CC的中断系统和定时器原理
- 格式:ppt
- 大小:1.98 MB
- 文档页数:3
中断系统工作原理中断系统是计算机系统中的一个重要组成部分,其工作原理是通过中断信号来打断正在执行的程序,并转而执行特定的中断处理程序。
中断信号可以由外部设备、软件请求或错误产生,例如键盘输入、鼠标点击、定时器触发等。
在计算机系统中,中断系统的工作原理可以分为以下几个步骤:1. 当一个中断事件发生时,外部设备或软件会发送一个中断请求(Interrupt Request, IRQ)信号给中断控制器。
中断控制器是硬件的一部分,负责管理各种外部设备的中断请求。
2. 中断控制器会将收到的中断请求转发给中断控制器芯片。
中断控制器芯片根据优先级会将其中断请求发给中央处理器(CPU)。
3. 当CPU接收到中断请求后,会立即保存当前的运行状态,包括程序计数器、标志寄存器和其他需要保存的寄存器的值。
4. CPU会根据中断请求的优先级,跳转到对应的中断处理程序。
中断处理程序是预先编写好的,用来处理特定中断事件的代码。
5. 在执行中断处理程序期间,中断屏蔽(Interrupt Disable)机制会被激活,用于阻止其他中断的发生。
这是为了保证中断处理程序能够在有限的时间内完成,以确保系统的响应性。
6. 中断处理程序执行完毕后,CPU会恢复之前保存的运行状态,并继续执行被中断的程序。
在整个中断系统工作过程中,中断向量表是重要的数据结构。
中断向量表记录了每个中断请求的中断处理程序的入口地址。
当CPU接收到中断请求时,会根据中断请求的编号在中断向量表中查找对应的中断处理程序的入口地址,并跳转到该地址执行。
这是操作系统中实现中断处理的一种有效机制。
总而言之,中断系统的工作原理是通过中断信号来打断正在执行的程序,并转而执行特定的中断处理程序,以实现对特定事件的响应和处理。
这个过程需要中断控制器和中断控制器芯片的协同工作,并且依靠中断向量表来指定中断处理程序的入口地址。
【CC2530⼊门教程-03】CC2530的中断系统及外部中断应⽤第3课 CC2530的中断系统及外部中断应⽤⼴东职业技术学院欧浩源⼀、中断相关的基础概念内核与外设之间的主要交互⽅式有两种:轮询和中断。
轮询的⽅式貌似公平,但实际⼯作效率很低,且不能及时响应紧急事件;中断系统使得内核具备了应对突发事件的能⼒。
在执⾏CPU当前程序时,由于系统中出现了某种急需处理的情况,CPU暂停正在执⾏的程序,转⽽去执⾏另外⼀段特殊程序来处理出现的紧急事务,处理结束后,CPU⾃动返回到原来暂停的程序中去继续执⾏。
这种程序在执⾏过程中由于外界的原因⽽被中间打断的情况,称为中断。
两个重要的概念:<1> 中断服务函数:内核响应中断后执⾏的相应处理程序。
<2>中断向量:中断服务程序的⼊⼝地址。
每个中断源都对应⼀个固定的⼊⼝地址。
当内核响应中断请求时,就会暂停当前的程序执⾏,然后跳转到该⼊⼝地址执⾏代码。
⼆、CC2530的中断系统CC2530具有18个中断源,每个中断源都由各⾃的⼀系列特殊功能寄存器来进⾏控制。
可以编程设置相关特殊功能寄存器,设置18个中断源的优先级以及使能中断申请响应等。
我们常⽤的中断源有下⾯⼏个:三、CC2530的中断处理函数编写⽅法中断服务函数与⼀般⾃定义函数不同,有特定的书写格式:<1> 在每⼀个中断服务函数之前,都要加上⼀句起始语句:#pragma vector = <中断向量><中断向量>表⽰接下来要写的中断服务函数是为那个中断源服务的,该语句有两种写法:#pragma vector = 0x7B或者 #pragma vector = P1INT_VECTOR前者是中断向量的⼊⼝地址,后者是头⽂件“ioCC2530.h”中的宏定义。
<2> _ _interrupt关键字表⽰该函数是⼀个中断服务函数,<函数名称>可以⾃定义,函数体不能带有参数,也不能有返回值。
通过本次实验将会掌握定时器T1的一些简单用法。
本次实验学习到的新寄存器:T1STAT:定时器1的状态寄存器,D4~D0为通道4~通道0的中断标志,D5为溢出标志位,当计数到最终技术值是自动置1。
源代码:#include <ioCC2530.h>#define uint unsigned int#define uchar unsigned char#define LED1 P1_0 //定义LED1为P10口控制#define LED2 P1_1 //定义LED2为P11口控制#define LED3 P1_4 //定义LED3为P14口控制uint counter=0; //统计溢出次数uintLEDFlag; //标志是否要闪烁void InitialT1test(void); //初始化函数声明void InitialT1test(void){//初始化LED控制端口P1P1DIR = 0x13; //P10 P11 P14为输出P0DIR = 0x02;LED1 = 1;LED2 = 1;LED3 = 1;//初始化计数器1T1CTL = 0x05; //通道0,中断有效,8分频;自动重装模式(0x0000->0xffff)}void main(){InitialT1test(); //调用初始化函数while(1){if(IRCON==0x02) //查询溢出中断标志,是否有中断并且为定时器1发出的中断{IRCON = 0; //清溢出标志counter++;if(counter==30) //中断计数,约0.25s{counter =0;LED2 = LED1;LED3 = !LED2;LED1 = !LED1;LEDFlag = !LEDFlag;}}if(LEDFlag){LED2 = LED1;LED3 = !LED2;LED1 = !LED1; // 每1s LED灯闪烁一下LEDFlag = !LEDFlag; // 闪烁标志变量置0}}}实验总结:定时器1的工作原理:这次实验中定时器1工作在自由运行方式下,定时器1开始工作后从0x0000开始做加1计算,一直到0xffff。
定时器中断的工作原理定时器中断是现代计算机中的一种重要机制,用于实现计算机系统中的时间管理。
它通过定期产生中断信号来通知 CPU,告诉它该执行哪些任务或者切换到哪个进程。
本文将详细介绍定时器中断的工作原理。
第一步:操作系统启动时,初始化时钟装置操作系统启动时,会初始化时钟装置。
这个时钟装置是一个硬件模块,它通过内置的振荡器控制计算机内部的一个计时器,并且产生硬件中断请求信号,使 CPU 执行相应的中断处理程序。
时钟装置产生的时钟信号的频率决定了计时器的计时精度,这通常是 CPU 内部时钟频率的一个固定值。
第二步:操作系统设定定时器计时器的初值操作系统将计时器的初值设定为一个固定的时间间隔,通常是几十毫秒、百毫秒或者一秒钟。
当计时器的值减到零时,就会产生一个时钟中断请求,通知操作系统有一段时间已经过去了,并要求操作系统重启计时器。
第三步:操作系统安装定时器中断处理程序当时钟中断请求到来时,CPU 将转入操作系统的中断处理程序。
在处理程序中,操作系统会完成一些必要的工作,比如更新系统时间、检查进程的状态并进行切换、检查定时任务等。
一旦中断处理程序执行完毕,程序的执行流程将返回到被打断的进程或者应用中。
第四步:应用程序执行与系统中断的交织在 CPU 执行正在运行的应用程序时,可能会发生中断请求。
如果系统正在执行应用程序,那么,在执行当前应用程序的一段时间内,系统会随时地接受中断请求并进行处理。
这种并发执行的模式称为交织执行(Time-sharing)。
操作系统不断地切换进程,让每个进程都有机会获取 CPU 的执行时间。
而定时器中断则是真正驱动交织执行过程的重要机制之一。
总之,定时器中断是计算机系统中的一种重要机制,它可以准确地测量时间、切换进程、进行系统调度等。
了解定时器中断的工作原理是理解计算机系统的关键之一,并能够更好地实现和优化系统。
一、实验目的1. 理解中断和定时器的基本概念及工作原理。
2. 掌握51单片机中断系统和定时器的配置方法。
3. 学会使用中断和定时器实现特定功能,如延时、计数等。
4. 培养动手实践能力和问题解决能力。
二、实验原理中断是计算机系统中的一种机制,允许CPU在执行程序过程中,暂停当前程序,转去执行另一个具有更高优先级的程序。
51单片机具有5个中断源,包括两个外部中断(INT0、INT1)、两个定时器中断(定时器0、定时器1)和一个串行口中断。
定时器是51单片机内部的一种计数器,可以用于产生定时中断或实现定时功能。
51单片机有两个定时器,即定时器0和定时器1。
定时器可以工作在模式0、模式1、模式2和模式3。
三、实验内容及步骤1. 实验内容一:外部中断实验(1)实验目的:掌握外部中断的使用方法,实现按键控制LED灯的亮灭。
(2)实验步骤:- 使用Keil for 8051编译器创建项目。
- 根据电路原理图连接电路。
- 编写程序,配置外部中断,实现按键控制LED灯的亮灭。
2. 实验内容二:定时器中断实验(1)实验目的:掌握定时器中断的使用方法,实现LED灯闪烁。
(2)实验步骤:- 使用Keil for 8051编译器创建项目。
- 根据电路原理图连接电路。
- 编写程序,配置定时器中断,实现LED灯闪烁。
3. 实验内容三:定时器与外部中断结合实验(1)实验目的:掌握定时器与外部中断结合使用的方法,实现按键控制LED灯闪烁频率。
(2)实验步骤:- 使用Keil for 8051编译器创建项目。
- 根据电路原理图连接电路。
- 编写程序,配置定时器中断和外部中断,实现按键控制LED灯闪烁频率。
四、实验结果与分析1. 外部中断实验:成功实现了按键控制LED灯的亮灭。
当按下按键时,LED灯亮;松开按键时,LED灯灭。
2. 定时器中断实验:成功实现了LED灯闪烁。
LED灯每隔一定时间闪烁一次,闪烁频率可调。
3. 定时器与外部中断结合实验:成功实现了按键控制LED灯闪烁频率。
cc2530协议栈定时器中断的工作原理1.引言在无线通信领域中,C C2530芯片是一款非常常见的单片机芯片,广泛应用于物联网、智能家居等场景中。
其内部集成了协议栈以实现无线通信功能。
本文将着重介绍c c2530协议栈定时器中断的工作原理。
2.定时器的作用在嵌入式系统中,定时器是一种重要的设备,用于定时操作和任务调度。
在c c2530芯片中,定时器被广泛应用于协议栈的各个模块,实现对通信和维护任务的精准控制。
3. cc2530协议栈定时器的特点c c2530芯片的协议栈中包含多个定时器,其中最重要的是MA C层定时器和P HY层定时器。
这些定时器具有以下特点:-高精度:定时器采用高精度的时钟源,并通过时钟分频技术实现微秒级的时间精度。
-可编程性:用户可以根据自己的需要对定时器进行配置和设置。
-中断触发:定时器可以在达到设定的定时时间时产生中断信号。
4. cc2530协议栈定时器中断的处理流程c c2530协议栈定时器中断的处理流程如下:-初始化定时器:在使用定时器前,需要对其进行初始化设置,包括选择时钟源、设置定时时间等。
-启动定时器:一旦定时器被启动,它便开始计时,并在达到设定的定时时间时触发中断信号。
-中断处理:当定时器中断信号触发时,C P U会进入中断处理程序,并执行相应的中断服务例程。
-中断服务例程:中断服务例程是用来处理定时器中断的代码段,其中包括对定时器的停止、重置等操作,以及其他需要执行的任务。
5.示例代码下面是一个简单的示例代码,演示了如何使用cc2530协议栈定时器中断:#i nc lu de<c c2530.h>//定时器中断服务例程#p ra gm av ec to r=TIM E R1_O VF_V EC TO R__in te rr up tv oi dTi m er1O ve rf lo w(voi d){//中断处理代码//...//定时器重置T1CT L|=0x01;}v o id ma in(v oi d){//初始化定时器T1CT L=0x02;//设置定时时间T1CC0L=0x50;T1CC0H=0x00;//启动定时器T1CT L|=0x04;//启用定时器中断I E N0|=0x80;//全局使能中断E A=1;w h il e(1){//主循环}}6.总结本文介绍了c c2530协议栈定时器中断的工作原理。
arduino定时器中断原理概述及解释说明1. 引言1.1 概述本文将介绍Arduino定时器中断的原理及其概述和解释。
在Arduino开发中,定时器中断是一种常见且重要的技术,它可以帮助我们实现时间相关的任务和功能。
通过了解定时器的工作原理以及如何使用Arduino中的定时器引脚和寄存器,我们可以更好地利用定时器中断来完成各种应用需求。
1.2 文章结构本文分为五个主要部分,具体内容如下:第二部分“定时器中断基础”将介绍定时器的作用和原理,以及在Arduino中如何使用定时器引脚和寄存器进行编程。
第三部分“Arduino定时器库函数介绍”将详细讲解delay()函数、millis()函数和micros()函数,以及设置定时器中断的函数(attachInterrupt)。
第四部分“定时器中断的编程实例与说明”将提供几个典型案例,包括心跳灯示例程序、超声波测距模块使用中断计算距离实例程序和PWM调光实例程序,并对每个案例进行详细的分析和说明。
最后,在第五部分“结论”将强调理解Arduino定时器中断原理的重要性以及其应用范围,并总结全文的主要观点和内容。
1.3 目的本文的目的是帮助读者理解Arduino定时器中断的原理和应用,以及如何使用定时器中断来实现各种功能。
通过学习本文,读者将能够更加灵活地运用Arduino定时器中断来解决各种时间相关的问题,并扩展其在物联网、嵌入式系统以及电子制作等领域的应用。
2. 定时器中断基础2.1 定时器的作用和原理定时器是一种常见的电子设备,它能够按照特定的时间间隔产生周期性的信号。
在Arduino中,定时器可以用来实现各种功能,如精确的时间测量、延时操作、PWM输出等。
定时器是由计数器和一个或多个比较/捕获寄存器组成的。
计数器可以根据输入时钟源递增,并在达到某个预设值时触发比较/捕获寄存器。
这个触发信号可以产生中断,在中断处理函数中执行相应的操作。
2.2 Arduino中的定时器引脚和寄存器在Arduino开发板上,存在多个引脚可用于定时器功能。
定时器中断的工作原理
定时器中断是一种常见的硬件中断机制,它可以在预设的时间间隔内自动触发中断,以便执行相应的中断服务程序。
其工作原理主要涉及以下几个方面:
1. 定时器的初始化:在使用定时器中断之前,需要先对定时器进行初始化设置。
通常需要配置定时器的时钟源、计数方式、计数周期等参数,以满足具体应用需求。
2. 定时器的计数:一旦定时器被初始化,它会开始按照预设的计数方式和周期进行计数。
通常情况下,定时器的计数值会不断递增,直到达到预设的上限值。
3. 中断触发:当定时器计数值达到预设的上限值时,就会自动触发中断。
此时,CPU会暂停当前的程序执行,转而跳转到预设的中断服务程序中执行相关的操作。
4. 中断服务程序:中断服务程序通常是针对特定中断类型编写的处理程序,用于处理中断事件并进行相应的操作。
在定时器中断中,中断服务程序通常会进行一些周期性的任务,例如更新系统时间、检查状态等。
5. 中断处理完成:当中断服务程序执行完毕后,CPU会返回到原先被中断的程序中继续执行。
此时,定时器又开始重新计数,直到下一次中断触发。
总之,定时器中断是一种非常有用的硬件中断机制,它可以帮助我们实现各种周期性的任务和操作。
理解定时器中断的工作原理对于
嵌入式系统和实时系统开发都非常重要。
定时计数器的工作原理定时计数器是一种常见的计时器,用于测量时间间隔,控制定时操作或执行循环等。
该计数器具有一定的精度和稳定性,其工作原理及应用场景也非常广泛。
下面我们将为大家介绍定时计数器的工作原理,包括硬件和软件实现。
硬件实现定时计数器通常由一个计数器和一个时钟源组成。
时钟源提供固定的时钟信号,计数器通过计数来测量时间间隔或执行定时操作。
时钟源通常是晶振,可以提供极高的稳定性和精度。
计数器可以是简单的二进制计数器,也可以是复杂的倒计数器和分频器等。
不同类型的计数器可以根据不同的应用场景进行选择。
在定时计数器的设计中,需要考虑到时钟信号的频率和计数器的位数。
时钟信号的频率决定了时间分辨率的大小,而计数器的位数则限制了计数器的最大值。
一个10位二进制计数器可以计数到1023,而一个16位二进制计数器可以计数到65535。
选取合适的时钟频率和计数器位数可以满足不同的应用要求。
定时计数器还可以通过外部信号触发计数器开始计数。
这种触发方式通常称为外部触发或同步触发,可以提高计数器的精度和控制性能。
在测试仪器中,可以通过外部触发控制测试时序,在控制系统中,可以通过外部触发控制执行任务。
在嵌入式系统中,定时计数器通常由软件实现。
软件实现的定时计数器主要依赖于系统时钟和定时中断。
系统时钟提供了一个固定的时钟信号,一般由晶振或外部时钟源提供。
定时中断是一个由硬件实现的中断,可以周期性地触发软件中断服务程序的执行。
定时计数器通过定时中断实现定时操作和时间测量。
每当定时中断发生时,中断服务程序会对定时计数器进行更新,并执行相应的定时操作。
在控制系统中,可以通过定时计数器实现周期性的任务执行,定时采样和控制输出等功能。
在嵌入式系统中,定时计数器还可以用于实现延时等操作。
1. 定时中断的触发频率:定时中断的触发频率决定了定时计数器的分辨率和响应速度。
合理的触发频率可以提高定时计数器的精度和控制性能。
2. 定时计数器的位数:定时计数器的位数决定了定时器的最大值和分辨率。
实验8 外部IO中断控制T1定时【实验目的】通过本实验的学习,使实验者熟悉CC2530芯片的定时器1定时的配置及使用方法。
【实验内容】编写IAR程序,实现使用定时器T1的中断控制LED灯闪烁(每秒一次),外部IO(P1.2)中断控制定时器的定时启停。
具体控制为:初始LED3灯亮,表示定时器秒表处于开始计时状态;点按SW1键,则计时开始,LED3灭,T1开始计时(LED1开始闪烁),秒表处于运行状态;再次点按SW1键,T1停止计时(LED1不闪),秒表处于停止状态;再次点按SW1键,LED3灯亮,秒表还回到开始状态。
【实验原理】定时器1要每秒闪烁一次,则其定时长为0.5秒,定时需要设置比较缓存器T1CC0H:T1CC0L的值。
有多种设置可以满足定时长为0.5秒的要求,本实验采用正计数/倒计数器工作模式,希望一个正计数/倒计数过程(从0x0000~T1CC0,再从T1CC0~0x0000)的时长为0.5s,那么正计数时长和倒计数时长都应为0.25s,通过计算可知,以下为本实验采用的设置为:工作在正计数/倒计数模式下,在定时器1开始工作后从0x0000开始做加1计算直到T1CC0,再从T1CC0倒计数到0x0000时,发生中断溢出并将T1STAT.OVFIF(D5位)置1。
此时定时器将发出一个溢出中断请求并将IRCON.T1IF (D1位)置1。
此后自动重新正计数/倒计数,再次从0x0000正计数到T1CC0,再从T1CC0倒计数到0x0000,如此反复计数。
【实验步骤】1.建立一个新项目参照实验1操作步骤,在指定路径建立一个新的工作空间“Test08”,在该空间下新建一个IAR项目“timerPrj3.ewp” 并保存。
2.添加或新建程序文件参照实验1的操作步骤, 往项目中添加或者新建程序文件timer2.c。
【实验相关代码】/*************************************************************** *****/#include "ioCC2530.h" // 引用头文件,包含对CC2530的寄存器、中断向量等的定义/*************************************************************** *****///定义led灯端口:p1.3, p1.4:#define LED1 P1_0 // P1_0定义为P1.0#define LED2 P1_1 // P1_1定义为P1.1#define LED3 P1_3 // P1_3定义为P1.3#define LED4 P1_4 // P1_4定义为P1.4#define SW1 P1_2 // P1_2定义为SW1/* 定义枚举类型 *//*************************************************************** *****/enum STATE{START_STATE,RUN_STATE,STOP_STATE}; // 定义秒表的状态enum STATE state = START_STATE; // 初始化应用状态为开始/*************************************************************** ******* 函数名称:delay* 功能:软件延时* 入口参数:无* 出口参数:无* 返回值:无******************************************************************** /void delay(unsigned int time){ unsigned int i;unsigned char j;for(i = 0; i < time; i++){ for(j = 0; j < 240; j++){ asm("NOP"); // asm是内嵌汇编,nop是空操作,执行一个指令周期asm("NOP");asm("NOP");}}}/*************************************************************** ******* 函数名称:init* 功能:初始化系统IO,定时器T1控制状态寄存器* 入口参数:无* 出口参数:无* 返回值:无******************************************************************** /void init(void){ P1SEL &= ~0x0D; // 设置LED1、SW1为普通IO口P1DIR |= 0x09 ; // 设置LED1为输出P1DIR &= ~0X04; //Sw1按键在 P1.2,设定为输入LED1 = 0; //灭 LEDLED3 = 1; //亮 LEDPICTL &= ~0x02; //配置P1口的中断边沿为上升沿产生中断P1IEN |= 0x04; //使能P1.2中断IEN2 |= 0x10; //使能P1口中断/* 配置定时器1的16位计数器的计数频率由於采用正计数/倒计数器工作模式,希望一个正计数/倒计数过程 (从0x0000~T1CC0,再从T1CC0~0x0000)的时长为0.5s,那么正计数时长和倒计数时长都应为0.25s,通过计算可知,有多种设置可以满足,以下为本实验采用的设置:Timer Tick 分频定时器1的计数频率 T1CC0的值一个正计数时长或一个倒计数时长32MHz /128 250KHz 625000.25s */CLKCONCMD &= 0x80; //时钟速度设置为32MHzT1CC0L =62500 & 0xFF; // 把62500的低8位写入T1CC0LT1CC0H = ((62500 & 0xFF00) >> 8); // 把62500的高8位写入T1CC0HEA = 1; //使能全局中断}/*************************************************************** ******* 函数名称:EINT_ISR* 功能:外部中断服务函数* 入口参数:无* 出口参数:无* 返回值:无******************************************************************** /#pragma vector=P1INT_VECTOR__interrupt void EINT_ISR(void){EA = 0; // 关闭全局中断/* 若是P1.2产生的中断 */if(P1IFG & 0x04){/* 等待用户释放按键,并消抖 */while(SW1 == 0); //低电平有效delay(10);while(SW1 == 0);/* 若当前状态为"开始"状体,则进入"运行"状态*/if(state == START_STATE){state = RUN_STATE; // 更新应用状态标志变量T1STAT &= ~0x20; // 清零溢出标志 (T1STAT.OVFIF)/* 此处添加设置TIMIF.OVFIM位(定时器1中断屏蔽)为1的代码本实验采用上电复位后默认的设置,即TIMIF.OVFIM=1因此无需对TIMIF.OVFIM位再进行设置。
单片机定时器中断原理和C语言代码详解定时器中断原理
定时器中断是单片机中最重要的一种中断,它是一种计时中断,可以用于控制计时器的定时时间间隔,也可用来实现控制结构的计时功能。
由于定时器中断经常用于实现定时触发事件,因此,它是单片机中用于实现定时任务的首选方法。
定时器中断原理是,使用一个计数器,每次计数器计数一次时会发出一个中断请求信号,从而触发中断处理程序,让单片机可以跳转到中断服务程序中来执行相应的处理工作。
定时器中断在单片机中经常被用于计时、调度等功能。
它通常是通过定时器的定时中断使用的,定时器是单片机中在执行特定任务时,用于计时的一种设备,它可以通过设置计数器的计数值来控制定时中断的触发时间,如果计数器的计数值与设置值相等,即可触发定时中断。
定时器中断C语言代码
以下给出的定时器中断C语言代码可以用在支持定时器中断的单片机上,用于执行指定任务:
//定时器中断服务程序
//设置定时器中断服务程序的设置参数
//1.设置定时器的定时中断时间
//设置定时器的定时中断时间,单位是微秒(us)
//中断的时间可以根据设备的性能设置。
定时器中断实验报告
《定时器中断实验报告》
实验目的:通过定时器中断实验,掌握定时器中断的原理和应用,加深对嵌入式系统中断处理的理解。
实验原理:定时器中断是一种常见的嵌入式系统中断方式,通过设置定时器的计数值和中断触发条件,可以实现定时中断功能。
在实验中,我们通过配置定时器的工作模式、计数值和中断触发条件,来实现定时中断功能。
实验过程:首先,我们在实验板上搭建了一个简单的嵌入式系统,包括主控芯片、定时器模块和LED灯。
然后,我们编写了一段简单的程序,配置定时器的工作模式为定时模式,设置定时器的计数值为1000ms,并配置定时器中断触发条件为计数器溢出。
接着,我们将LED灯的亮灭控制放在定时器中断服务函数中,当定时器中断触发时,LED灯状态发生改变。
最后,我们下载程序到实验板上,观察LED灯的亮灭情况。
实验结果:经过实验,我们成功实现了定时器中断功能,当定时器计数器溢出时,定时器中断触发,LED灯状态发生改变。
通过调整定时器的计数值,我们还可以实现不同的定时中断周期,满足不同的应用需求。
实验结论:定时器中断是一种常见的嵌入式系统中断方式,可以实现定时中断功能,用于实现定时任务、定时采样等应用场景。
通过本次实验,我们深入理解了定时器中断的原理和应用,为进一步深入学习嵌入式系统中断处理打下了坚实的基础。
通过本次实验,我们不仅掌握了定时器中断的原理和应用,还提高了对嵌入式系统中断处理的理解,为今后的嵌入式系统开发工作奠定了基础。
希望通过更
多的实验和学习,我们能够进一步提升自己的嵌入式系统开发能力,为未来的科研和工程实践做出更大的贡献。