机械设计课程设计蜗杆
- 格式:doc
- 大小:3.89 MB
- 文档页数:39
课程名称:机械设计课程设计设计题目:单级蜗杆减速器院系:工业制造学院班级:2020级2班设计者:不能告知你学号:指导教师:设计时刻:2021/9/15传动装置简图1—电动机二、4—联轴器3—一级蜗轮蜗杆减速器5—传动滚筒6—输送带一:选择电机按工作要求和工作条件选择YB 系列三相鼠笼型异步电动机,其结构为全封锁式自扇冷式结构,电压为380V 。
2.选择电机的容量 3.工作机的有效功率为kW Fv P W 394.1100068.020501000=⨯==从电动机到工作机输送带间的总效率为432221ηηηηη⋅⋅⋅=∑式中:。
蜗杆传动和卷筒的效率分别为联轴器、轴承、-4321,,,ηηηη72.096.078.098.098.096.078.098.098.01.9224321=⨯⨯⨯=====∑ηηηηη,则、、、取由表因此电动机所需的工作功率为kW P P Wd 936.172.0394.1===∑η3.确信电动机的转速由于蜗杆的头数越大,效率越低,先选择蜗杆的头数Z 1=1,所算出的传动比不在推荐范围内。
应选那么蜗杆的头数Z 1=2工作机卷筒的转速为比,一级蜗杆减速器传动推荐的传动比合理范围按表,40~101.9'=∑imin/5225068.01000601000600r d v n W ≈⨯⨯⨯=⨯=ππ因此电动机转速可选的范围为min/)2080~520(52)40~10('r n i n W d =⨯==∑符合这一范围的同步转速为750r/min 、1000r/min 和1500r/min 。
综合考虑电动机和传动装置的尺寸、质量及价钱等因素,为使传动装置结构紧凑,决定选用同步转速为1000r/min 的电动机。
依照电动机的类型、容量和转速,由机械设计手册选定电动机的型号为YB112M-6,其要紧性能如表1.1所示,电动机的要紧外形尺寸和安装尺寸如表1.2所示。
表1.1YB112M-6型电动机的要紧性能表1.2电动机的要紧外形和安装尺寸(单位mm ) 二.计算传动装置的总传动比并分派传动比 1.总传动比07.18529401====∑W m n n i i三.计算传动装置各轴的运动和动力参数 1.各轴的转速 1轴n 1=n m =940r/min 2.轴的输入功率1轴kW P P d 897.198.0936.111=⨯==η2轴kW P P 550.178.0897.1312=⨯==η 卷筒轴kW 489.198.098.0550.1P 212=⨯⨯==ηη卷P3.各轴的输入转矩 电动机的输出转矩T d 为mm N T d ⋅=⨯⨯=9.19668940936.11055.96故1轴mm N T T d ⋅=⨯==5.1927598.09.1966811η2轴mmN i T T ⋅⨯=⨯⨯==531121072.206.1878.05.19275η卷筒轴mmN 1061.298.098.01072.2T 56212⋅⨯=⨯⨯⨯==ηη卷T将上述计算结果汇总于表1.3,以备查用四.传动零件的设计计算 1.涡轮蜗杆的材料选择蜗杆材料选用45钢,整体调质,表面淬火,齿面硬度45~50HRC 蜗轮材料,依照)/(102.53214s m T n v s -⨯= 其中n 1为蜗杆转速,T 2为蜗轮转矩初估蜗杆副的滑动速度v s =3.2m/s ,选择蜗轮的材料为无锡青铜 2.按疲劳强度设计,依照公式222)][(9H z z KT d m σε≥为材料的许用应力为系数为系数,为蜗轮的转矩,为蜗轮的齿数,其中][,K z T z 2H σε15.115.10.10.1K K K K 0.1K 1.0K 15.1K v A v A =⨯⨯=====ββ、、及载荷情况取根据减速器的工作环境MPa H 160][MPa 160z ==σε,通过查表取36z ,16.36206.18212==⨯==取iz z 那么有325222.2172)36160160(1072.215.19mm d m =⨯⨯⨯⨯⨯≥由表取m=6.3,蜗杆分度圆直径d 1=63 蜗杆倒程角︒=⨯==31.11)633.62arctan()arctan(11d mz γ蜗轮圆周速度sm n d v /62.010*******.22614.3100060222=⨯⨯⨯=⋅=π蜗杆副滑动速度m/s16.331.11cos 1000609406314.3cos 100060n d 11=⨯⨯⨯⨯=⨯=γπs v蜗轮圆周速度sm v v v s /10.362.016.3222221=-=-=应选择减速器的类型为蜗杆下置则涡轮蜗杆的传动效率查表取当量摩擦角'172v ︒=ρ)80.0~78.0()6017231.11tan(31.11tan )96.0~95.0()tan(tan )96.0~95.0(=÷++=+=v ργγη符合初取的效率值涡轮蜗杆的尺寸计算 蜗轮分度圆直径8.226363.622=⨯==mz d 中心距9.14428.22663221=+=+=d d a变位系数016.03.69.144145'=-=-=m a a x热平稳计算:依照公式)()1(1000011t t K P A s --=η该设计的减速器工作环境是煤场,故取油温t=70℃。
机械设计课程设计蜗轮蜗杆减速器的设计一、选择电机1)选择电动机类型按工作要求和工作条件选用Y系列三相异步电动机。
2)选择电动机的容量工作机的有效功率为从电动机到工作机输送带间的总效率为=式中各按【1】第87页表9.1取η-联轴器传动效率:0.991η-每对轴承传动效率:0.982η-涡轮蜗杆的传动效率:0.803η-卷筒的传动效率:0.964所以电动机所需工作功率3)确定电机转速工作机卷筒的转速为所以电动机转速的可选范围是:符合这一范围的转速有:750、1000、1500三种。
综合考虑电动机和传动装置尺寸、质量、价格等因素,为使传动机构结构紧凑,决定选用同步转速为1000。
根据电动机的类型、容量、转速,电机产品目录选定电动机型号Y112M-6,其主要性能如下表1:/(9402 确定传动装置的总传动比和分配传动比:总传动比:3 计算传动装置各轴的运动和动力参数: 1)各轴转速:Ⅰ轴Ⅱ轴卷筒轴 2)各轴输入功率: Ⅰ轴 Ⅱ轴卷筒轴3) 各轴输入转矩:电机轴的输出转矩Ⅰ轴Ⅱ轴卷筒轴运动和动力参数结果如下表:940二、涡轮蜗杆的设计1、选择材料及热处理方式。
考虑到蜗杆传动传递的功率不大,速度也不高,蜗杆选用45号刚制造,调至处理,表面硬度220250HBW;涡轮轮缘选用铸锡磷青铜,金属模铸造。
2、选择蜗杆头数和涡轮齿数i=15.16 =2 =i=215.16303、按齿面接触疲劳强度确定模数m和蜗杆分度圆直径1)确定涡轮上的转矩,取,则2)确定载荷系数K=根据工作条件确定系数=1.15 =1.0 =1.1K==1.15 1.0 1.1=1.2653)确定许用接触应力由表查取基本许用接触应力=200MPa应力循环次数 N=故寿命系数4)确定材料弹性系数5)确定模数m和蜗杆分度圆直径查表取m=6.3mm,=80mm4、计算传动中心距a。
涡轮分度圆直径a=满足要求5、验算涡轮圆周速度、相对滑动速度及传动效率<3符合要求tan=0.16,得=8.95°由查表得当量摩擦角=1°47,所以=0.790.80与初值相符。
课程设计单级蜗杆减速器一、课程目标知识目标:1. 理解并掌握单级蜗杆减速器的基本结构、工作原理及用途。
2. 掌握蜗杆减速器的主要参数计算方法,如蜗杆直径、蜗轮齿数、传动比等。
3. 了解蜗杆减速器的优缺点以及在使用过程中应注意的问题。
技能目标:1. 能够阅读并分析蜗杆减速器的工程图,识别其主要部件和参数。
2. 能够运用所学知识,进行简单的蜗杆减速器设计计算。
3. 能够运用所学知识,对蜗杆减速器进行简单的故障分析和维护。
情感态度价值观目标:1. 培养学生对机械传动装置的兴趣,激发其探索精神和创新意识。
2. 增强学生的团队合作意识,培养其在工程实践中的沟通与协作能力。
3. 强化学生对产品质量和安全意识的认识,使其在实际工作中能够遵循规范,确保设备运行安全。
课程性质分析:本课程为机械设计基础课程,旨在帮助学生掌握单级蜗杆减速器的原理、设计和应用,提高学生的实际操作能力。
学生特点分析:学生处于高年级阶段,具备一定的机械基础知识,具备一定的自学和动手能力,但对复杂机械设备的了解有限。
教学要求:结合学生特点,注重理论与实践相结合,强调实际操作能力的培养,使学生在掌握基本知识的同时,能够解决实际问题。
通过本课程的学习,学生能够具备蜗杆减速器的基本设计和应用能力,为后续相关课程和实际工作打下坚实基础。
二、教学内容1. 引言:介绍蜗杆减速器的定义、分类以及在工业中的应用。
相关教材章节:第一章第二节。
2. 单级蜗杆减速器的基本结构和工作原理:- 蜗杆、蜗轮的结构特点及其材料选择。
- 蜗杆与蜗轮的啮合原理、传动特点。
相关教材章节:第二章第一、二节。
3. 蜗杆减速器的参数计算与设计:- 蜗杆直径、蜗轮齿数、传动比的计算方法。
- 蜗杆减速器的强度计算。
- 蜗杆减速器的设计步骤。
相关教材章节:第三章第一节、第二节。
4. 蜗杆减速器的优缺点及使用注意事项:- 蜗杆减速器的优点、缺点分析。
- 蜗杆减速器在使用过程中的维护与保养。
六、滚动轴承的选择及计算 (24)6.1.高速轴滚动轴承校核 (24)6.2.低速轴滚动轴承校核 (25)设计题目:链式运输机传动装置一、传动方案的确定1.4设计工作量减速器装配图一张;零件图4张;设计说明书一份。
二、电动机的选择及传动装置的运动及动力参数计算则_^D5Dd55电动机数据引自[5]第152页第155因此初步取综合比较传动比范围,则齿轮的传动比效率3.1蜗轮蜗杆传动的设计计算由前计算可知,轴的输出功率为P=1.12kW,蜗杆转速=1450 _8D8D传动比确定作用在齿轮上的转矩(2).确定载荷系数K因工作载荷较稳定,故取载荷分布不均系数;由参考文献[2]表11-5选取使用系数;由于转速不高,冲击不大,可选取动267~268页, 参考文献[3]第37~38页载荷系数确定弹性影响系数因选用的是铸锡磷青铜蜗轮和钢蜗杆配合,故选确定许用接触应力(5).计算的值因12Z =,由参考文献[2]表11-22取模数m=4,蜗杆分度圆直径1d 40mm =。
④.蜗杆与蜗轮的主要参数和几何尺寸(1).中心距124044410822d d a mm ++⨯===中心距不符合5的倍数圆整至 a 110w =,则变位系数为0.5w a a x m-==(2).蜗杆尺寸分度圆直径:140d qm ==,所以q 10=节圆直径:1(2)4(1020.5)44w d m q x mm =+=⨯+⨯=齿顶圆直径:112402448a d d m mm =+=+⨯=齿根圆直径:111122 1.2402 1.2430.4f f d d h d m mm =-=-⨯=-⨯⨯=蜗杆齿宽:12(13.50.1)(13.50.144)471.6b z m ≥+⨯=+⨯⨯=取80mm(3).蜗轮尺寸分度圆直径:22444176d mz mm ==⨯=节圆直径:22176w d d mm ==齿顶圆直径:222222(1)17624(10.5)188a a d d h d m x mm =+=++=+⨯⨯+=[2]246页表11-3(2).计算小齿轮传递扭矩:T 1=9.55×610×P/n 1=9.55×610×0.864/63.6=129736 N ·mm(3).由参考文献[2]表10-7选取齿宽系数d φ=0.5计算数N1=60jn1L h=60×1×63.6×22400=855×107;N2=60jn2L h=60×1×15.9×22400=855×107得齿轮计算公式和有关系数皆引自查参考文献[2]第公式引自参考文献[2]式10-5=212.14MPa=④参数计算(1)计算分度圆直径d1=_57=28.5mm根据参考文献[2]P115表16-2,取A=110,主要参数:②计算作用在轴上的力蜗轮受力分析径向力:轴向力:③计算支反力:水平面:因为和左右关于C点对称,受力相互对称,所以垂直面:由,得:由④作弯矩图水平面弯矩:垂直面矩:合成弯矩:⑤作转矩图⑥按弯扭合成应力校核轴的强度.号钢,调质处理,其拉伸强度极限(3)按弯扭合成应力校核轴的强度①轴的计算简图(见图)蜗轮受力分析圆周力:径向力:轴向力:③计算支反力:水平面:因为和左右关于C点对称,受力相互对称,所以垂直面:由,得:由④作弯矩图水平面弯矩:垂直面矩:合成弯矩:⑤作转矩图⑥按弯扭合成应力校核轴的强度.轴的材料是45号钢,调质处理,其拉伸强度极限[_###) ]_21D21D由附图零件图1可知.蜗轮轴各处轴径相近.但C截面处轴弯矩明显大于其它轴段.故截面C处为危险截面。
机械设计基础第12章蜗轮蜗杆蜗轮蜗杆是一种常见的传动机构,广泛应用于机械设备中。
蜗轮蜗杆传动具有体积小、传动比大、传动平稳等特点,在机械设计中有着重要的应用价值。
蜗轮蜗杆传动是一种通用型的不可逆传动,典型的结构包括蜗轮和蜗杆两个部分。
蜗轮是一种螺旋状的齿轮,其齿面与蜗杆的蜗杆螺旋面相配合。
蜗杆是一种具有螺旋线形状的轴,其作为传动元件,通过旋转运动驱动蜗轮。
蜗轮齿与蜗杆螺旋线的位置关系使得蜗轮只能顺时针旋转,而无法逆时针旋转。
这种结构特点决定了蜗轮蜗杆传动是一种不可逆传动。
蜗轮蜗杆传动的主要工作原理是靠蜗杆的螺旋面与蜗轮的齿轮面的啮合来实现传动。
在传动过程中,蜗杆通过旋转带动蜗轮转动,从而实现动力传递。
由于蜗杆的螺旋面与蜗轮的齿轮面接触面积小,所以传动效率相对较低。
为了提高传动效率,降低摩擦损失,需要在蜗轮齿面和蜗杆螺旋面之间添加润滑油。
蜗轮蜗杆传动具有很高的传动比,可达到1:40以上,因此在机械设备中常常使用蜗轮蜗杆传动来实现大速比的传动。
例如在起重机构中,通常采用蜗轮蜗杆传动来提高起重高度。
此外,蜗轮蜗杆传动还可以实现两个轴的不同速度传动,例如在机械车床中使用蜗轮蜗杆传动来实现工件的不同转速。
在机械设计中,蜗轮蜗杆传动的设计需要根据实际应用情况确定传动比、工作环境要求等参数。
首先需要确定传动比,在确定传动比的同时要考虑传动效率和传动正反转的能力。
其次,需要根据工作环境来选择蜗杆和蜗轮的材料,以提高传动的可靠性和耐用性。
还需要注意蜗杆和蜗轮的几何尺寸和配合精度,以保证传动的准确性和稳定性。
此外,在设计过程中还需要进行强度校核、轴承选择等工作,以确保传动的安全可靠。
总之,蜗轮蜗杆传动在机械设计中具有重要的应用价值。
它的特点是传动比大、传动平稳,适用于需要大速比、不可逆传动的场合。
在设计蜗轮蜗杆传动时,需要根据实际应用情况,确定传动比、材料、尺寸、配合精度等参数,以保证传动的稳定性和可靠性。
机械设计基础第12章蜗轮蜗杆分析蜗轮蜗杆传动是一种常见的传动结构,具有传动比大、传动平稳、结构紧凑等优点。
在机械设计中,蜗轮蜗杆传动的分析和设计至关重要。
本文将详细介绍蜗轮蜗杆传动的原理、分析方法和设计要点。
1.原理蜗轮蜗杆传动是由蜗轮和蜗杆组成的一对斜面传动。
蜗轮有多个齿槽,蜗杆有一根螺旋斜面。
当蜗杆旋转时,通过螺旋斜面与蜗轮的齿槽作用,产生转动传递。
由于蜗杆螺旋斜面的斜度较大,所以每转动一圈,蜗轮只转动少量的角度,这就实现了较大的传动比。
2.分析方法蜗轮蜗杆传动的分析主要包括力学分析和几何分析。
力学分析:(1)传动比计算:蜗轮蜗杆传动的传动比可以根据蜗轮的齿数和蜗杆的斜度来计算,传动比=(蜗轮的齿数)/(蜗杆的斜度)。
(2)传动效率计算:蜗轮蜗杆传动的传动效率通常较低,主要受到摩擦损失和滑动损失的影响。
传动效率可以根据摩擦系数和滑动速度来计算。
(3)定位力计算:蜗轮蜗杆传动中,由于蜗轮与蜗杆之间的斜面接触,会产生一定的定位力。
定位力会严重影响传动的稳定性和精度,需进行合理计算和设计。
几何分析:(1)蜗轮参数计算:根据给定的传动比和蜗杆参数,可以计算蜗轮的齿数和齿轮分度圆直径。
(2)蜗杆参数计算:根据给定的传动比和蜗轮参数,可以计算蜗杆的斜度和蜗杆的导程。
(3)轴距计算:蜗轮和蜗杆的轴距是影响传动稳定性和效率的重要参数,需进行合理计算和确定。
3.设计要点(1)选取合适的材料:蜗轮蜗杆传动通常承受较大的扭矩和摩擦力,所以需选取能够承受高载荷和高摩擦的材料,如合金钢等。
(2)控制传动误差:蜗轮蜗杆传动的传动准确性较低,会产生一定的传动误差。
为了减小传动误差,需进行合理的加工和装配,并采用合适的润滑和控制措施。
(3)考虑安装和维修:蜗轮蜗杆传动通常安装在机械设备内部,为方便安装和维修,在设计时需要考虑蜗轮蜗杆传动的拆卸和装配便捷性。
总结:蜗轮蜗杆传动是一种重要的传动结构,在机械设计中具有广泛应用。
通过对蜗轮蜗杆传动的深入分析和合理设计,可以提高传动的效率和稳定性,满足机械设备的传动需求。
机械设计蜗轮蜗杆蜗轮蜗杆是一种常见的传动装置,常用于机械中的减速装置。
它由蜗轮和蜗杆两部分组成,通过它们之间的啮合作用来实现传动。
蜗轮蜗杆传动具有传动比大、传动平稳、紧凑结构等优点,广泛应用于机械中。
首先介绍蜗杆的设计。
蜗杆是一种旋转的锥面,并且蜗杆的螺旋线与轴线呈一定的螺距,以便与蜗轮进行啮合。
蜗杆的设计中,需要确定螺距和蜗杆的压力角。
螺距决定了蜗杆传动时的速比,一般情况下,蜗杆的螺距越小,速比越大。
压力角则是蜗杆传动的另一个重要参数,它决定了蜗轮蜗杆传动的传动效率。
一般情况下,蜗杆的压力角应该选择在20°~30°之间。
其次是蜗轮的设计。
蜗轮是一个圆柱形的齿轮,蜗轮的齿数一般比蜗杆的螺旋线的圈数少一个。
蜗轮的设计需要确定齿数、齿轮模数和齿形等参数。
齿数决定了蜗轮的啮合角,一般情况下,蜗轮的啮合角应该在15°~25°之间。
齿轮模数则是决定蜗轮齿形的重要参数,一般情况下,模数应该选择在蜗轮齿高的0.3~0.5倍之间。
在蜗轮蜗杆传动的设计中,还需要考虑到蜗轮和蜗杆的材料选择以及传动装置的润滑和冷却等问题。
一般情况下,蜗轮和蜗杆的材料应该选择强度高、硬度大的材料,以保证传动装置的使用寿命。
传动装置的润滑和冷却则可以采用润滑油和冷却水等方式进行。
在实际的机械设计中,蜗轮蜗杆传动常常用于对转速要求较低、扭矩要求较大的场合。
例如,蜗轮蜗杆传动常用于一些矿山、冶金、化工等行业的设备中,用来实现减速装置的功能。
总的来说,蜗轮蜗杆传动是一种常用的传动装置,其优点包括传动比大、传动平稳、紧凑结构等。
在设计过程中需要考虑到蜗杆和蜗轮的参数选择、润滑和冷却等问题,以保证传动装置的性能和使用寿命。
设计小结
机械设计课程设计是机械设计这门课程中的最后一个环节,也是最考验我们平时学习成果的一个环节。
本次课程设计历时三个星期,在设计的过程中,我收获了很多,学习到了很多平常都没有学习到的知识,同时也体验了一把作为设计人员的酸甜苦辣,获益匪浅。
机械设计课程设计是机械设计课程的一个重要环节,它可以让我们进一步巩固和加深学生所学的理论知识,通过设计把机械设计及其他有关先修课程(如机械制图、理论力学、材料力学、工程材料等)中所获得的理论知识在设计实践中加以综合运用,使理论知识和生产实践密切的结合起来。
而且,本次设计是我们首次进行完整综合的机械设计,它让我树立了正确的设计思想,培养了我对机械工程设计的独立工作能力;让我具有了初步的机构选型与组合和确定传动方案的能力;为我今后的设计工作打了良好的基础。
这次课程设计我设计的是蜗轮蜗杆减速器,由于理论知识的不足,再加上平时没有什么设计经验,一开始的时候有些手忙脚乱的,不知道从何入手。
在刘老师的大力帮助下,终于慢慢的走上了正轨。
在设计的过程中还是遇到了各中困难,由于我设计的是蜗轮蜗杆减速器,参考的资料相对比较少,部分数据查找起来有困难,但还是借助网络的力量查找到了相应的数据。
后来,在轴的设计过程中又遇到了麻烦,还好在刘老师的无私帮助下,顺利解决了蜗轮轴以及蜗杆轴的设计。
现在,课程设计终于接近尾声了,回顾这三周的风风雨雨,自己也是感慨万千。
“世上无难事,只怕有心人”,现在我终于能够理解它的深刻内涵了。
在此,我感谢同学们帮助我一起探讨、解决问题,衷心感谢刘鹄然老师在这三周里为我们付出了这么多,课程设计的成功,有刘老师的一半功劳!再次对刘老师的无私奉献致以最衷心的感谢!。
机械设计课程设计蜗杆 The Standardization Office was revised on the afternoon of December 13, 2020
机械设计课程设计
计算说明书
设计题目链式运输机传动装置
专业班级
设计者
指导教师
目录
一设计任务书 (3)
二传动方案的拟定 (4)
三电动机的选择及传动装置的运动和动力参数计算 (6)
四传动零件的设计计算 (11)
1. 蜗杆及蜗轮的设计计算 (11)
2. 开式齿轮的设计计算 (15)
五蜗轮轴的设计计算及校核 (20)
六轴承及键的设计计算及校核 (28)
七箱体的设计计算 (33)
八减速器结构与附件及润滑和密封的概要说明 (35)
九设计小结 (38)
十参考文献 (39)
一.设计任务书
(1)设计题目:链式运输机传动装置
设计链式运输机的动装置,如图所示。
工作条件为:链式输送机在常温下工作,负荷基本平稳,输送链工作速度V的允许误差为±5%;两班连续工作制(每班工作8h),要求减速器设计寿命为5年,每年280个工作日。
(2)原始数据
二. 传动方案的拟定
运输机牵引力
F(KN)
鼓轮圆周速度(允许误差
±%5)V(m/s)
鼓轮直径D
(mm)
350
(1)传动简图
(2)传动方案分析
机器一般是由原动机、传动装置和工作机三部分组成。
传动装置在原动机与工作机之间传递运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。
传动装置是否合理将直接影响机器的工作性能、重量和成本。
合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为链轮输送机。
本传动方案采用了三级传动,第一级传动为单级蜗轮蜗杆减速器,第二级传动为开式齿轮传动,第三极为链轮传动。
蜗轮蜗杆传动可以实现较大的传动比,结构尺寸紧凑,传动平稳,但效率较低,应布置在高速级;开式齿轮传动的工作环境较差,润滑条件不好,磨损较严重,应布置在低速级;链传动的运动不均匀,有冲击,不适于高速传动,故布置在传动的低速级。
减速器的箱体采用水平剖分式结构,用HT100灰铸铁铸造而成。
该工作机采用的是原动机为Y系列三相笼型异步电动机,电压380 V,其结构简单、工作可靠、价格低廉、维护方便,另外其传动功率大,传动转矩也比较大,噪声小,在室内使用比较环保。
由于三相电动机及输送带工作时都有轻微振动,所以采用弹性联轴器能缓冲各吸振作用,以减少振动带来的不必要的机械损
1 MPa
2
s
σ=355Mpa,
1-
σ=275Mpa,
1-
τ=155Mpa,]
[
1-
σ=60Mpa。
(2)求蜗轮轴上的功率、转速和转矩
由前面计算可知
n3= n1/1i =1390/=min
P3=P3=P2×η滚动轴承×η蜗杆=××=
T2= T d×η滚动轴承×η联轴器=××=•
(3)求作用在蜗轮上的力
切向力N
d
T
F
t
30
.
413
2
2
2=
=
轴向力N
d
T
F
a
62
.
81
2
1
1=
=
径向力N
F
F
t
r
51
.
152
tan=
=α
(4)初步确定轴的最小直径
查《机械设计》(表15-3)先初步校核估算轴的最小直径,取A=112
mm
n
P
A
d52.22
72
.
44
3632
.0
1123
3
2
2=
⨯
=
≥
(5)轴的结构设计
[1]初选轴承
初步选择滚动轴承。
因轴承同时受有径向和轴向力的作用,故选用圆锥滚子轴承;参照工作要求,由轴承产品目录中初步选取0基本游隙组、标准精度级的圆锥滚子轴承。
查《机械设计课程设计手册》(表9-3)初选型号为30209。
m m
⋅
② 在水平面上 计算支反力: 21NH NH t F F F +=N
2211L F L F NH NH ⋅=⋅
得:N F F NH NH 5.49821== 计算弯矩:
m
N M ⋅=03.361
m
N M ⋅=27.272
108323
=W
MPa ca 1.5=σ
2)寿命计算
①求两轴承受到的径向载荷
1r
F ,
2r
F
将轴系部件受到的空间力系分解为铅垂面(图B)和水平面
(图C)两个平面力系。
其中:图C中的 Fte为通过另加转矩而
平移到指定轴线;图A中的Fae亦应通过另加弯矩而平移到作用
于轴线上。
由分析可知
Y=
N
F
d
65
.
72
1
=
N
F d65.72
2
=
N
F
a
67
.
176
1
=
N
F
a
65
.
72
2
=
4.0
1
=
X
6.1
1
=
Y
1
2
=
X
2
=
Y
1.1
=
p
f
N
P22
.
413
1
=
d=26mm。