封件老化等情况。
解决方法是清洗阀内异物、修复或更换卡阀、更换密封件。
3. 液压系统漏油:液压系统存在泄漏导致无法建压。
可能原因有管路接头松动、密封件老化、管路破损等。
解决方法是紧固松动的接头、更换密封件、修复或更换破损的管路。
4. 油箱液位不足:液压系统油位低导致无法建压。
解决方法是加注足够的液压油。
5. 油液粘度不合适:油液粘度过高或过低会导致液压系统无法正常工作。
解决方法是更换适合的液压油。
二、液压缸行程不稳定或无法正常工作液压缸行程不稳定或无法正常工作的故障可能有以下几种情况:1. 液压缸密封件老化破损:液压缸密封件破损会导致泄漏,从而使液压缸无法保持稳定的运动。
解决方法是更换密封件。
2. 液压缸活塞杆磨损:液压缸活塞杆磨损会导致泄漏,从而使液压缸无法正常工作。
解决方法是修复或更换活塞杆。
3. 液压缸活塞杆与缸体之间存在摩擦:液压缸活塞杆与缸体之间的摩擦增大会导致行程不稳定。
解决方法是修复或更换活塞杆。
4. 液压缸内部油液污染:液压缸内部油液污染会导致密封件磨损,从而使液压缸无法保持稳定的运动。
解决方法是清洗液压缸内部、更换密封件。
5. 液压缸杆端外力干扰:液压缸杆端受到外力干扰会导致行程不稳定。
凿岩台车液压系统典型故障诊断方法第一篇:凿岩台车液压系统典型故障诊断方法凿岩台车液压系统典型故障诊断方法瑞典Atlas Copco凿岩台车液压系统典型故障非接触快速精确诊断方法一、操作法发明的目的和意义在我们集团公司采用液压系统的设备遍及各条生产一线,液压系统也以其优越的传动特点为集团公司的各项生产活动发挥着不可替代的、积极的作用,但就目前而言液压系统故障不易诊断和排除在生产实践中一直是困扰维修人员维修工作效率的一大难题,同时这一点也是制约液压传动技术更广泛的得到应用和更高效为我们的生产经营做出贡献的弊端,该操作法就是在针对液压传动系统作了深入研究的基础上,充分利用便携式红外测温仪,针对液压系统典型故障的原理及表象,快速精确的进行诊断和排除作了深入地研究和阐述。
下面就以比较复杂的Atlas Copco凿岩台车液压系统进行典型故障快速精确诊断举例说明。
(一)二矿区及公司使用Atlas Copco凿岩台车的规模二矿区目前拥有Atlas Copco凿岩台车18台,矿山公司在用2台,近期随着金川矿区开采规模的不断扩大,二矿区、三矿区和龙首矿将逐步投入10台。
今年年底金川集团公司将拥有30台Atlas Copco 凿岩台车进行井下开采作业。
(二)Atlas Copco凿岩台车液压系统基本构成金川集团公司使用的Atlas Copco凿岩台车有H126、H128、Rocket Boomer/Boomer282、以及经改造的BH252等几种型号,都采用了DCS12的主工作液压系统。
在这个液压系统中,精密的液压元件都采用了德国Rexroth公司和美国Parker公司的产品,基本上由轴向柱塞变量泵、双联齿轮泵、三联主工作操作阀、六联大臂定位控制操作阀、五联支腿控制操作阀、两联顶棚控制操作阀、两联电缆卷控制/定位泄荷操作阀、先导控制操作阀、逻辑阀、25Bar先导减压阀等液压元件组成。
(三)Atlas Copco凿岩台车液压系统典型故障Atlas Copco凿岩台车在实际应用中,最常见、最普通、典型的液压系统故障是系统压力不足和温度高。
液压凿岩台车液压系统故障诊断根据多年经验对液压凿岩台车液压系统的部件和整机的故障情况进行分析,并提出仪器测试诊断方法和相应的故障诊断参考标准数据资料。
我局现有Atlas液压凿岩台车二十余台,由于Atlas公司没有提供检测技术资料,给故障诊断工作带来困难。
笔者根据多年工作实践和学习体会总结出此文,文中提出的一些故障诊断标准还有待广大同行在检测实践中进一步验证。
1 液压系统主油泵故障诊断该台车液压系统采用2台力士乐主油泵,一个油泵用于供给回转油路,一个油泵用于冲击、推进、定位等油路。
油泵型号为A8V58DD2R1×1F2,系斜轴式轴向柱塞变量双泵,排量为0~58ml/r、变量方式为恒压变量。
1 1 故障诊断方法可分为“四觉”诊断法和仪器诊断法。
前者即利用触觉、视觉、听觉和嗅觉来初步诊断油泵的技术状态和故障;后者为物理测试方法。
在此着重介绍后者。
1 2 仪器测试诊断1)快速油质分析根据现场迅速检测出液压油的各项理化性能指标,判断油泵故障是否因液压油变质引起。
2)温度计通过测试油泵液压油温度和泵壳温度之差来判断故障。
如果泵壳温度高于油温5℃以上则可能是油泵的机械磨损较大、机械效率太低;如温差在10℃以上而油质没有问题,系统压力调定没有问题,则可能是油泵磨损严重、轴向间隙大、泄漏增加、容积效率降低。
3)噪声计通过精确测试油泵噪声来诊断故障。
凿岩台车主油泵的正常噪声极限值为105dB,如果超过此极限值则可能是油泵磨损太大或空气进入内部,也可能是电机与泵传动轴不同心造成。
4)压力表凿岩台车油泵是恒压控制,系统压力的大小不能表征油泵的工况,但可通过压力表指针的摆动来判断油泵故障。
如果压力表指针的偏摆超过±200kPa或摆动过于迟缓,均为异常现象。
5)液压系统测试仪由于凿岩台车油泵的压力在调节范围内保持恒定,因此可通过液压系统测试仪实测油泵的流量来判断其工况。
液压测试仪一般由流量计、压力表、转速表等组成,根据测试仪在管路中的接法,可分为旁通测试法和直通测试法。
浅谈矿山液压机械系统的常见故障及诊断技术矿山液压机械系统是矿山生产中重要的设备之一,其作用包括矿山掘进、运输、升降等多个方面,所以一旦发生故障必须及时处理。
本文将从常见故障及诊断技术两个方面来介绍矿山液压机械系统的故障诊断。
一、常见故障及原因1.液压缸滑动不灵原因:液压缸内部磨损或润滑不良。
2.液压缸气缸内漏原因:密封松动或磨损、密封件失效。
3.液压泵气混入原因:油液中混入空气。
4.液压泵噪声过大原因:齿轮断裂或轴承损坏。
5.液压油温过高原因:油路故障或冷却系统失效。
二、故障诊断技术1. 外观检查当遇到突然故障时,首先进行外观检查,检查泄漏点、液压缸、油管、油泵等是否正常工作,如果发现问题,可以及时排除故障。
2. 油液检查矿山液压机械系统最常见的故障就是由于油液问题引起的。
因此,应该对油液进行定期检查。
如果发现油温过高、杂质过多、它们的颜色变化等问题,那么必须及时更换油液。
3. 压力分析在矿山液压机械系统中,压力是非常重要的,如果压力不足或过高,则会引起系统运转失败。
所以进行压力分析,是故障诊断的重要方法。
4. 温度检测矿山液压机械系统的系统温度是在设定范围之内,因为温度过高可能会引起一系列问题,如油的粘度改变、密封部件失效、润滑不良等。
所以需要定期检查温度,进行必要的检测和维护。
5. 频率测试定期进行频率测试,是预防故障发生的重要措施。
通过检查系统中的电线和连接器,可以诊断出电气问题。
总之,矿山液压机械系统是一项非常重要的设备,在使用中,应定期检查,发现问题及时拿出方法解决,从而保障矿山生产的安全与稳定。
矿山机械液压系统常见故障及解决策略
矿山机械液压系统是矿山机械重要的动力源,具有工作压力高、连续工作时间长、承受大冲击负载等特点,因此,液压系统的可靠性和稳定性对矿山机械的工作效率和安全性具有极其重要的影响。
然而,矿山机械液压系统在长时间的运行过程中,由于各种原因,会出现各种故障,甚至导致严重的机器损坏或工作事故的发生。
因此,矿山机械液压系统常见的故障及解决策略是我们必须要熟知的。
本文将介绍液压系统常见的故障及其解决策略。
一、泄漏
泄漏是液压系统故障中最常见的一种,如果出现泄漏会导致液压缸无法正常工作,甚至在严重情况下会产生工作事故。
解决策略:
1.首先应该检查液压管路系统是否有裂纹或者松动。
2.润滑油液面是否过高或过低,都会导致出现泄漏,应该及时检查并调整润滑油液面。
二、液压油温过高
如果液压油温度过高也是液压系统故障的一种。
液压系统工作时需要加热,但是温度过高也会影响系统的正常工作效率甚至导致系统的故障。
解决策略:
1.检查液压油冷却器是否正常工作。
2.检查液压油箱的通风口是否堵塞
3.液压系统润滑油是否需要更换。
三、液压泵噪音大
压力过高或过低都会导致液压泵的噪音加大。
四、系统卡死
如果液压泵的油路被卡死,就会导致液压系统无法正常运行。
五、液压缸工作不正常
如果液压缸的工作不正常,就会导致机器无法正常工作。
总之,矿山机械液压系统的故障是不能忽视的,需要建立完善的维护保养体系,避免因故障而导致的机器损坏和工作事故的发生,以保障矿山生产的安全和高效。
挖掘机液压系统的常见故障诊断以及维修措施分析
一、液压系统泄漏故障:
1. 故障现象:液压系统有油液泄漏的现象。
2. 故障原因:
a. 密封件老化或损坏:检查并更换密封件。
b. 接头松动:检查并重新拧紧接头。
c. 油管或油缸破损:更换新的油管或油缸。
3. 维修措施:
a. 检查液压系统的各个连接点,确认是否有松动或破损的地方。
b. 检查液压管路和油缸的密封件,更换老化或损坏的密封件。
c. 检查油管和油缸的表面,确认是否有破损,如有需要更换。
二、液压系统油液污染故障:
1. 故障现象:液压系统油液出现黑色或混浊的现象。
2. 故障原因:
a. 油液中混入杂质:更换干净的油液,并加装滤芯。
b. 油液中水分过高:更换干燥的油液,并加装除湿器。
3. 维修措施:
a. 将液压系统的油箱排空,并清洗油箱内部以及油管路。
b. 更换滤芯和除湿器。
c. 定期检查液压系统的油液质量,保持油液的清洁。
挖掘机液压系统的常见故障诊断和维修措施包括液压系统泄漏故障、液压系统油液污染故障、液压系统的压力不稳故障以及液压缸运动不灵故障。
在实际维修中,需要仔细检查和分析故障原因,并采取相应的维修措施来解决问题,确保液压系统的正常运行。
一、常见故障矿山液压机械系统常见故障如下:1系统无压力或压力不足主要原因有:泵不供油、油箱油位过低吸油困难、油液粘度过高、泵转向不对、泵堵塞或损坏、.接头或密封泄漏、主泵或马达泄漏过大、油温过高、溢流阀调定值低或失效、泵补油不足、^工作失效。
2、执行机构运动速度不够或完全不动主要原因有:润滑不良、摩擦阻力变化、空气进入、压力脉冲较大或系统压力过低、阀出现故障、泄漏增大、别劲、烧结。
3、温度过高主要原因有:油粘度过高、内泄严重、冷却器堵塞、泵修理后性能差及油位低、压力调定过大、摩擦损失大。
4、压力或流量的波动主要原因有:泵工作原理及加工装配误差引起、控制阀阀芯振动、换向时油液惯性。
5、泄漏主要原因有:密封失效或接头松动、阀等元件工作失效、相对运动表面磨损严重、温压力过高。
6、振动和噪声主要原因有:系统进入空气或空穴、机械系统引起的振动、压力和流量脉动大、油流漩涡、油面过低、元件堵塞或阻力太大、泵校正不当或油粘度大。
7、液压冲击主要原因有:工作部件高速运动的惯性、元件反应动作不够灵敏、液流换向、节流、缓冲装置不当或失灵、泄漏增加、空气进入、油温过高。
8、液压卡紧主要原因有:径向力不平衡、元件被杂质阻塞、弹性变形或膨胀引起的附加阻力、相对运动表面加工质量差。
9、气穴与气蚀主要原因有:油温过高、油粘度过大及油液自身发泡、泵自吸性能低、吸油阻力大、油箱液面低、密封失效或接头松动、件结构及加工质量。
二、诊断技术1主观诊断技术指维修人员利用简单的诊断仪器凭借个人的实践经验分析判断故障产生的原因和部位。
方便快捷,可靠性较低,属于较简单定性分析。
包括直觉经验法、参数测量法、逻辑分析法、堵截法、故障树分析法等。
直觉经验法指维修人员凭感官和经验,通过看、听、摸、闻、问等方法判断故障原因:看执行元件是否爬行、无力、速度异常,液位高度、油液变质及外泄漏,测压点工作压力是否稳定,各连接处有无泄漏及泄漏量;听泵和马达有无异常声响、溢流阀尖叫声、软管及弯管振动声等。
凿岩台车液压系统典型故障诊断方法瑞典Atlas Copco凿岩台车液压系统典型故障非接触快速精确诊断方法一、操作法发明的目的和意义在我们集团公司采用液压系统的设备遍及各条生产一线,液压系统也以其优越的传动特点为集团公司的各项生产活动发挥着不可替代的、积极的作用,但就目前而言液压系统故障不易诊断和排除在生产实践中一直是困扰维修人员维修工作效率的一大难题,同时这一点也是制约液压传动技术更广泛的得到应用和更高效为我们的生产经营做出贡献的弊端,该操作法就是在针对液压传动系统作了深入研究的基础上,充分利用便携式红外测温仪,针对液压系统典型故障的原理及表象,快速精确的进行诊断和排除作了深入地研究和阐述。
下面就以比较复杂的Atlas Copco 凿岩台车液压系统进行典型故障快速精确诊断举例说明。
(一)二矿区及公司使用Atlas Copco凿岩台车的规模二矿区目前拥有Atlas Copco凿岩台车18台,矿山公司在用2台,近期随着金川矿区开采规模的不断扩大,二矿区、三矿区和龙首矿将逐步投入10台。
今年年底金川集团公司将拥有30台Atlas Copco凿岩台车进行井下开采作业。
(二)Atlas Copco凿岩台车液压系统基本构成金川集团公司使用的Atlas Copco凿岩台车有H126、H128、RocketBoomer/Boomer282、以及经改造的BH252等几种型号,都采用了DCS12的主工作液压系统。
在这个液压系统中,精密的液压元件都采用了德国Rexroth公司和美国Parker公司的产品,基本上由轴向柱塞变量泵、双联齿轮泵、三联主工作操作阀、六联大臂定位控制操作阀、五联支腿控制操作阀、两联顶棚控制操作阀、两联电缆卷控制/定位泄荷操作阀、先导控制操作阀、逻辑阀、25Bar先导减压阀等液压元件组成。
(三) Atlas Copco凿岩台车液压系统典型故障Atlas Copco凿岩台车在实际应用中,最常见、最普通、典型的液压系统故障是系统压力不足和温度高。
第19章凿岩机液压故障的诊断与排除19.1 COPl038HD型凿岩机液压系统故障的诊断与排除故障现象某单位在修建汕头液化气地下储气工程中,1台配有COP1038HD型凿岩机的Hl69型二臂液压凿岩台车,在换件修理后试机时,出现以下故障而无法工作:(1)开机半小时后油温便超过了90℃,冲击压力从22MPa降到l4MPa;(2)左臂凿岩机回转马达只有正转而不能反转;(3)左臂A8V-58柱塞变量泵声音异常。
在分析故障原因之前,有必要了解COPl038HD型凿岩机液压系统的工作原理和特点。
COPl038HD型凿岩机的液压系统主要由A8V-58双联柱塞泵、主控气阀和COPl038HD凿岩机组成(见图19—1),其中,A8V-58双联柱塞泵为变量泵,其中1联为回转手动变量泵,作用是为凿岩机回转作业提供足够的压力油,另1联为冲击工作恒压自动变量泵,为凿岩机的冲击、推进提供压力油,其流量随负载的变化而变化。
故障诊断与排除油温过热,温升快,降压幅度大,是液压系统安全运行的大敌,它会导致油质迅速恶化,使液压元件受损。
造成上述故障的原因有:(1)冷却系统失效;(2)油箱油量不足或滤芯堵塞;(3)高压泄油或油路不通;(4)液压泵流量不足;(5)液压泵内部运动件磨损。
图19—1 COPl038HD型凿岩机液压系统工作原理对此故障的处理采用先易后难的办法,分析处理过程为:(1)在排除原因(1)、(2)后,对液压泵的液压进行测试,方法是:将液压测试仪连接在液压泵的出口和滤芯之间,起动电动机,当油温达到40℃时,分别测试两个臂的回转和冲击液压泵的流量、压力;测得结果如表19—1所示。
根据实测数据及其分析结果,拆检液压泵的变量机构,结果发现冲击液压泵调整螺杆已顶死阀芯,当负载变化时,阀芯因螺杆顶死而无法滑动,导致液压泵配油盘无法随负载的变化而摆动,对此,维修人员将液压泵调整螺杆往外拧松35mm,将左臂的回转液压泵调整螺杆往外拧松15mm。
液压系统的故障诊断及维护液压系统是现代机械、工程和设备中广泛应用的重要组成部分,掌握液压系统的故障诊断和维护技能对于保障设备的正常运转、提高设备的可靠性和安全性具有极为重要的意义。
本文将针对液压系统的故障诊断和维护,从多个方面进行探讨。
一、液压系统的故障液压系统的故障存在多种形式和原因,在实际应用中也非常常见。
常见的故障类型包括:1.液压油泄漏:由于管路连接不牢、密封不良、油封老化、油封悬挂角度过大等原因,液压油会发生泄漏,在严重的情况下将导致油量不足,影响系统的正常运行。
2.液压系统的压力不稳定或无法升压:常见原因包括泵的轴向偏移、泵的齿轮故障、泵体内部堵塞等。
3.液压系统的油温升高:原因可能是泵的排量过大、泵的转速过高、油道堵塞等。
4.执行机构的动作缓慢或无法动作:常见原因包括液压油中含有气泡、执行机构内部部件损坏等。
5.液压系统的噪音过大:常见原因包括系统内部出现震荡、过滤器故障等。
6.液压油的变质:由于工作环境和操作方式等原因,液压油可能会出现老化、污染、氧化等问题,导致液压系统失效。
以上仅列举了一些常见的液压系统故障类型,但是在实际工作中,液压系统出现故障的原因是多种多样的。
因此,采取科学有效的故障诊断方法是解决问题的关键。
二、液压系统的故障诊断1.故障的定位:在进行液压系统的故障诊断时,第一步需要明确故障部件的位置和原因。
可以通过观察液压系统的工作状况、听液压系统的声音、检查液压油的颜色和气味等,进行初步的判断和排查。
2.压力测试:压力测试是液压系统故障诊断中必不可少的一项。
通过测试系统内部的压力变化,可以判断液压系统的供油和执行工作是否正常。
采用压力表或示波器等设备进行检测。
3.液压油检测:液压油的变质不仅会影响到系统的正常运行,同时也会对系统内部部件造成损害。
因此,进行液压油检测、更换、维护工作是液压系统故障诊断中的重要环节。
可以通过观察液压油的颜色和气味、进行液压油的粘度测试、采取液压油的物理化学检测等方法进行检测。
凿岩台车液压系统故障探析背景介绍凿岩台车是一种常见的工程机械设备,主要用于在采石场、采矿场、岩石破碎等领域进行石材切割、石化破碎等作业。
其液压系统是整个设备的关键部分,对设备的工作效率及安全性产生重要影响。
本文将针对凿岩台车液压系统中常见的故障进行探析,分析其产生原因及解决方法。
故障一:液压振动液压振动是指液压系统中的压力波反复向衰减阻尼器传输,并在两侧反射,使机器产生震动,甚至对设备造成损坏。
其中,液压缸活塞杆的长度不当,也是液压振动的一种重要因素。
解决方案:做好液压振动的预防措施,如正确处理泵和各元件的故障,合理设计管道和元件的布局,优化系统的压力波消除措施等。
故障二:管路漏油管路漏油指液压系统中的管路因连接不严或损坏等原因而泄漏油液,导致重要部件的润滑和冷却效果受到影响,从而出现堵塞、磨损和缩短使用寿命等问题。
解决方案:加强对液压管路连接件的检查和维护,及时更换损坏的管路和密封件,并规范作业流程和操作规范。
故障三:压力不足压力不足通常是出现在液压系统中,用于驱动泵的电机功率不够或受阻、缸内泄露,或者泵的泵齿轮削弱或齿条被损坏等原因导致。
解决方案:查找泵和各元件的故障,清理和维护各元件,避免漏油和松散等问题,以提高液压系统的可靠性和效率,确保设备的正常工作。
故障四:超载超载是指凿岩台车在进行石材切割或石化破碎时,压力、温度、流量等参数超过了液压系统所能承受的极限,从而导致液压系统出现故障,影响设备的正常作业。
解决方案:及时监测液压系统的压力、温度和流量等参数,加强对设备的运行状态进行监控和检测,确保设备在正常负荷范围内工作,避免超载所带来的损失和危险。
结论凿岩台车液压系统是整个设备的重要组成部分,故障的出现会对设备的正常工作产生重大影响。
因此,在设备的选购、安装、拆卸和维护方面,都应加强相关知识学习和技能培训,提高对液压系统的理论和实践操作能力,以确保设备的长期安全运行和高效性能。
液压系统故障诊断及排出方法1、液压系统故障诊断的一般原则正确分析故障是排出故障的前提,系统故障大部分并非蓦地发生,发生前总有预兆,当预兆进展到肯定程度即产生故障。
引起故障的原因是多种多样的,并无固定规律可寻。
统计表明,液压系统发生的故障约90%是由于使用管理不善所致为了快速、精准、便利地诊断故障,必需充分认得液压故障的特征和规律,这是故障诊断的基础。
以下原则在故障诊断中值得遵从:(1)首先判明液压系统的工作条件和外围环境是否正常需首先搞清是设备机械部分或电器掌控部分故障,还是液压系统本身的故障,同时查清液压系统的各种条件是否符合正常运行的要求。
(2)区域判定依据故障现象和特征确定与该故障有关的区域,渐渐缩小发生故障的范围,检测此区域内的元件情况,分析发生原因,最后找出故障的实在所在。
(3)把握故障种类进行综合分析依据故障最后的现象,渐渐深入找出多种直接的或间接的可能原因,为避开盲目性,必需依据系统基本原理,进行综合分析、逻辑判定,削减怀疑对象渐渐接近,最后找出故障部位。
(4)故障诊断是建立在运行记录及某些系统参数基础之上的。
建立系统运行记录,这是防备、发觉和处理故障的科学依据;建立设备运行故障分析表,它是使用阅历的高度概括总结,有助于对故障现象快速做出判定;具备肯定检测手段,可对故障做出精准的定量分析。
(5)验证可能故障原因时,一般从最可能的故障原因或最易检验的地方开始,这样可削减装拆工作量,提高诊断速度。
2、故障诊断方法目前查找液压系统故障的传统方法是逻辑分析渐渐接近断。
此法的基本思路是综合分析、条件判定。
即维护和修理人员通过察看、听、触摸和简单的测试以及对液压系统的理解,凭阅历来判定故障发生的原因。
当液压系统显现故障时,故障根源有很多种可能。
采纳逻辑代数方法,将可能故障原因列表,然后依据先易后难原则逐一进行逻辑判定,逐项接近,最后找出故障原因和引起故障的实在条件。
此法在故障诊断过程中要求维护和修理人员具有液压系统基础学问和较强的分析本领,方可保证诊断的效率和精准性。
凿岩机液压故障案例分析7.1 凿岩机液压系统及其使用与维修概述7.1.1 液压凿岩机液压凿岩机的凿岩作业是其冲击、回转、推进与岩孔冲洗功能的综合,它的冲击机构由压力液体的作用产生冲击能量,通过钎具(钎尾、连接套、钻杆、钻头)以压力波形式传递给岩石,从而达到破碎岩石的目的。
国外研制液压凿岩机始于20世纪70年代,其中瑞典Atlas Copeo公司和芬兰Tamroek公司生产的液压凿岩机及配套钻车最具代表性,占有60%以上的市场份额。
瑞典Atlas Copco公司能够灵活地根据用户的某些特殊要求,在某种基型产品上稍加改进组装成专用产品,其产品上的配套部件可随不同地区和国家的不同环境而改变,在轻型产品的研制中,大量采用塑料件来减轻整机的质量。
液压凿岩机的外壳等多采用精密铸造,从而使机器的结构紧凑,布局合理,外形也较美观。
Atlas Copco系列液压凿岩机冲击机构为外阀式结构,采用前、后腔交替回油,用换向阀控制活塞的运动。
在冲程阶段(见图7-1a)换向阀阀芯及活塞均位于末端,高压油经高压进油路1到后腔通道5,进入冲击缸体后腔,推动活塞A向前做等加速运动。
在冲程换向阶段(见图7-1b),冲击活塞A向前移动至预定位置,打开右推阀通道口,高压油经后推阀通道6,作用在换向阀B的右端面,推动换向阀B换向,阀左端腔室中的油经前推阀通道2、换向阀排油通道4及回油通道7回油箱,为回程运动做好准备。
在回程阶段(见图7-1c),当活塞已打击钎尾,换向阀B换向,在完成冲程运动的瞬时即刻进入回程运动,高压油从高压进油路1到前腔通道3,进入冲击缸腔,推动活塞A向后运动。
在回程换向阶段(见图7-1d),活塞A向后移动打开前推阀通道2时,高压油经前推阀通道2,作用在换向阀B的左端,回油经回油通道7流回液压缸,换向阀移到右端,下一个冲程运动开始。
活塞与换向阀如此连续反复运动,使冲击活塞连续冲击钎尾做功。
7.1.2 凿岩机液压系统常见故障与排除本节以Altas1838型凿岩机为例,介绍凿岩机液压系统的常见故障与排除。
液压凿岩台车液压系统故障诊断
根据多年经验对液压凿岩台车液压系统的部件和整机的故障情况进行分析,并提出仪器测试诊断方法和相应的故障诊断参考标准数据资料。
我局现有Atlas液压凿岩台车二十余台,由于Atlas公司没有提供检测技术资料,给故障诊断工作带来困难。
笔者根据多年工作实践和学习体会总结出此文,文中提出的一些故障诊断标准还有待广大同行在检测实践中进一步验证。
1 液压系统主油泵故障诊断该台车液压系统采用2台力士乐主油泵,一个油泵用于供给回转油路,一个油泵用于冲击、推进、定位等油路。
油泵型号为A8V58DD2R1×1F2,系斜轴式轴向柱塞变量双泵,排量为0~58ml/r、变量方式为恒压变量。
1 1 故障诊断方法可分为“四觉”诊断法和仪器诊断法。
前者即利用触觉、视觉、听觉和嗅觉来初步诊断油泵的技术状态和故障;后者为物理测试方法。
在此着重介绍后者。
1 2 仪器测试诊断
1)快速油质分析根据现场迅速检测出液压油的各项理化性能指标,判断油泵故障是否因液压油变质引起。
2)温度计通过测试油泵液压油温度和泵壳温度之差来判断故障。
如果泵壳温度高于油温5℃以上则可能是油泵的机械磨损较大、机械效率太低;如温差在10℃以上而油质没有问题,系统压力调定没有问题,则可能是油泵磨损严重、轴向间隙大、泄漏增加、容积效率降低。
3)噪声计通过精确测试油泵噪声来诊断故障。
凿岩台车主油泵的正常噪声极限值为105dB,如果超过此极限值则可能是油泵磨损太大或空气进入内部,也可能是电机与泵传动轴不同心造成。
4)压力表凿岩台车油泵是恒压控制,系统压力的大小不能表征油泵的工况,但可通过压力表指针的摆动来判断油泵故障。
如果压力表指针的偏摆超过±200kPa或摆动过于迟缓,均为异常现象。
5)液压系统测试仪由于凿岩台车油泵的压力在调节范围内保持恒定,因此可通过液压系统测试仪实测油泵的流量来判断其工况。
液压测试仪一般由流量计、压力表、转速表等组成,根据测试仪在管路中的接法,可分为旁通测试法和直通测试法。
将测试仪用旁通法安装在油泵高压管路上,使油泵在额定转速下运转,液压油温在60℃左右,观察并记录测试仪在空载时的流量读数,然后用加载阀加载,使负载压力逐渐上升到系统的额定压力,观察并记录此时的流量读数。
如果实测流量比空载时下降了25%,说明油泵已有故障;如果流量读数减少了50%,则可判定液压系统的故障是由油泵引起的,必须解体检修。
笔者使用的是美国曼德莱恩伊里诺思萨公司产的PFM4型数字式多用途液压测试仪。
1 3 常见故障原因分析
1)连接杆和万向节磨损或变形主要是使用的液压油粘度过大或冬季不经预热操作过猛造成。
故障预兆主要有油泵过热、噪声和振动大。
2)配流盘工作面与柱塞缸端面磨损主要是油液粘度过大或过小、油液变质、油中杂质太多。
故障预兆是负载压力建立不起来,工作无力。
3)柱塞与柱塞杆滑靴球面间隙过大主要是油液不清洁造成过度磨损或
因振动过大造成,以突发性损坏事故出现。
故障预兆主要是油泵过热、振动大。
4)轴承松动或损坏主要是因油液变质、杂质过多、振动大及轴承质量造成。
故障预兆是油泵噪声大、振动大。
5)密封件损坏漏油大部分是拆装过程中损坏,也有因油泵过热造成。
事故预兆是油泵过热。
6)油泵调节器失灵主要是因油液不清洁,滑阀和阀套擦伤、卡住而造成。
其故障预兆为执行机构动作缓慢,即使电动机处于最高转速也无明显提高。
2 控制阀组的故障诊断液压凿岩台车控制系统BHU38P—02(A8V)HV05的液压阀件,主要有溢流阀、换向阀、减压阀、节流阀和单向阀等。
2 1 溢流阀故障诊断
1)噪声各溢流阀的噪声正常值参考标准见表1。
如溢流阀的机械噪声超过正常值较多,则可能由下列原因而造成:①阀芯弹簧刚度不够、弯曲变形;②阀芯与阀孔配合过紧、过松;③调节螺母松动;④先导溢流阀的阀芯磨损,远程控制腔进入空气,回油管路振动或背压过大等,此时会发出尖叫声。
表1溢流阀内泄及噪声正常状态检查参数 阀体名称泄漏量(ml/min) (压力为额定压力80%)噪声值(dB) 低冲击溢流阀50075~80 全冲击伺服阀30070~75 冲击最大压力安全阀50075~80 回转安全阀50075~80 2)压力波动溢流阀压力波动的正常范围见表2。
由于溢流阀本身而引起压力波动的原因主要有:①阀芯弹簧刚度不够、弯曲变形;②油液污染严重,阻尼孔堵塞;③ 锥阀或钢球与阀座配合不良;④滑阀表面拉伤、卡住,阀孔碰伤,滑阀与孔配合过紧。
表2 溢流阀压力波动正常状态检测参数阀体名称允许指针摆动偏差(mm) 压力变化低冲击溢流阀±1 0<3 全冲击伺服阀±2 0<5 冲击最大压力安全阀±2 0<5 回转安全阀±1 0<3 3)温度阀的壳体温度一般比室温高30℃左右,如果阀体温度比室温高40 ℃以上则可能有阀芯卡住或阀体内泄太大。
4)泄漏量检测泄漏量可用液压测试仪,用旁通法连接,如果泄漏量超过表1所列正常值,说明阀内有磨损,需检查阀芯和阀座。
2 2 换向阀故障检测诊断换向阀的故障主要根据换向阀的动作速度、内泄量和冲击噪声来进行判断。
表3给出了凿岩台车几种换向阀的正常换向时间和内泄量的参考标准,如果换向时间或内泄量大于此标准过多则需对换向阀进行解体维修。
表
3 换向阀正常状态检测参数阀体名称内部泄漏量(ml/min) 换向时间(s) 冲击换向阀100~2000 13~0 16 推进换向阀100~2000 13~0 16 回转换向阀100~2000 13~0 16 防卡钎换向阀100~2000 13~0 16 臂定位换向阀100~2000 13~0 16 如果换向阀换向冲击噪声较大,则换向阀可能有滑阀时卡时动、局部摩擦力过大、单向节流阀阀芯内孔配合间隙过大、单向阀弹簧漏装、电磁铁的铁芯接触面不平、固定电磁铁的螺栓松动等故障存在。
2 3 减压阀的故障检测减压阀故障可通过检测压力波动和内泄量来诊
断。
将液压测试仪按旁通法安装在减压阀出口,在加载到额定负载时如果压力表指针摆动较大说明减压阀压力波动大,此时减压阀可能存在下列故障;①滑阀移动不灵或卡住;②阻尼孔堵塞;③弹簧太软或弯曲变形、卡住;④锥阀安装不正确,钢球与阀座配合不良;需解体检查。
检测减压阀内泄量的方法同溢流阀,如实测参数大于680~720ml/min(防卡钎减压阀) 或大于800~1000ml/min(臂定位减压阀)时则需对减压阀解体检修。
2 4 流量阀的故障检测压力补偿式流量调节阀可根据排泄量和解体时的表面状态判断寿命,BHU38P控制系统的流量调节阀正常状态的排泄量为50~100ml/min。
如果实测排泄量大于正常值较多,说明节流阀内外泄较大,流量损失大,此时需检查阀芯与阀体间的配合间隙及相关连接部位的密封情况。
3 液压凿岩机的故障检测凿岩机的故障检测可应用两种方法:一种是根据故障表现的顺序推理法,一种是使用仪器进行原位检测。
原位检测即凿岩机在原车上并处于原工作状态的检测。
应用检测仪器对凿岩机进行原位检测,目的是为了在凿岩机未出故障时进行状态监测以预报故障,凿岩机出现故障后诊断故障部位、故障程度以决定是否解体检修。
检测时将液压测试仪连接在凿岩机冲击机构或回转机构的油路上,使钻机正常运转,温度在60℃左右。
3 1 冲击机构检测 1)功能检测将液压测试仪连接在冲击机构回油出口,向冲击机构供油,逐步加载直到压力表指示40bar的压力,保持此状态1min。
如压力表指针摆动太大则蓄能器可能有故障,或缓冲器密封圈磨损或因油液污染严重使冲击机构功效下降。
2)状态检测测试仪安装同功能检测。
如压力表读数为100bar(1038凿岩机)或110bar(1238凿岩机),观察此时流量读数,凿岩机正常泄漏量应为1~5L/min或1~3L/min。
如果实测泄漏量超过8L/min或5L/min则说明冲击机构有故障,故障可能发生在冲击活塞与油缸之间、阀芯与阀体之间及活塞导套或振动塞。
3 2回转机构检测 检测仪器使用及检测条件同冲击机构检测,但液压测试仪安装在旋转马达的回油路上。
1)功能检测向回转机构供油,控制加载阀使液压马达在最大流量为
10L/m in的条件下运转约30s,观察液压马达运转时是否平稳、且无异常噪声。
2)状态检测仪器连接方式同功能检测。
向回转机构供油,用测试仪加载使油压为40bar,测此时流量读数。
如泄漏量不超过8L/min说明液压马达工作良好,如超过此额定值则马达内泄开始严重,应解体检修。