matlab基础练习题及答案
- 格式:docx
- 大小:1.87 MB
- 文档页数:47
001双峰曲线图:z=peaks(40);mesh(z);surf(z)002解方程:A=[3,4,-2;6,2,-3;45,5,4];>> B=[14;4;23];>> root=inv(A)*B003傅里叶变换load mtlb ;subplot(2,1,1);plot(mtlb);>> title('原始语音信息');>> y=fft(mtlb);>> subplot(2,1,2);>> yy=abs(y);>> plot(yy);>> title('傅里叶变换')004输入函数:a=input('How many apples\n','s')005输出函数a=[1 2 3 4 ;5 6 7 8;12 23 34 45;34 435 23 34]a =1 2 3 45 6 7 812 23 34 4534 435 23 34disp(a)a =1 2 3 45 6 7 812 23 34 4534 435 23 34b=input('how many people\n' ,'s')how many peopletwo peopleb =two people>> disp(b)two people>>006求一元二次方程的根a=1;b=2;c=3;d=sqrt(b^2-4*a*c);x1=(-b+d)/(2*a)x1 =-1.0000 + 1.4142i>> x2=(-b-d)/(2*a)x2 =-1.0000 - 1.4142i007求矩阵的相乘、转置、存盘、读入数据A=[1 3 5 ;2 4 6;-1 0 -2;-3 0 0];>> B=[-1 3;-2 2;2 1];>> C=A*BC =3 142 20-3 -53 -9>> C=C'C =3 2 -3 314 20 -5 -9>> save mydat C>> clear>> load mydat C008编写数学计算公式:A=2.1;B=-4.5;C=6;D=3.5;E=-5;K=atan(((2*pi*A)+E/(2*pi*B*C))/D) K =1.3121009A=[1 0 -1;2 4 1;-2 0 5];>> B=[0 -1 0;2 1 3;1 1 2];>> H=2*A+BH =2 -1 -26 9 5-3 1 12>> M=A^2-3*BM =3 3 -62 13 -2-15 -3 21>> Y=A*BY =-1 -2 -29 3 145 7 10>> R=B*AR =-2 -4 -1-2 4 14-1 4 10>> E=A.*BE =0 0 04 4 3-2 0 10>> W=A\BW =0.3333 -1.3333 0.66670.2500 1.0000 0.25000.3333 -0.3333 0.6667 >> P=A/BP =-2.0000 3.0000 -5.0000-5.0000 3.0000 -4.00007.0000 -9.0000 16.0000>> Z=A.\BWarning: Divide by zero.Z =0 -Inf 01.0000 0.2500 3.0000-0.5000 Inf 0.4000>> D=A./BWarning: Divide by zero.D =Inf 0 -Inf1.0000 4.0000 0.3333-2.0000 0 2.5000010a=4.96;b=8.11;>> M=exp(a+b)/log10(a+b)M =4.2507e+005011求三角形面积:a=9.6;b=13.7;c=19.4;>> s=(a+b+c)/2;>> area=sqrt(s*(s-a)*(s-b)*(s-c))area =61.1739012逻辑运算A=[-1 0 -6 8;-9 4 0 12.3;0 0 -5.1 -2;0 -23 0 -7]; >> B=A(:,1:2)B =-1 0-9 40 00 -23>> C=A(1:2,:)C =-1.0000 0 -6.0000 8.0000 -9.0000 4.0000 0 12.3000>> D=B'D =-1 -9 0 00 4 0 -23>> A*Bans =1.0000 -184.0000-27.0000 -266.90000 46.0000 207.0000 69.0000>> C<Dans =0 0 1 01 0 0 0>> C&Dans =1 0 0 00 1 0 1>> C|Dans =1 1 1 11 1 0 1>> ~C|~Dans =0 1 1 11 0 1 0013矩阵运算练习:A=[8 9 5;36 -7 11;21 -8 5]A =8 9 536 -7 1121 -8 5>> BB =-1 3 -22 0 3-3 1 9>> RT=A*BRT =-5 29 56-83 119 6-52 68 -21>> QW=A.*BQW =-8 27 -1072 0 33-63 -8 45>> ER=A^3ER =6272 3342 294415714 -856 52608142 -1906 2390 >> BF=A.^3BF =512 729 12546656 -343 13319261 -512 125 >> A/Bans =3.13414.9634 -0.4024-1.2561 12.5244 -3.2317-1.9878 6.4512 -2.0366>> EKV=B\AEKV =10.7195 -1.2683 3.52449.4756 1.5854 3.71954.8537 -1.4878 1.3171>> KDK=[A,B]KDK =8 9 5 -1 3 -236 -7 11 2 0 321 -8 5 -3 1 9 >> ERI=[A;B]ERI =8 9 536 -7 1121 -8 5-1 3 -22 0 3-3 1 9014一般函数的调用:A=[2 34 88 390 848 939];>> S=sum(A)S =2301>> min(A)ans =2>> EE=mean(A)EE =383.5000>> QQ=std(A)QQ =419.3794>> AO=sort(A)AO =2 34 88 390 848 939 >> yr=norm(A)yr =1.3273e+003>> RT=prod(A)RT =1.8583e+012>> gradient(A)ans =32.0000 43.0000 178.0000 380.0000 274.5000 91.0000 >> max(A)ans =939>> median(A)ans =239>> diff(A)ans =32 54 302 458 91>> length(A)ans =6>> sum(A)ans =2301>> cov(A)ans =1.7588e+005>>015矩阵变换:A=[34 44 23;8 34 23;34 55 2]A =34 44 238 34 2334 55 2>> tril(A)ans =34 0 08 34 034 55 2>> triu(A)ans =34 44 230 34 230 0 2>> diag(A)ans =34342norm(A)ans =94.5106>> rank(A)ans =3>> det(A)ans =-23462>> trace(A)ans =70>> null(A)ans =Empty matrix: 3-by-0>> eig(A)ans =80.158712.7671-22.9257>> poly(A)ans =1.0e+004 *0.0001 -0.0070 -0.1107 2.3462>> logm(A)Warning: Principal matrix logarithm is not defined for A with nonpositive real eigenvalues. A non-principal matrixlogarithm is returned.> In funm at 153In logm at 27ans =3.1909 + 0.1314i 1.2707 + 0.1437i 0.5011 - 0.2538i0.4648 + 0.4974i 3.3955 + 0.5438i 0.1504 - 0.9608i0.2935 - 1.2769i 0.8069 - 1.3960i 3.4768 + 2.4663i>> fumn(A)Undefined command/function 'fumn'.>> inv(A)ans =0.0510 -0.0502 -0.0098-0.0326 0.0304 0.02550.0305 0.0159 -0.0343>> cond(A)ans =8.5072>> chol(A)Error using ==> cholMatrix must be positive definite.>> lu(A)ans =34.0000 44.0000 23.00000.2353 23.6471 17.58821.0000 0.4652 -29.1816>> pinv(A)ans =0.0510 -0.0502 -0.0098-0.0326 0.0304 0.02550.0305 0.0159 -0.0343>> svd(A)ans =94.510622.345611.1095>> expm(A)ans =1.0e+034 *2.1897 4.3968 1.93821.31542.6412 1.16431.8782 3.7712 1.6625>> sqrtm(A)ans =5.2379 + 0.2003i 3.4795 + 0.2190i 1.8946 - 0.3869i0.5241 + 0.7581i 5.1429 + 0.8288i 2.0575 - 1.4644i3.0084 - 1.9461i4.7123 - 2.1276i 2.1454 + 3.7589i >>016多项式的计算:A=[34 44 23;8 34 23;34 55 2]A =34 44 238 34 2334 55 2>> P=poly(A)P =1.0e+004 *0.0001 -0.0070 -0.1107 2.3462>> PPA=poly2str(P,'X')PPA =X^3 - 70 X^2 - 1107 X + 23462017多项式的运算:p=[2 6 8 3];w=[32 56 0 2];>> m=conv(p,w)m =64 304 592 548 180 16 6 >> [q,r]=deconv(w,p)q =16r =0 -40 -128 -46>> dp=polyder(w)dp =96 112 0>> [num,den]=polyder(w,p)num =80 512 724 312 -16den =4 24 68 108 100 48 9>> b=polyfit(p,w,4)Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 74b =-0.6704 9.2037 -32.2593 0 98.1333>> r=roots(p)r =-1.2119 + 1.0652i-1.2119 - 1.0652i-0.5761018求多项式的商和余p=conv([1 0 2],conv([1 4],[1 1]))p =1 5 6 10 8>> q=[1 0 1 1]q =1 0 1 1>> [w,m]=deconv(p,q)w =1 5m =0 0 5 4 3>> cq=w;cr=m;>> disp([cr,poly2str(m,'x')])5 x^2 + 4 x + 3>> disp([cq,poly2str(w,'x')])x + 5019将分式分解a=[1 5 6];b=[1];>> [r,p,k]=residue(b,a)r =-1.00001.0000p =-3.0000-2.0000k =[]020计算多项式:a=[1 2 3;4 5 6;7 8 9];>> p=[3 0 2 3];>> q=[2 3];>> x=2;>> r=roots(p)r =0.3911 + 1.0609i0.3911 - 1.0609i-0.7822>> p1=conv(p,q)p1 =6 9 4 12 9>> p2=poly(a)p2 =1.0000 -15.0000 -18.0000 -0.0000 >> p3=polyder(p)p3 =9 0 2>> p4=polyval(p,x)p4 =31021求除式和余项:[q,r]=deconv(conv([1 0 2],[1 4]),[1 1 1])022字符串的书写格式:s='student's =student>> name='mary';>> s1=[name s]s1 =marystudent>> s3=[name blanks(3);s]s3 =marystudent>>023交换两个数:clearclca=[1 2 3 4 5];b=[6 7 8 9 10];c=a;a=b;b=c;ab24If语句n=input('enter a number,n=');if n<10nend025 if 双分支结构a=input('enter a number ,a=');b=input('enter a number ,b=');if a>bmax=a;elsemax=b;endmax026三个数按照由大到小的顺序排列:A=15;B=24;C=45;if A<BT=A;A=B;B=T;elseif A<CT=A;A=C;C=T;elseif B<CT=B;B=C;C=T;endABC027建立一个收费优惠系统:price=input('please jinput the price : price=') switch fix(price/100)case[0,1]rate =0;case[2,3,4]rate =3/100;case num2cell(5:9)rate=5/100;case num2cell(10:24)rate=8/100;case num2cell(25:49)rate=10/100;otherwiserate=14/100;endprice=price*(1-rate)028:while循环语句i=0;s=0;while i<=1212s=s+i;i=i+1;ends029,用for循环体语句:sum=0;for i=1:1.5:100;sum=sum+i;endsum030循环的嵌套s=0;for i=1:1:6;for j=1:1:8;s=s+i^j;end;end;s031continue 语句的使用:for i=100:120;if rem(i,7)~=0;continue;end;iend032x=input ('输入X的值x=')if x<1y=x^2;elseif x>1&x<2y=x^2-1;elsey=x^2-2*x+1;endy033求阶乘的累加和sum=0;temp=1;for n=1:10;temp=temp*n;sum=sum+temp;endsum034对角线元素之和sum=0;a=[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16]; for i=1:4;sum=sum+a(i,i);endsum035用拟合点绘图A=[12 15.3 16 18 25];B=[50 80 118 125 150.8];plot(A,B)036绘制正玄曲线:x=0:0.05:4*pi;y=sin(x);plot(x,y)037绘制向量x=[1 2 3 4 5 6;7 8 9 10 11 12;13 14 15 16 17 18] plot(x)x=[0 0.2 0.5 0.7 0.6 0.7 1.2 1.5 1.6 1.9 2.3]plot(x)x=0:0.2:2*piy=sin(x)plot(x,y,'m:p')038在正弦函数上加标注:t=0:0.05:2*pi;plot(t,sin(t))set(gca,'xtick',[0 1.4 3.14 56.28])xlabel('t(deg)')ylabel('magnitude(v)')title('this is a example ()\rightarrow 2\pi')text(3.14,sin(3.14),'\leftarrow this zero for\pi')039添加线条标注x=0:0.2:12;plot(x,sin(x),'-',x,1.5*cos(x),':');legend('First','Second',1)040使用hold on 函数x=0:0.2:12;plot(x,sin(x),'-');hold onplot(x,1.5*cos(x),':');041一界面多幅图x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(221);plot(x,y1);title('sin(x)')subplot(222);plot(x,y2);title('cos(x)')subplot(223);plot(x,y3);title('sin(2x)')subplot(224);plot(x,y4);title('cos(2x)')042染色效果图x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(221);plot(x,y1);title('sin(x)');fill(x,y1,'r') subplot(222);plot(x,y2);title('cos(x)');fill(x,y2,'b') subplot(223);plot(x,y3);title('sin(2x)');fill(x,y3,'k') subplot(224);plot(x,y4);title('cos(2x)');fill(x,y4,'g')043特殊坐标图clcy=[0,0.55,2.5,6.1,8.5,12.1,14.6,17,20,22,22.1] subplot(221);plot(y);title('线性坐标图');subplot(222);semilogx(y);title('x轴对数坐标图');subplot(223);semilogx(y);title('y轴对数坐标图');subplot(224);loglog(y);title('双对数坐标图')t=0:0.01:2*pi;r=2*cos(2*(t-pi/8));polar(t,r)044特殊函数绘图:fplot('cos(tan(pi*x))',[-0.4,1.4])fplot('sin(exp(pi*x))',[-0.4,1.4])045饼形图与条形图:x=[8 20 36 24 12];subplot(221);pie(x,[1 0 0 0 1]);title('饼图');subplot(222);bar(x,'group');title('垂直条形图');subplot(223);bar(x,'stack');title('累加值为纵坐标的垂直条形图'); subplot(224);barh(x,'group');title('水平条形图');046梯形图与正弦函数x=0:0.1:10;y=sin(x);subplot(121);stairs(x);subplot(122);stairs(x,y);047概率图x=randn(1,1000);y=-2:0.1:2;hist(x,y)048向量图:x=[-2+3j,3+4j,1-7j];subplot(121);compass(x);rea=[-2 3 1];imag=[3 4 -7];subplot(122);feather(rea,imag);049绘制三维曲线图:z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)x=-10:0.5:10;y=-8:0.5:8;[x,y]=meshgrid(x,y);z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2); subplot(221);mesh(x,y,z);title('普通一维网格曲面');subplot(222);meshc(x,y,z);title('带等高线的三维网格曲面'); subplot(223);meshz(x,y,z);title('带底座的三维网格曲面'); subplot(224);surf(x,y,z);title('充填颜色的三维网格面')050 带网格二维图x=0:pi/10:2*pi;y1=sin(x);y2=cos(x);plot(x,y1,'r+-',x,y2,'k*:')grid onxlabel('Independent Variable x') ylabel('Dependent Variable y1&y2') text(1.5,0.5,'cos(x)')051各种统计图y=[18 5 28 17;24 12 36 14;15 6 30 9]; subplot(221);bar(y)x=[4,6,8];subplot(222);bar3(x,y)subplot(223);bar(x,y,'grouped') subplot(224);bar(x,y,'stack')052曲面图x=-2:0.4:2;y=-1:0.2:1;[x,y]=meshgrid(x,y);z=sqrt(4-x.^2/9-y.^2/4); surf(x,y,z)grid on053创建符号矩阵e=[1 3 5;2 4 6;7 9 11];m=sym(e)符号表达式的计算问题因式分解:syms xf=factor(x^3-1)s=sym('sin(a+b)'); expand(s)syms x tf=x*(x*(x-8)+6)*t; collect(f)syms xf=sin(x)^2+cos(x)^2; simplify(f)syms xs=(4*x^2+8*x+3)/(2*x+1); simplify(s)通分syms x yf=x/y-y/x;[m,n]=numden(f)嵌套重写syms xf=x^4+3*x^3-7*x^2+12; horner(f)054求极限syms x a;limit(exp(-x),x,0,'left')求导数syms xdiff(x^9+x^6)diff(x^9+x^6,4)055求不定积分与定积分syms x ys=(4-3*x^2)^2;int(s)int(x/(x+y),x)int(x^2/(x+2),x,1,3) double(ans)056函数的变换:syms x ty=exp(-x^2);Ft=fourier(y,x,t)fx=ifourier(Ft,t,x)057求解方程syms a b c xs=a*x^2+b*x+c;solve(s)syms x y zs1=2*x^2+y^2-3*z-4;s2=y+z-3;s3=x-2*y-3*z;[x,y,z]=solve(s1,s2,s3)058求微分方程:y=dsolve('Dy-(t^2+y^2)/t^2/2','t')059求级数和syms x ksymsum(k)symsum(k^2-3,0,10)symsum(x^k/k,k,1,inf)060泰勒展开式syms xs=(1-x+x^2)/(1+x+x^2);taylor(s)taylor(s,9)taylor(s,x,12)taylor(s,x,12,5)061练习syms x a;s1=sin(2*x)/sin(5*x);limit(s1,x,0)s2=(1+1/x)^(2*x);limit(s2,x,inf)syms xs=x*cos(x);diff(s)diff(s,2)diff(s,12)syms xs1=x^4/(1+x^2);int(s1)s2=3*x^2-x+1int(s2,0,2)syms x y zs1=5*x+6*y+7*z-16;s2=4*x-5*y+z-7;s3=x+y+2*z-2;[x,y,z]=solve(s1,s2,s3)syms x yy=dsolve('Dy=exp(2*x-y)','x')y=dsolve('Dy=exp(2*x-y)','y(0)=0','x')n=sym('n');s=symsum(1/n^2,n,1,inf)x=sym('x');f=sqrt(1-2*x+x^3)-(1-3*x+x^2)^(1/3);taylor(f,6)062求于矩阵相关的值a=[2 2 -1 1;4 3 -1 2;8 5 -3 4;3 3 -2 2]adet=det(a)atrace=trace(a)anorm=norm(a)acond=cond(a)arank=rank(a)eiga=eig(a)063矩阵计算A=[0.1389 0.6038 0.0153 0.9318;0.2028 0.2772 0.7468 0.4660;0.1987 0.1988 0.4451 0.4186]B=var(A)C=std(A)D=range(A)E=cov(A)F=corrcoef(A)064求根及求代数式的值P=[4 -3 2 5];x=roots(P)x=[3 3.6];F=polyval(P,x)065多项式的和差积商运算:f=[1 2 -4 3 -1]g=[1 0 1]g1=[0 0 1 0 1]f+g1f-g1conv(f,g)[q,r]=deconv(f,g)polyder(f)066各种插值运算:X=0:0.1:pi/2;Y=sin(X);interp1(X,Y,pi/4)interp1(X,Y,pi/4,'nearest')interp1(X,Y,pi/4,'spline')interp1(X,Y,pi/4,'cubic')067曲线的拟合:X=0:0.1:2*pi;Y=cos(X);[p,s]=polyfit(X,Y,4)plot(X,Y,'K*',X,polyval(p,X),'r-')068求函数的最值与0点x=2:0.1:2;[x,y]=fminbnd('x.^3-2*x+1',-1,1) [x,y]=fzero('x.^3-2*x+1',1)069求多项式的表达式、值、及图像y=[1 3 5 7 19]t=poly(y)x=-4:0.5:8yx=polyval(t,x)plot(x,yx)070数据的拟合与绘图x=0:0.1:2*pi;y=sin(x);p=polyfit(x,y,5);y1=polyval(p,x)plot(x,y,'b',x,y1,'r')071求代数式的极限:syms xf=sym('log(1+2*x)/sin(3*x)');b=limit(f,x,0)072求导数与微分syms xf=sym('x/(cos(x))^2');y1=diff(f)y2=int(f,0,1)078划分网格函数[x,y]=meshgrid(-2:0.01:2,-3:0.01:5); t=x.*exp(-x.^2-y.^2);[px,py]=gradient(t,0.05,0.1);td=sqrt(px.^2+py.^2);subplot(221)imagesc(t)subplot(222)imagesc(td)colormap('gray')079求多次多项方程组的解:syms x1 x2 a ;eq1=sym('x1^2+x2=a')eq2=sym('x1-a*x2=0')[x1 x2]=solve(eq1,eq2,x1,x2)v=solve(eq1,eq2)v.x1v.x2an1=x1(1),an2=x1(2)an3=x2(1),an4=x2(2)080求解微分方程:[y]=dsolve('Dy=-y^2+6*y','y(0)=1','x')s=dsolve('Dy=-y^2+6*y','y(0)=1','x')[u]=dsolve('Du=-u^2+6*u','u(0)=1')w=dsolve('Du=-u^2+6*u','z')[u,w]=dsolve('Du=-w^2+6*w,Dw=sin(z)','u(0)=1,w(0)=0','z') v=dsolve('Du=-w^2+6*w,Dw=sin(z)','u(0)=1,w(0)=0','z')081各种显现隐含函数绘图:f=sym('x^2+1')subplot(221)ezplot(f,[-2,2])subplot(222)ezplot('y^2-x^6-1',[-2,2],[0,10])x=sym('cos(t)')y=sym('sin(t)')subplot(223)ezplot(x,y)z=sym('t^2')subplot(224)ezplot3(x,y,z,[0,8*pi])082极坐标图:r=sym('4*sin(3*x)')ezpolar(r,[0,6*pi])083多函数在一个坐标系内:x=0:0.1:8;y1=sin(x);subplot(221)plot(x,y1)subplot(222)plot(x,y1,x,y2)w=[2 3;3 1;4 6]subplot(223)plot(w)q=[4 6:3 5:1 2]subplot(224)plot(w,q)084调整刻度图像:x=0:0.1:10;y1=sin(x);y2=exp(x);y3=exp(x).*sin(x);subplot(221)plot(x,y2)subplot(222)loglog(x,y2)subplot(223)plotyy(x,y1,x,y2)085等高线等图形,三维图:t=0:pi/50:10*pi;subplot(2,3,1)plot3(t.*sin(t),t.*cos(t),t.^2) grid on[x,y]=meshgrid([-2:0.1:2])z=x.*exp(-x.^2-y.^2)subplot(2,3,2)plot3(x,y,z)box offsubplot(2,3,3)meshz(x,y,z)subplot(2,3,4)surf(x,y,z)contour(x,y,z)subplot(2,3,6)surf(x,y,z)subplot(2,3,5)contour(x,y,z)box offsubplot(2,3,6)contour3(x,y,z)axis off086统计图Y=[5 2 1;8 7 3;9 8 6;5 5 5;4 3 2]subplot(221)bar(Y)box offsubplot(222)bar3(Y)subplot(223)barh(Y)subplot(224)bar3h(Y)087面积图Y=[5 1 2;8 3 7;9 6 8;5 5 5;4 2 3];subplot(221)area(Y)grid onset(gca,'Layer','top','XTick',1:5)sales=[51.6 82.4 90.8 59.1 47.0];x=90:94;profits=[19.3 34.2 61.4 50.5 29.4];subplot(222)area(x,sales,'facecolor',[0.5 0.9 0.6], 'edgecolor','b','linewidth',2) hold onarea(x,profits,'facecolor',[0.9 0.85 0.7], 'edgecolor','y','linewidth',2) hold offset(gca,'Xtick',[90:94])set(gca,'layer','top')gtext('\leftarrow 销售量') gtext('利润')gtext('费用')xlabel('年','fontsize',14)088函数的插值:x=0:2*pi;y=sin(x);xi=0:0.1:8;yi1=interp1(x,y,xi,'linear')yi2=interp1(x,y,xi,'nearest') yi3=interp1(x,y,xi,'spline')yi4=interp1(x,y,xi,'cublic')p=polyfit(x,y,3)yy=polyval(p,xi)subplot(3,2,1)plot(x,y,'o')subplot(3,2,2)plot(x,y,'o',xi,yy)subplot(3,2,3)plot(x,y,'o',xi,yi1)subplot(3,2,4)plot(x,y,'o',xi,yi2)subplot(3,2,5)plot(x,y,'o',xi,yi3)subplot(3,2,6)plot(x,y,'o',xi,yi4)089二维插值计算:[x,y]=meshgrid(-3:0.5:3);z=peaks(x,y);[xi,yi]=meshgrid(-3:0.1:3); zi=interp2(x,y,z,xi,yi,'spline') plot3(x,y,z)hold onmesh(xi,yi,zi+15)hold offaxis tight090函数表达式;function f=exlin(x)if x<0f=-1;elseif x<1f=x;elseif x<2f=2-x;elsef=0;end091:硬循环语句:n=5;for i=1:nfor j=1:nif i==ja(i,j)=2;elsea(i,j)=0;endendendwhile 循环语句:n=1;while prod(1:n)<99^99;n=n+1endn:092 switch开关语句a=input('a=?')switch acase 1disp('It is raning') case 0disp('It do not know')case -1disp('It is not ranging')otherwisedisp('It is raning ?')end093画曲面函数:x1=linspace(-3,3,30)y1=linspace(-3,13,34)[x,y]=meshgrid(x1,y1);z=x.^4+3*x.^2-2*x+6-2*y.*x.^2+y.^2-2*y; surf(x,y,z)。
1、设⎥⎦⎤⎢⎣⎡++=)1(sin35.0cos2xxxy,把x=0~2π间分为101点,画出以x为横坐标,y为纵坐标的曲线。
第一题的matlab源程序:①考虑cos(x)为一个整体,然后乘以中括号里面的全部x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x).*(0.5+3*sin(x)./(1+x.^2)); %y的表达式plot(x,y)%画出图形图如下:②考虑对整体求解cos,先求x乘以括号中的部分x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x.*(0.5+3*sin(x)./(1+x.^2))); %y的表达式plot(x,y) %画出图形图如下:2、产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。
并求该矩阵全体数的平均值和均方差。
第二题的matlab源程序如下:R1=randn(8,6) %产生正态分布随机矩阵R1 =1.0933 -0.7697 1.5442 -0.1924 1.4193 0.21571.1093 0.3714 0.0859 0.8886 0.2916 -1.1658-0.8637 -0.2256 -1.4916 -0.7648 0.1978 -1.14800.0774 1.1174 -0.7423 -1.4023 1.5877 0.1049-1.2141 -1.0891 -1.0616 -1.4224 -0.8045 0.7223-1.1135 0.0326 2.3505 0.4882 0.6966 2.5855-0.0068 0.5525 -0.6156 -0.1774 0.8351 -0.66691.5326 1.1006 0.7481 -0.1961 -0.2437 0.1873aver=(sum(R1(1:end,1:end)))./8 %产生各行的平均值aver =0.0768 0.1363 0.1022 -0.3473 0.4975 0.1044a=std(R1(1:end,1:end)) %产生各行的均方差也就是标准差a =1.0819 0.8093 1.3456 0.8233 0.8079 1.2150aver1=(sum(R1(:)))./48 %全体数的平均值aver1 =0.0950b=std(R1(:)) %全体数的均方差即标准差b =1.01033、设x=rcost+3t,y=rsint+3,分别令r=2,3,4,画出参数t=0~10区间生成的x~y 曲线。
matlab习题及答案2. ⽤MATLAB 语句输⼊矩阵A 和B3.假设已知矩阵A ,试给出相应的MATLAB 命令,将其全部偶数⾏提取出来,赋给B 矩阵,⽤magic(8)A =命令⽣成A 矩阵,⽤上述命令检验⼀下结果是不是正确。
4.⽤数值⽅法可以求出∑=++++++==6363622284212i i S ,试不采⽤循环的形式求出和式的数值解。
由于数值⽅法是采⽤double 形式进⾏计算的,难以保证有效位数字,所以结果不⼀定精确。
试采⽤运算的⽅法求该和式的精确值。
5.选择合适的步距绘制出下⾯的图形。
(1))/1sin(t ,其中)1,1(-∈t ;(2))tan(sin )sin(tan t t -,其中),(ππ-∈t6. 试绘制出⼆元函数2222)1(1)1(1),(yx yx y x f z ++++-==的三维图和三视图7. 试求出如下极限。
(1)xxxx 1)93(lim +∞→;(2)11lim0-+→→xy xy y x ;(3)22)()cos(1lim222200y x y x ey x y x +→→++-8. 已知参数⽅程-==tt t y t x sin cos cos ln ,试求出x y d d 和3/22d d π=t x y9. 假设?-=xyt t e y x f 0d ),(2,试求222222y fy x f x f y x ??+-?? 10. 试求出下⾯的极限。
(1)-++-+-+-∞→1)2(1161141121lim 2222n n ;(2))131211(lim 2222ππππn n n n n n n ++++++++∞→ 11. 试求出以下的曲线积分。
(1)?+ls y x d )(22,l 为曲线)sin (cos t t t a x +=,)cos (sin t t t a y -=,)20(π≤≤t 。
(2)?-+++ly y y xe x e yx )dy 2(xy d )(33,其中l 为22222c y b x a =+正向上半椭圆。
matlab试题及答案# MATLAB试题及答案一、选择题1. MATLAB的基本数据单位是:A. 矩阵B. 向量C. 标量D. 数组答案:A2. 下列哪个命令可以用来绘制函数图形?A. `plot`B. `graph`C. `draw`D. `chart`答案:A3. MATLAB中,以下哪个是正确的矩阵转置操作?A. `transpose(A)`B. `A'`C. `A^T`D. `flip(A)`答案:B二、简答题1. 简述MATLAB中矩阵的基本操作。
答案:在MATLAB中,矩阵是最基本的数据结构,可以进行加、减、乘、除等基本运算。
矩阵的创建可以使用方括号`[]`,例如`A = [1 2;3 4]`。
矩阵的转置使用单引号`'`,例如`A'`。
矩阵的求逆使用`inv`函数,例如`inv(A)`。
2. MATLAB中如何实现循环结构?答案:MATLAB中实现循环结构主要有两种方式:`for`循环和`while`循环。
`for`循环用于已知迭代次数的情况,例如:```matlabfor i = 1:5disp(i);end````while`循环用于迭代次数未知的情况,例如:```matlabi = 1;while i <= 5disp(i);i = i + 1;end```三、计算题1. 给定矩阵A和B,请计算它们的乘积C,并求C的行列式。
A = [1 2; 3 4]B = [5 6; 7 8]答案:首先计算矩阵乘积C:```matlabC = A * B;```然后计算C的行列式:```matlabdetC = det(C);```结果为:```matlabC = [19 22; 43 50]detC = -16```2. 编写一个MATLAB函数,计算并返回一个向量的范数。
答案:```matlabfunction norm_value = vector_norm(v)norm_value = norm(v);end```四、编程题1. 编写一个MATLAB脚本,实现以下功能:- 随机生成一个3x3的矩阵。
试题1.“数学黑洞”:任意一个4位自然数,将组成该数的各位数字重新排列,形成一个最大数和一个最小数,之后两数相减,其差仍为一个自然数。
重复进行上述运算,最终会出现一个神秘的数,请编程输出这个神秘的数。
clear;a=input('请输入一个四位正整数:');str_a=num2str(a); %将a转化为一个字符串b_min=str2double(sort(str_a)); %形成最小数b_max=str2double(sort(str_a,'descend')); %形成最大数b=b_max-b_min; %求最大数与最小数之差while (b~=a)a=b;str_a=num2str(a); %将a转化为一个字符串b_min=str2double(sort(str_a)); %形成最小数b_max=str2double(sort(str_a,'descend')); %形成最大数b=b_max-b_min; %求最大数与最小数之差endb试题2.将数字1、2、3、4、5、6填入一个2行3列的表格中,要使得每一列右边的数字比左边的数字大,每一行下面的数字比上面的数字大。
请编写程序求出按此要求可有几种填写方法。
a(1)=1;a(6)=6;count=0; %用来计数b=perms('2345'); %产生2345的全排列[m,n]=size(b);for i=1:mtemp=b(i,:);a(2)=str2double(temp(1));a(3)=str2double(temp(2));a(4)=str2double(temp(3));a(5)=str2double(temp(4));if ((a(4)>a(2))&&(a(4)>a(3))&&(a(5)>a(3)))count=count+1;c=reshape(a,2,3); %将a向量转化为2*3矩阵输出disp(c);endenddisp(['共有',num2str(count),'种填写方法']); %输出填写方法的种数试题3.编写成绩排序程序。
matlab习题及答案Matlab习题及答案Matlab是一种强大的数学计算软件,被广泛应用于科学计算、数据分析和工程设计等领域。
在学习和使用Matlab的过程中,习题是一种非常有效的学习方式。
本文将给出一些常见的Matlab习题及其答案,帮助读者更好地掌握Matlab的使用技巧。
一、基础习题1. 计算1到100之间所有奇数的和。
解答:```matlabsum = 0;for i = 1:2:100sum = sum + i;enddisp(sum);```2. 编写一个函数,计算任意两个数的最大公约数。
解答:```matlabfunction gcd = computeGCD(a, b)while b ~= 0temp = b;a = temp;endgcd = a;end```3. 编写一个程序,生成一个5×5的随机矩阵,并计算矩阵的行和列的平均值。
解答:```matlabmatrix = rand(5);row_average = mean(matrix, 2);col_average = mean(matrix);disp(row_average);disp(col_average);```二、进阶习题1. 编写一个程序,实现插入排序算法。
解答:```matlabfunction sorted_array = insertionSort(array)n = length(array);for i = 2:nj = i - 1;while j > 0 && array(j) > keyarray(j+1) = array(j);j = j - 1;endarray(j+1) = key;endsorted_array = array;end```2. 编写一个程序,实现矩阵的转置。
解答:```matlabfunction transposed_matrix = transposeMatrix(matrix) [m, n] = size(matrix);transposed_matrix = zeros(n, m);for i = 1:mfor j = 1:ntransposed_matrix(j, i) = matrix(i, j);endendend```3. 编写一个程序,实现二分查找算法。
作业一4、写出完成下列操作的命令。
(1)将矩阵 A 第2~5 行中第1,3,5 列元素赋给矩阵B。
>> M=[0:1:48];>> A=reshape(M,7,7)0 7 14 21 28 35 421 8 15 22 29 36 432 9 16 23 30 37 443 10 17 24 31 38 454 11 18 25 32 39 465 12 19 26 33 40 476 13 20 27 34 41 48 >> B=A(2:5,1:2:5)B =1 15 292 16 303 17 314 18 32( 2)删除矩阵 A 的第七行元素。
>> A(7,:)=[]A =0 7 14 21 28 35 421 8 15 22 29 36 432 9 16 23 30 37 443 10 17 24 31 38 454 11 18 25 32 39 465 12 19 26 33 40 47 (3) 将矩阵A 的每个元素值加30。
>> A=A+30A =30 37 44 51 58 65 7231 38 45 52 59 66 7332 39 46 53 60 67 7433 40 47 54 61 68 7534 41 48 55 62 69 7635 42 49 56 63 70 77(4 求矩阵A 的大小和维素。
sizeA = size(A)dA = ndims(A) sizeA = dA =2(5)将向量t的0元素用机器零来代替。
>> t=[1 2 3 4 0 5];t =1 2 3 4 0 5>> find(t==0)ans =5>> t(5)=epst =1.00002.00003.00004.0000 0.00005.0000(6)将含有12个元素的向量x 转换成3*4 矩阵。
>> x=[0:11]x =0 1 2 3 4 5 6 7 8 9 10 >>11 y=reshape(x,3,4)y =0 3 6 91 4 7 102 5 8 117)求一个字符串的ASCII。
第1章MATLAB基础1.4 MATLAB操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?答:在MATLAB操作桌面上有五个窗口。
在每个窗口的右上角有两个小按钮,一个是关闭窗口的Close 按钮,一个是可以使窗口成为独立窗口的Undock按钮,点击Undock按钮就可以使该窗口脱离桌面成为独立窗口。
在独立窗口的Desktop菜单中选择Dock...项就可以将独立的窗口重新放置到桌面上。
1.5 如何启动M文件编辑/调试器?答:在操作桌面上选择“建立新文件”或“打开文件”操作时,M文件编辑/调试器将被启动。
在命令窗口中键入edit命令时也可以启动M文件编辑/调试器。
1.6 存储在工作空间中的数组能编辑吗?如何操作?答:存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可。
1.7 命令历史窗口除了可以观察前面键入的命令外,还有什么用途?答:命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M文件中。
1.8 如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有什么区别?答:当前目录可以在当前目录浏览器窗口左上方的输入栏中设置,搜索路径可以通过选择操作桌面的file 菜单中的Set Path菜单项来完成。
在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被MATLAB运行和调用,如果在当前目录上有与搜索路径上相同文件名的文件时则优先执行当前目录上的文件,如果没有特别说明,数据文件将存储在当前目录上。
1.9 在MATLAB中有几种获得帮助的途径?答:(1)帮助浏览器:选择view菜单中的Help菜单项或选择Help菜单中的MATLAB Help菜单项可以打开帮助浏览器。
MatLab 考试题题库(必做题)(带答案)一,1.请登陆美国MathWorks公司的网站,查看看现在大概有多少本MATLAB-based books (以MATLAB为基本软件,来说明各个专业领域的教科书或工具书)。
哪一个领域的MATLAB-based books最多中文书共有几本答: 1612 本,数学方面的最多,中文书共有37 本。
2.请在 MATLAB 中直接输入下列常数,看它们的值是多少:a.ib.jc.epsd.infe.nanf.pig.realmaxh.realmin依次解为: ans = 0 +ans = 0 +ans =ans =Inf ans = NaN ans =ans = +308ans =3.试写一函数regPolygon(n) ,其功能为画出一个圆心在(0, 0)、半径为 1 的圆,并在圆内画出一个内接正n 边形,其中一顶点位于(0, 1)。
例如regPolygon(8)可以画出如下之正八边型:解:新建文件如下:function y=regPolyfon(n)n=8;%要画的 n 边形R=1; %圆的半径t=0::2*pi;x=R*cos(t);y=R*sin(t);m=linspace(pi/ 2,5/2*pi,n+1);xz=R*cos(m);yz=R*sin(m);hold onplot(x,y,xz,yz);axis 'equal';4.一条参数式的曲线可由下列方程式表示:x= sin(t), y = 1 - cos(t) + t/10当 t 由 0 变化到4*pi时,请写一个MATLAB 的脚本,画出此曲线在XY 平面的轨迹。
解:新建:t = linspace(0, 4*pi);x = sin(t);y = 1-cos(t)+t/10;plot(x, y, '-o');32.521.510.5-1-0.8-0.6-0.4-0.200.20.40.60.815.当一个小圆轮沿着一条曲线行进时,轮缘任一点的轨迹就会产生变化丰富的摆线。
1、设⎥⎦⎤⎢⎣⎡++=)1(sin35.0cos2xxxy,把x=0~2π间分为101点,画出以x为横坐标,y为纵坐标的曲线。
第一题的matlab源程序:①考虑cos(x)为一个整体,然后乘以中括号里面的全部x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x).*(0.5+3*sin(x)./(1+x.^2)); %y的表达式plot(x,y)%画出图形图如下:②考虑对整体求解cos,先求x乘以括号中的部分x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x.*(0.5+3*sin(x)./(1+x.^2))); %y的表达式plot(x,y) %画出图形图如下:2、产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。
并求该矩阵全体数的平均值和均方差。
第二题的matlab源程序如下:R1=randn(8,6) %产生正态分布随机矩阵R1 =1.0933 -0.7697 1.5442 -0.1924 1.4193 0.21571.1093 0.3714 0.0859 0.8886 0.2916 -1.1658-0.8637 -0.2256 -1.4916 -0.7648 0.1978 -1.14800.0774 1.1174 -0.7423 -1.4023 1.5877 0.1049-1.2141 -1.0891 -1.0616 -1.4224 -0.8045 0.7223-1.1135 0.0326 2.3505 0.4882 0.6966 2.5855-0.0068 0.5525 -0.6156 -0.1774 0.8351 -0.66691.5326 1.1006 0.7481 -0.1961 -0.2437 0.1873aver=(sum(R1(1:end,1:end)))./8 %产生各行的平均值aver =0.0768 0.1363 0.1022 -0.3473 0.4975 0.1044a=std(R1(1:end,1:end)) %产生各行的均方差也就是标准差a =1.0819 0.8093 1.3456 0.8233 0.8079 1.2150aver1=(sum(R1(:)))./48 %全体数的平均值aver1 =0.0950b=std(R1(:)) %全体数的均方差即标准差b =1.01033、设x=rcost+3t,y=rsint+3,分别令r=2,3,4,画出参数t=0~10区间生成的x~y 曲线。
matlab试题及答案开卷1. MATLAB基础操作在MATLAB中,如何创建一个名为“myMatrix”的3x3矩阵,其元素从1到9按顺序排列?答案:在MATLAB中,可以使用以下命令创建名为“myMatrix”的3x3矩阵:```matlabmyMatrix = [1 2 3; 4 5 6; 7 8 9];```或者使用内置函数`magic`:```matlabmyMatrix = magic(3);```2. 矩阵运算给定两个矩阵A和B,其中A = [2 3; 4 5],B = [6 7; 8 9],计算A+B的结果。
答案:在MATLAB中,可以使用加号`+`来计算两个矩阵的和:```matlabA = [2 3; 4 5];B = [6 7; 8 9];C = A + B;```计算结果C为:```matlabC = [8 10; 12 14];```3. 向量操作创建一个从0到1的等差数列,步长为0.1。
答案:在MATLAB中,可以使用`linspace`函数或`:`操作符来创建等差数列:```matlabv = 0:0.1:1;```或者使用`linspace`函数:```matlabv = linspace(0, 1, 11);```两种方法都将得到一个包含11个元素的向量,从0开始,到1结束,步长为0.1。
4. 条件语句编写一个MATLAB脚本,判断一个给定的数n是否为素数。
答案:可以通过以下MATLAB脚本来判断一个数n是否为素数:```matlabfunction isPrime = isPrimeNumber(n)if n <= 1isPrime = false;elsefor i = 2:sqrt(n)if mod(n, i) == 0isPrime = false;return;endendisPrime = true;endend```调用此函数时,传入一个数值n,函数将返回一个布尔值,表示n 是否为素数。
matlab试题及答案一、单项选择题(每题2分,共10分)1. MATLAB中用于创建向量的命令是:A. vectorB. arrayC. linspaceD. colon答案:D2. 在MATLAB中,以下哪个函数用于计算矩阵的行列式?A. detB. rankC. invD. eig答案:A3. MATLAB中用于进行矩阵转置的运算符是:A. 'B. .C. ^D. !答案:A4. 若A是一个3x3的矩阵,执行命令A(2,:)=0;后,矩阵A的第二行将变为:A. [0 0 0]B. [1 0 0]C. [0 1 0]D. [0 0 1]答案:A5. MATLAB中,以下哪个函数用于绘制三维曲面图?A. plotB. surfC. barD. hist答案:B二、填空题(每题3分,共15分)1. MATLAB中,使用________命令可以清除所有变量。
答案:clear2. 若要在MATLAB中创建一个从0到1的100个元素的向量,可以使用命令________。
答案:linspace(0,1,100)3. MATLAB中,使用________函数可以计算矩阵的特征值。
答案:eig4. 在MATLAB中,________函数用于计算两个矩阵的点乘。
答案:dot5. 若要在MATLAB中绘制一个圆,可以使用________函数。
答案:plot三、简答题(每题5分,共20分)1. 请解释MATLAB中矩阵索引的概念。
答案:在MATLAB中,矩阵索引指的是通过行号和列号来访问矩阵中特定元素的过程。
例如,A(2,3)表示访问矩阵A的第二行第三列的元素。
2. MATLAB中如何实现矩阵的元素乘法?答案:在MATLAB中,矩阵的元素乘法可以通过使用点乘运算符(.*)来实现。
例如,C = A .* B,其中A和B是相同大小的矩阵。
3. 请说明MATLAB中如何使用循环结构。
答案:MATLAB中可以使用for循环和while循环两种循环结构。
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv)12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
填空题1. MATLAB于1984年由美国Mathworks公司推出,其后每年更新(两次。
2. MATLAB是一种以(矩阵)运算为基础的交互式程序设计语言。
3. MATLAB具有卓越的数值计算能力和符号计算、文字处理、可视化建模仿真和实时控制等众多功能,其每个变量代表一个(矩阵),每个元素都看作(复数)。
4.通过命令(help)、(lookfor),可以查找所有命令或函数的使用方法。
5.执行语句a=1:2:10,得到的一维数组是(1 3 5 7 9).6.执行语句b=linspace(1,10,10)后,一维数组b包含(10)个元素,最大值是10)7.函数rem()的功能是取(余)数。
8.若p=[1 0 0;1 1 0],则p|〜p=([1 1 1;1 1 1]).(注:填空时请用本题的p的方式表示结果)9.若p=[1 0 0;1 1 0],则all(p)=([1 0 0]).10.矩阵的加减运算,要求相加减的矩阵阶数相同。
若A=[1 2 3 4;2 3 1 8],则执行语句:[n,m]=size(A),则n=(2 ),m=(4 ).11.对于一维矩阵,求其长度的函数是(length()).12.数组和数组之间的运算,尤其是对于乘除运算和乘方运算,如果采用点方式进行计算,表明是数组的(元素)之间的运算关系。
13.求矩阵运算A*B时,要求在维度上,A的(列)数与B的(行)数相等。
二、判断题1.MATLAB只有一种数据类型,一种标准的输入输出语句,不需编译,可直接运行。
(对2.MATLAB的特殊常量是一些预选定义好的数值变量。
(对3.MATLAB变量名不区分大小写。
(错4.i是特殊常量。
(对5.NAN是非数。
(对6.MATLAB中所有的变量都表示一个矩阵或一个向量。
(对7.MATLAB中变量不需要先定义后使用,会自动根据实际赋值的类型对变量类型进行定义。
(对8.clc命令可以从内存中删除一个、多个和所有变量。
MATLAB考试试题及答案一、选择题(每题5分,共25分)1. 在MATLAB中,下列哪个命令用于创建一个行向量?A. v = [1; 2; 3]B. v = [1 2 3]C. v = [1, 2, 3]D. v = (1, 2, 3)答案:B2. 在MATLAB中,下列哪个命令用于计算矩阵A的行列式?A. det(A)B. det(A')C. det(inv(A))D. det(A^2)答案:A3. 在MATLAB中,下列哪个命令用于计算矩阵A的逆?A. inv(A)B. A^(-1)C. pinv(A)D. A\B答案:A4. 在MATLAB中,下列哪个命令用于求解线性方程组Ax= b?A. A\bB. A/BC. B/AD. A^-1b答案:A5. 在MATLAB中,下列哪个命令用于绘制二维图形?A. plot(x, y)B. scatter(x, y)C. bar(x, y)D. pie(x, y)答案:A二、填空题(每题5分,共25分)6. 在MATLAB中,可以使用______命令创建一个等差数列。
答案:linspace7. 在MATLAB中,可以使用______命令创建一个等比数列。
答案:logspace8. 在MATLAB中,可以使用______命令计算矩阵A的特征值。
答案:eig(A)9. 在MATLAB中,可以使用______命令计算矩阵A的特征向量。
答案:eigenvector(A)10. 在MATLAB中,可以使用______命令计算矩阵A的奇异值。
答案:svd(A)三、解答题(每题25分,共75分)11. 编写MATLAB程序,求解以下线性方程组:2x + 3y - z = 1x - y + 2z = 03x + 2y - 4z = -3答案:```A = [2 3 -1; 1 -1 2; 3 2 -4];b = [1; 0; -3];x = A\b;disp('解为:');disp(x);```12. 编写MATLAB程序,绘制以下函数的图形:y = sin(x) + cos(x),x ∈ [0, 2π]答案:```x = linspace(0, 2pi, 100);y = sin(x) + cos(x);plot(x, y);title('y = sin(x) + cos(x)');xlabel('x');ylabel('y');grid on;```13. 编写MATLAB程序,计算以下矩阵的特征值和特征向量:A = [1 2 3; 4 5 6; 7 8 9]答案:```A = [1 2 3; 4 5 6; 7 8 9];[V, D] = eig(A);disp('特征值:');disp(diag(D));disp('特征向量:');disp(V);```14. 编写MATLAB程序,使用牛顿迭代法求解方程f(x) = x^3 - 4x + 2 = 0在x = 1附近的根。
Matlab 基础练习题常量、变量、表达式1、 MATLAB 中,下面哪些变量名是合法的?( )(A )_num (B )num_ (C )num- (D )-num 2、 在MA TLAB 中,要给出一个复数z 的模,应该使用( )函数。
(A )mod(z) (B )abs(z) (C )double(z) (D )angle(z) 3、 下面属于MATLAB 的预定义特殊变量的是?( )(A )eps (B )none (C )zero (D )exp4、 判断:在MA TLAB 的内存工作区中,存放一个英文字符 'a' 需要占用1个字节,存放一个中文字符‘啊’需要占用2个字节。
( 错,都是2个字节 )5、 判断:MA TLAB 中,i 和j ( 对 )6、 判断:MA TLAB 中,pi 代表圆周率,它等于3.14。
( 错,后面还有很多位小数 )7、 在MA TLAB 中,若想计算的51)3.0sin(21+=πy 值,那么应该在MA TLAB 的指令窗中输入的MA TLAB 指令是__y1=2*sin(0.3*pi)/(1+sqrt(5))_。
8、 在MA TLAB 中,a = 1,b = i ,则a 占_8__个字节,b 占_16_个字节,c 占________字节。
9、 在MA TLAB 中,inf 的含义是__无穷大__,nan 的含义是__非数(结果不定)___。
数组1、 在MA TLAB 中,X 是一个一维数值数组,现在要把数组X 中的所有元素按原来次序的逆序排列输出,应该使用下面的( )指令。
(A )X[end:1] (B )X[end:-1:1] (C )X (end:-1:1) (D )X(end:1) 2、 在MA TLAB 中,A 是一个字二维数组,要获取A 的行数和列数,应该使用的MATLAB的命令是( )。
(A )class(A) (B )sizeof(A) (C )size(A) (D )isa(A)3、 在MATLAB 中,用指令x=1:9生成数组x 。
matlab基础考试题及答案1. MATLAB中,如何创建一个名为"myMatrix"的3x3矩阵,其元素为1到9的连续整数?答案:可以使用以下命令创建矩阵:```matlabmyMatrix = [1 2 3; 4 5 6; 7 8 9];```或者使用`magic`函数:```matlabmyMatrix = magic(3);```2. 在MATLAB中,如何计算一个向量的元素平方?答案:可以使用`.^`运算符来计算向量元素的平方:```matlabv = [1 2 3 4];v_squared = v.^2;```3. MATLAB中,如何将一个向量逆序?答案:可以使用`flip`函数或者`end`索引来逆序一个向量:```matlabv = [1 2 3 4];v_reversed = flip(v);```或者```matlabv_reversed = v(end:-1:1);```4. 在MATLAB中,如何计算矩阵的行列式?答案:可以使用`det`函数来计算矩阵的行列式:```matlabA = [1 2; 3 4];detA = det(A);```5. MATLAB中,如何使用循环结构来计算1到100的自然数之和?答案:可以使用`for`循环来计算总和:```matlabsum = 0;for i = 1:100sum = sum + i;end```或者使用`sum`函数直接计算:```matlabsum = sum(1:100);```6. 在MATLAB中,如何创建一个复数?答案:可以通过指定实部和虚部来创建一个复数:```matlabcomplexNumber = 3 + 4i;```7. MATLAB中,如何绘制一个正弦波?答案:可以使用`plot`函数和`sin`函数来绘制正弦波:```matlabx = linspace(0, 2*pi, 100);y = sin(x);plot(x, y);```8. 如何在MATLAB中计算两个矩阵的点积?答案:可以使用`dot`函数或`*`运算符来计算两个矩阵的点积:```matlabA = [1 2; 3 4];B = [5 6; 7 8];dotProduct = dot(A, B);```或者```matlabdotProduct = A * B;```9. MATLAB中,如何使用条件语句来检查一个数是否为偶数?答案:可以使用`if`语句和模运算符来检查一个数是否为偶数:```matlabnum = 10;if mod(num, 2) == 0disp('The number is even.');elsedisp('The number is odd.');end```10. 在MATLAB中,如何将一个字符串转换为小写?答案:可以使用`lower`函数来将字符串转换为小写:```matlabstr = 'Hello World';lowerStr = lower(str);```结束语:以上是MATLAB基础考试题及答案,希望这些题目能帮助你更好地理解和掌握MATLAB的基础知识。
第1章MATLAB基础1.4MATLAB 操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?答:在MATLAB 操作桌面上有五个窗口。
在每个窗口的右上角有两个小按钮,一个是关闭窗口的Close 按钮,一个是可以使窗口成为独立窗口的Undock 按钮,点击Undock 按钮就可以使该窗口脱离桌面成为独立窗口。
在独立窗口的Desktop 菜单中选择Dock...项就可以将独立的窗口重新放置到桌面上。
1.5如何启动M文件编辑/调试器?答:在操作桌面上选择“建立新文件”或“打开文件”操作时,M 文件编辑/调试器将被启动。
在命令窗口中键入 edit 命令时也可以启动M文件编辑/调试器。
1.6存储在工作空间中的数组能编辑吗?如何操作?答:存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可。
1.7命令历史窗口除了可以观察前面键入的命令外,还有什么用途?答:命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M文件中。
1.8如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有什么区别?答:当前目录可以在当前目录浏览器窗口左上方的输入栏中设置,搜索路径可以通过选择操作桌面的file 菜单中的 Set Path菜单项来完成。
在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被 MATLAB 运行和调用,如果在当前目录上有与搜索路径上相同文件名的文件时则优先执行当前目录上的文件,如果没有特别说明,数据文件将存储在当前目录上。
1.9在MATLAB 中有几种获得帮助的途径?答:(1)帮助浏览器:选择 view菜单中的Help 菜单项或选择Help 菜单中的MATLAB Help 菜单项可以打开帮助浏览器。
(2)help命令:在命令窗口键入“help”命令可以列出帮助主题,键入“help 函数名”可以得到指定函数的在线帮助信息。
(3)lookfor 命令:在命令窗口键入“ lookfor 关键词”可以搜索出一系列与给定关键词相关的命令和函数。
(4)模糊查询:输入命令的前几个字母,然后按Tab键,就可以列出所有以这几个字母开始的命令和函数。
注意:lookfor 和模糊查询查到的不是详细信息,通常还需要在确定了具体函数名称后用help命令显示详细信息。
第2章MATLAB 矩阵运算基础5 7 32.1在MATLAB中如何建立矩阵9 ,并将其赋予变量a?4 1 答:在CommandWindow 窗口输入操作:>>a=[573;491]2.2有几种建立矩阵的方法?各有什么优点?答:(1)直接输入法,如a=[1234] ,优点是输入方法方便简捷;(2)通过M文件建立矩阵,该方法适用于建立尺寸较大的矩阵,并且易于修改;(3)由函数建立,如y=sin(x),可以由MATLAB的内部函数建立一些特殊矩阵;(4)通过数据文件建立,该方法可以调用由其他软件产生数据。
2.3在进行算术运算时,数组运算和矩阵运算各有什么要求?答:进行数组运算的两个数组必须有相同的尺寸。
进行矩阵运算的两个矩阵必须满足矩阵运算规则,如矩阵a与b相乘(a*b)时必须满足a的列数等于b的行数。
2.4数组运算和矩阵运算的运算符有什么区别?答:在加、减运算时数组运算与矩阵运算的运算符相同,乘、除和乘方运算时,在矩阵运算的运算符前加一个点即为数组运算,如a*b为矩阵乘,a.*b为数组乘。
5 3 5 2 4 22.5计算矩阵3 7 4 与67 9 之和。
7 9 8 8 3 6答:48i 35i 2 7i 1 4i 7 5i2.6求x76i 9 4i 3 9i 4 的共轭转置。
32i 4i答:2.7计算a 6 9 3 与b 2 4 1 的数组乘积。
2 7 5 4 6 8答:2.8“左除”与“右除”有什么区别?答:在通常情况下,左除x=a\b 是a*x=b的解,分母在左边。
右除x=b/a 是x*a=b的解,分母在右边。
一般情况下,a\b b/a。
4 9 2 372.9对于AX B,如果,,求解。
A7 6 4 B 263 5 7 28答:1 2 32.10已知:a4 5 6 ,分别计算a的数组平方和矩阵平方,并观察其结果。
7 8 9答:a的数组的平方:a的矩阵的平方:1 2 5 8 7 42.11a6 4 ,b6,观察a与b之间的六种关系运算的结果。
3 3 2答:2.12 a 5 0.2 0 8 0.7,在进行逻辑运算时,a相当于什么样的逻辑量。
答:相当于a=[11011] 。
2.13在sin(x)运算中,x是角度还是弧度?答:在sin(x)运算中,x是弧度,MATLAB规定所有的三角函数运算都是按弧度进行运算。
2.14角度x 30 45 60,求x的正弦、余弦、正切和余切。
答:2.15用四舍五入的方法将数组[2.4568 6.39823.9375 8.5042]取整。
答:9 1 22.16矩阵a5 6 3 ,分别对a进行特征值分解、奇异值分解、LU分解、QR分解及8 2 7Chollesky 分解。
答:4 27 15 9组合成两个新矩阵:2.17将矩阵a5 、b 和c6 278 3答:(1)组合成一个43的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素。
(2)按照a 、b 、c 的列顺序组合成一个行矢量或利用(1)中产生的d第2章基本图形处理功能2.18绘制曲线y x3x 1,x的取值范围为[-5,5]。
2.19有一组测量数据满足y e-at,t 的变化范围为0~10,用不同的线型和标记点画出a=0.1、a=0.2和a=0.5三种情况下的曲线。
2.20在5.1题结果图中添加标题y e-at,并用箭头线标识出各曲线a的取值。
2.21在5.1题结果图中添加标题y e-at和图例框。
2.22表中列出了4个观测点的6次测量数据,将数据绘制成为分组形式和堆叠形式的条形图。
第1次第2次第3次第4次第5次第6次观测点6 7 4 2 831观测点7 3 2 4 762观测点7 2 5 8 493观测点4 3 2 7 4642.23x=[66 49 71 56 38],绘制饼图,并将第五个切块分离出来。
2 22.24 z xe x y,当x和y的取值范围均为-2到2时,用建立子窗口的方法在同一个图形窗口中绘制出三维线图、网线图、表面图和带渲染效果的表面图。
2.25绘制peaks函数的表面图,用colormap 函数改变预置的色图,观察色彩的分布情况。
2.2 用sphere函数产生球表面坐标,绘制不通明网线图、透明网线图、表面图和带剪孔的表面图。
2.27将5.9题中的带剪孔的球形表面图的坐标改变为正方形,以使球面看起来是圆的而不是椭圆的,然后关闭坐标轴的显示。
第3章符号数学基础(补充)3.1创建符号变量有几种方法?答:MATLAB提供了两种创建符号变量和表达式的函数:sym和syms。
sym用于创建一个符号变量或表达式,用法如x=sym( ‘x’及)f=sym( ‘x+y+z’),syms用于创建多个符号变量,用法如symsxyz。
f=sym( ‘x+y+z’)相当于symsxyzf=x+y+z3.2下面三种表示方法有什么不同的含义?(1)f=3*x^2+5*x+2(2)f='3*x^2+5*x+2'(3)x=sym('x')f=3*x^2+5*x+2答:(1)f=3*x^2+5*x+2表示在给定x时,将3*x^2+5*x+2 的数值运算结果赋值给变量f,如果没有给定x则指示错误信息。
(2)f='3*x^2+5*x+2'表示将字符串'3*x^2+5*x+2' 赋值给字符变量f,没有任何计算含义,因此也不对字符串中的内容做任何分析。
(3)x=sym('x')f=3*x^2+5*x+2表示x是一个符号变量,因此算式f=3*x^2+5*x+2 就具有了符号函数的意义,f也自然成为符号变量了。
3.3用符号函数法求解方程at2+b*t+c=0。
答:3.4用符号计算验证三角等式:sin( 1)cos( 2)-cos( 1)sin( 2)=sin( 1- 2)答 :3.5求矩阵Aa 11 a 12 的行列式值、逆和特征根。
a 21 a 22答:3.6因式分解:x45x35x25x6答:3.7a x21,用符号微分求df/dx。
xfe ax log(x)sin( x)答:3.8求代数方程组答:ax2byc0关于x,y的解。
xy 03.9符号函数绘图法绘制函数x=sin(3t)cos(t) ,y=sin(3t)sin(t) 的图形,t的变化范围为[0,2 ]。
答:3.10绘制极坐标下sin(3*t)*cos(t) 的图形。
答:第4章MATLAB其他函数库4.1将(x-6)(x-3)(x-8)展开为系数多项式的形式。
答:4.2求解多项式x3-7x2+2x+40的根。
答:4.3求解在x=8时多项式(x-1)(x-2)(x-3)(x-4)的值。
答:4.4计算多项式乘法(x2+2x+2)(x2+5x+4)。
答:4.5计算多项式除法(3x3+13x2+6x+8)/(x+4)。
答:4.6对下式进行部分分式展开:3x42x35x24x6x53x44x32x27x2答:4x412x314x25x 9的微分和积分。
4.7计算多项式答:4.8解方程组答:29 0 133 4 11x 6 。
2 2 6 62 4 7 4 84.9求欠定方程组3 5 6 x的最小范数解。
9 5 答:4.10有一组测量数据如下表所示,数据具有y=x2的变化趋势,用最小二乘法求解y。
x 1 1.5 2 2.5 3 3.54 4.5512.16.18.26.y -1.4 2.7 3 5.9 8.42682答:4 2 64.11矩阵a7 5 4 ,计算a的行列式和逆矩阵。
3 4 9答:4.12 y=sin(x),x从0到2,x=0.02 ,求y的最大值、最小值、均值和标准差。
答:4.13 x 1 2 3 4 5,y 2 4 6 8 10 ,计算x的协方差、y的协方差、x与y的互协方差。
答:2 24.14参照例3-20的方法,计算表达式z 10x3y5e x y的梯度并绘图。
答:4.15有一正弦衰减数据y=sin(x).*exp(-x/10) ,其中x=0:pi/5:4*pi ,用三次样条法进行插值。
答:M文件编程1命令文件与函数文件的主要区别是什么?答:(1)命令文件是一系列命令的组合,函数文件的第一行必须用function 说明;(2)命令文件没有输入参数,也不用返回参数,函数文件可以接受输入参数,也可以返回参数;(3)命令文件处理的变量为工作空间变量,函数文件处理的变量为函数内部的局部变量,也可以处理全局变量。