制药化工原理:第一章第三节流体流动现象
- 格式:ppt
- 大小:711.00 KB
- 文档页数:25
第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动流场中各点流体的速度u 、压强p不随时间而变化。
轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。
平均流速流体的平均流速是以体积流量相同为原那么的。
动能校正因子实际动能之平均值与平均速度之动能的比值。
均匀分布同一横截面上流体速度相同。
均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性稳定性是指系统对外界扰动的反响。
定态性是指有关运动参数随时间的变化情况。
边界层流动流体受固体壁面阻滞而造成速度梯度的区域。
边界层别离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。
化工原理〔上〕各章主要知识点三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算第一节 流体静止的根本方程一、密度1. 气体密度:RTpM V m ==ρ2. 液体均相混合物密度:nma a a ρρρρn22111+++=〔m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组分密度〕3. 气体混合物密度:n n mρϕρϕρϕρ+++= 2211〔m ρ—混合气体的密度,ϕ—各组分体积分数〕4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体〔液体〕;假设有显著的改变那么称为可压缩流体〔气体〕。
二、.压力表示方法1、常见压力单位及其换算关系:mmHg O mH MPa kPa Pa atm 76033.101013.03.10110130012=====2、压力的两种基准表示:绝压〔以绝对真空为基准〕、表压〔真空度〕〔以当地大气压为基准,由压力表或真空表测出〕 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压三、流体静力学方程1、静止流体内部任一点的压力,称为该点的经压力,其特点为: 〔1〕从各方向作用于某点上的静压力相等;〔2〕静压力的方向垂直于任一通过该点的作用平面;〔3〕在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的上下而变化。
2、流体静力学方程〔适用于重力场中静止的、连续的不可压缩流体〕)(2112z z g p p -+=ρ)(2121z z g pg p -+=ρρ p z gp=ρ〔容器内盛液体,上部与大气相通,g p ρ/—静压头,“头〞—液位高度,p z —位压头 或位头〕上式说明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低那么压力愈大。
四、流体静力学方程的应用 1、U 形管压差计指示液要与被测流体不互溶,且其密度比被测流体的大。
测量液体:)()(12021z z g gR p p -+-=-ρρρ测量气体:gR p p 021ρ=-2、双液体U 形管压差计 gR p p )(1221ρρ-=-第二节 流体流动的根本方程一、根本概念1、体积流量〔流量s V 〕:流体单位时间内流过管路任意流量截面〔管路横截面〕的体积。
化工原理—第一章流体流动流体流动是化工工程中的重要内容之一,是指在一定的条件下,流体沿特定的路径进行移动的现象。
流体流动在化工工程中有着广泛的应用,例如在管道输送、搅拌、混合、分离等过程中都会涉及到流体的流动。
流体流动的研究内容主要包括流体的运动规律、流体的运动特性以及流体流动对设备和工艺的影响等方面。
在化工原理中,主要关注的是流体的运动规律和运动特性,以便更好地了解流体的性质和行为。
在理解流体流动性质前,首先需要了解流体分子的间隙结构。
一般来说,液体的分子之间距离较小,存在着较强的分子间吸引力,因此液体的分子有较强的凝聚力,可以形成一定的表面张力。
而气体的分子之间距离较大,分子间的相互作用力比较弱,因此气体的分子呈现无规则的运动状态。
流体流动有两种基本形式,即连续流动和非连续流动。
连续流动是指流体在管道或通道内以连续的形式流动,比较常见的有层流和湍流两种形式。
层流是指流体在管道中以层层相叠的方式流动,流速和流向都比较均匀,流线呈现平行或近似平行的形式。
层流特点是流动稳定,流速变化不大,并且流体分子之间相互滑动。
而湍流是指流体在管道中以旋转、交换和混合的方式流动,流速和流向变化较大,流线呈现随机分布的形式。
湍流特点是流动动荡,能量损失较大,并且流体分子之间会发生相互的碰撞。
流体流动的运动规律受到多种因素的影响,其中包括流体的黏度、密度、流速、管道尺寸、摩擦力等。
黏度是流体流动中的一个重要参数,它反映了流体内部分子之间相互作用的强度。
密度是流体流动中的另一个重要参数,它反映了单位体积内流体分子的数量。
流速是指流体单位时间内通过其中一横截面的体积。
流体流动对设备和工艺的影响也十分重要。
例如在管道输送过程中,流体的流速和流体动能的传递与损失会影响到输送效果和能耗;在搅拌过程中,流体的流动对传质和传热起着重要作用;在分离过程中,流体的流动会影响到分离设备的设计和操作。
因此,对流体流动的研究和掌握对于化工工程的设计和操作都具有重要意义。
化⼯原理第⼀章主要内容第⼀章流体流动流体:⽓体和液体统称流体。
流体的特点:具有流动性;其形状随容器形状⽽变化;受外⼒作⽤时内部产⽣相对运动。
质点:⼤量分⼦构成的集团。
第⼀节流体静⽌的基本⽅程静⽌流体的规律:流体在重⼒作⽤下内部压⼒的变化规律。
⼀、流体的密度ρ1. 定义:单位体积的流体所具有的质量,kg/m 3。
2. 影响ρ的主要因素液体:ρ=f(t),不可压缩流体⽓体:ρ=f(t ,p),可压缩流体3.⽓体密度的计算4.混合物的密度5.与密度相关的⼏个物理量⽐容υ⽐重(相对密度) d ⼆、压⼒p 的表⽰⽅法定义:垂直作⽤于流体单位⾯积上的⼒ 1atm=760mmHg=1.013×105Pa=1.033kgf/cm 2 =10.33mH2O 1at=735.6mmHg=9.807×105Pa =1kgf/cm 2 =10mH20 表压 = 绝对压⼒ - ⼤⽓压⼒真空度 = ⼤⽓压⼒ - 绝对压⼒三、流体静⼒学⽅程特点:各向相等性;内法线⽅向性;在重⼒场中,同⼀⽔平⾯上各点的静压⼒相等,但其值随着点的位置⾼低变化。
1、⽅程的推导 2、⽅程的讨论液体内部压强 P 随 P 0 和 h ⽽改变的; P ∝h ,静⽌的连通的同⼀种液体内同⼀⽔平⾯上各点的压强相等;当P 0改变时,液体内部的压⼒也随之发⽣相同的改变;⽅程成⽴条件为静⽌的、单⼀的、连续的不可压缩流体;h=(P-P 0)/ρg ,液柱⾼可表⽰压差,需指明何种液体。
3、静⼒学⽅程的应⽤ (1)压⼒与压差的测量 U 型管压差计微差压差计(2)液位的测定(3)液封⾼度的计算 m Vρ=(),f t p ρ=4.220M =ρ000T p p T ρρ=PM RT ρ=12121n m n a a a ρρρρ=+++1122......m n nρρ?ρ?ρ?=+++mm PM RTρ=1/νρ=41/,gh p p ρ+=0()12A C P P gR ρρ-=-() gz21A B A gR P P ρρρ+-=-第⼆节流体流动的基本⽅程⼀、基本概念(⼀)流量与流速1.流量:单位时间流过管道任⼀截⾯的流体量。
第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。
■表压/真空度 :以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。
■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。
②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。
研究生入学考试《化工原理》参考书及考试大纲参考书:1. 杨同舟,于殿宇主编,食品工程原理中国农业出版社,2011年2月第2版;2. 王志祥主编,制药化工原理,化学工业出版社,2014年9月第2版考试大纲:第0章引论0-1 化工原理的研究内容(了解)0-2 物料衡算和能量衡算(掌握)第一章流体流动第一节流体静力学原理(熟悉)1-1 流体密度和压力1-2 流体静力学基本方程式(掌握)第二节管内流体流动的基本规律(掌握)1-3 管内流动的连续性方程1-4 柏努利方程第三节流体流动现象(熟悉)1-5 流体的黏度1-6 流体流动型态1-7 流体在圆管内速度分布第四节流体流动的阻力(熟悉)1-8 管内流体流动的直管阻力1-9 管内流体流动的局部阻力第五节管路计算(掌握)1-10简单管路1-11 复杂管路第六节流量测定(了解)1-12 测速管和流量计第二章流体输送第一节离心泵(掌握)2-1离心泵的结构原理2-2 离心泵的性能2-3 离心泵的安装高度和工作点2-4 离心泵的类型和选用第二节其它类型泵(了解)2-5 往复泵2-6 旋转泵第三节风机(了解)2-7 通风机和鼓风机第三章粉碎与混合第一节粉碎(了解)3-1 粉碎的基本概念3-2 粉碎设备第二节筛分(熟悉)3-3 筛分和筛析3-4 筛分设备第三节混合(掌握)3-5 混合的基本理论3-6 液体的搅拌混合3-7乳化3-8 浆体的混合及塑性固体的捏合3-9 固体的混合第四章沉降与过滤第一节重力沉降(熟悉)4-1 颗粒在流体中的运动4-2 悬浮液的重力沉降4-3 气溶胶的重力沉降第二节过滤(掌握)4-4 过滤的基本概念4-5 过滤的基本理论4-6 过滤设备第三节离心分离(掌握)4-7 离心分离原理4-8 过滤式离心机4-9 沉降式离心机4-10 分离式离心机4-11 旋风分离器第五章传热第一节概述(理解)第二节热传导(掌握)第三节对流传热(掌握)第四节传热计算(掌握)第五节换热器(理解)第六章蒸发第一节蒸发概述(了解)6-1 食品物料蒸发6-2 蒸发的操作方法第二节蒸发器(熟悉)6-3 蒸发器6-4 蒸发的辅助设备第三节单效蒸发(掌握)6-5 蒸发器的换热误差6-6 单效蒸发的计算第四节多效蒸发(了解)6-7 多效蒸发流程和温差分配6-8 多效蒸发的计算第七章干燥第一节干燥的基本原理(掌握)7-1 干燥的目的和方法7-2 湿物料中的水分7-3 干燥静力学7-4干燥动力学第二节干燥设备(熟悉)7-5 对流干燥设备7-6其它干燥设备第三节喷雾干燥(熟悉)7-7 喷雾干燥原理及应用7-8 喷雾干燥设备第八章萃取第一节液-液萃取(熟悉)10-1 液-液萃取的基本原理10-2 液-液萃取过程第二节浸取(了解)10-3 浸取的基本原理10-4 浸取流程和设备10-5 多级逆流浸取级数的计算第三节超临界流体萃取(熟悉)10-6 超临界流体萃取的基本原理10-7 超临界流体萃取在食品、药品工业中的应用第九章膜分离第一节膜及膜分离器(熟悉)11-1 分离膜11-2 膜分离器第二节反渗透和超滤(熟悉)11-3 反渗透的基本原理11-4 反渗透的实际过程11-5 超滤和微孔过滤11-6 超滤和反渗透在食品工业中的应用第三节电渗析(了解)11-7 电渗析的基本原理和概念11-8 电渗析装置系统计算题主要在第一、二和第五章。
第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。
表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。
此方程式只适用于静止的连通着的同一种连续的流体。
应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s 质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = m S =GA=π/4d 2G V S =uA=π/4d 2u● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。
第一章: 流体流动流体流动是化工厂中最基本的现象。
在化工厂内,不论是待加工的原料或是已制成的产品,常以液态或气态存在。
各种工艺生产过程中,往往需要将液体或气体输送至设备内进行物理处理或化学反应,这就涉及到选用什么型式、多大功率的输送机械,如何确定管道直径及如何控制物料的流量、压强、温度等参数以保证操作或反应能正常进行,这些问题都与流体流动密切相关。
流体是液体和气体的统称。
流体具有流动性,其形状随容器的形状而变化。
液体有一定的液面,气体则否。
液体几乎不具压缩性,受热时体积膨胀的不显著,所以一般将液体视为不可压缩的流体。
与此相反,气体的压缩民很强,受热时体积膨胀很大,所以气体是可压缩的流体。
如果在操作过程中,气体的温度和压强改变很小,气体也可近似地按不可压缩流体来处理。
流体是由大量的不断作不规则运动的分子组成,各个分子之以及分子内部的原子之间均保留着一定的空隙,所以流体内部是不连续而存在空隙的,要从单个分子运动出发来研究整个流体平衡或运动的规律,是很困难而不现实。
所以在流体力学中,不研究个别分子的运动,只研究由大量分子组成的分子集团,设想整个流体由无数个分子集团组成,每个分子集团称为“质点”。
质点的大小与它所处的空间在、相比是微不足道的,但比分子自由程要大得多。
这样可以设想在流体的内部各个质点相互紧挨着,它们之间没有任何空隙而成为连续体。
用这种处理方法就可以不研究分子间的相互作用以及复杂的分子运动,主要研究流体的宏观运动规律,而把流体模化为连续介质,但不是所有情况都是如此的,高真空度下的气体就不能视为连续介质了。
液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小;无固定形状,随容器的状而变化;在外力作用下其内部发生相对运动。
化工生产的原料及产品大多数是流体。
在化工生产中,有以下几个主要方面经常要应用流体流动的基本原理及其流动规律:(1) 管内适宜流速、管径及输送设备的选定;(2) 压强、流速和流量的测量;(3) 传热、传质等过程中适宜的流动条件的确定及设备的强化。
化工原理各章节知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)第一章?流体流动质点?含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定?假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法?选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法?在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动?流场中各点流体的速度u?、压强p?不随时间而变化。
轨线与流线?轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体?系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别?理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质?分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能?流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别?流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义?流体流动中的位能、压强能、动能之和保持不变。
平均流速?流体的平均流速是以体积流量相同为原则的。
动能校正因子?实际动能之平均值与平均速度之动能的比值。
均匀分布?同一横截面上流体速度相同。
均匀流段?各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,?故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别?是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性?稳定性是指系统对外界扰动的反应。