双机通讯实验报告
- 格式:doc
- 大小:210.67 KB
- 文档页数:11
双机通信实验报告双机通信实验报告引言:双机通信是一种重要的通信方式,它可以实现两台计算机之间的数据传输和信息交流。
在现代信息技术的发展下,双机通信在各个领域得到了广泛的应用,如互联网、电子商务、远程教育等。
本实验旨在通过搭建一个简单的双机通信系统,探究其原理和应用。
一、实验设备与步骤1. 实验设备:本次实验使用了两台计算机,一台作为发送端,另一台作为接收端。
另外,还需要一个网络连接设备,如交换机或路由器。
2. 实验步骤:首先,将两台计算机通过网络连接设备连接起来,确保网络连接正常。
然后,在发送端计算机上打开通信软件,并进行相应的设置。
接下来,在接收端计算机上也打开相同的通信软件,并进行设置。
最后,通过发送端计算机向接收端计算机发送消息,观察消息是否能够成功传输。
二、实验原理1. 双机通信的基本原理:双机通信是通过计算机网络实现的。
计算机网络由多台计算机和网络连接设备组成,通过网络连接设备将这些计算机连接在一起。
在双机通信中,发送端计算机将要传输的数据打包成数据包,并通过网络连接设备发送给接收端计算机。
接收端计算机接收到数据包后,将其解包并还原成原始数据。
这样,发送端计算机和接收端计算机之间就实现了数据的传输和通信。
2. 实验中使用的通信软件:在本次实验中,我们使用了一款常见的通信软件来实现双机通信。
该软件提供了用户界面,可以方便地设置通信参数和进行通信操作。
通过该软件,我们可以设置发送端和接收端的IP地址、端口号等参数,以及发送和接收消息的内容。
三、实验结果与分析在实验中,我们成功地搭建了一个双机通信系统,并进行了通信测试。
通过发送端计算机向接收端计算机发送消息,我们观察到消息能够成功传输,并在接收端计算机上显示出来。
这表明我们的双机通信系统正常工作。
双机通信的应用非常广泛。
在互联网上,双机通信被广泛应用于电子邮件、即时通讯等服务中。
通过双机通信,人们可以迅速方便地与他人进行沟通和交流。
在电子商务领域,双机通信也被用于在线支付、订单处理等环节,保证了交易的安全和顺利进行。
双机通讯实验报告双机通信实验报告一、实验目的通过本次实验,目的在于掌握双机通信的基本原理和实现方法,并学习使用标准通信协议。
二、实验原理1.双机通信的基本原理双机通信是指两台独立工作的计算机之间进行数据传输和交流的过程。
双机通信可以通过物理连接(如串口、并口等)或网络连接(如以太网、局域网等)进行。
2.串口通信原理串口通信是最常见的双机通信方式之一、串口通信是指通过串行接口进行数据传输。
在串口通信中,数据位、波特率、校验位等参数需要进行设置。
通过使用串口线将两台计算机的串口连接,可以实现数据的互传和通信。
三、实验步骤1.准备工作(1)在两台计算机上安装串口驱动程序。
(2)将两台计算机通过串口线连接。
2.设置参数(1)打开计算机的设备管理器,找到串口的端口号。
(2)在串口通信软件上,根据设备管理器上的端口号设置串口的属性,包括波特率、数据位、校验位等。
3.建立连接(1)在发送端的计算机上,打开串口通信软件。
(2)在接收端的计算机上,也打开串口通信软件,并设置与发送端相同的参数。
4.进行通信(1)在发送端的计算机上,输入要发送的数据。
(2)点击发送按钮,数据会通过串口线发送到接收端的计算机。
(3)接收端的计算机会接收到数据,并在串口通信软件中显示。
四、实验数据与结果通过本次实验,我们实现了两台计算机之间的双机通信。
在发送端的计算机上,我们输入了字符串“Hello, World!”并通过串口发送到接收端的计算机。
在接收端的计算机上,我们成功收到了发送的数据,并在串口通信软件中显示出来。
五、实验分析与讨论通过本次实验,我们学会了使用串口通信实现两台计算机之间的双机通信。
串口通信具有轻量级、传输速度快的特点,适用于小型数据的传输和通信。
但是串口通信的距离受限,通信距离较短。
六、实验总结通过本次实验,我们深入了解了双机通信的实现原理和方法,并了解了串口通信的基本原理和设置方法。
通过实际操作,我们掌握了串口通信的步骤和技巧。
单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。
二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。
数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。
2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。
3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。
通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。
4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。
5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。
三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。
2. 实验软件:Keil C51集成开发环境。
四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写发送端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。
(4)循环发送指定的数据。
2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写接收端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。
实验七、双机通信实验 一、实验目的掌握单片机串行口的工作原理及编程。
二、实验内容用两台单片机进行双机通讯,主控制器识别到按键按下,控制从机显示0-9字符。
三、实验接线图四、实验程序1、程序流程图如图7-1所示。
主机识别到键按下,向从机发送数据块长度、0-9数据及校验和。
从机接收到数据后,显示数据并向主机发应答码00H ,主机根据应答信号,显示通信状态代码。
2、波特率计算选fosc=11.0592MHz, 波特率=2400bps ,通信为方式1,(SMOD)为1,(TMOD)=0x20;( PCON) =0x80; 由波特率计算公式算得 (TH1)≈e8H 。
图7-1 实验接线图[](TH1)-25612T1T1322osc SMOD⨯=⨯=f 溢出率溢出率,波特率3、源程序 1)主机源程序// 识别到按键按下,发送0-9数据给从机,并显示通信状态码 #include<reg51.h> #include<intrins.h>#define uint unsigned int #define uchar unsigned charsbit K=P3^2; //定义按键K ,用于控制U2void SEND(uchar s_data)//发送一个字节数据 {SBUF=s_data; while(TI==0); TI=0;}uchar RCV(void)//接收一个字节数据 {while(RI==0); RI=0; return(SBUF);}void D_1S(void) {uint N=500,i;while(N--) for(i=0;i<100;i++) _nop_();}void DIS(uchar dis)//显示dis 中字形码对应的字符 { P0=dis; D_1S(); P0=~0x00;}void MAIN(void){ uchar data SUM,LEN;// SUM,校验和;LEN ,数据块长度; uchar i,ans; //ans 接收的应答数据图7-2 主机程序流程图 图7-3 从机程序流程图SP=0x5f; P0=~0x00; //数码块消隐TMOD=0x20; //T1:8位自动重装定时器TL1=0xe8;TH1=0xe8;PCON=0x80;TR1=1;//F=11.0592MHz,BPS=2400SCON=0x40; //10位,禁止接收//-------扫描按键-------key0:K=1; if(K!=0) goto key0;//-------发送数据块和校验和-------S_0:SUM=0x00; LEN=10; SEND(LEN);for(i=0;i<LEN;i++){SEND(i); SUM+=i; }SEND(SUM);//-------接收从机发来的响应数据-------REN=1; ans=RCV(); REN=0;if(ans==0x00) //发送正常,显示“0”{ DIS(~0x3f); goto key0;}else //发送异常,显示“1”,并重新发送数据{ DIS(~0x06); goto S_0;}}2)从机源程序// 接收数据0-9,并用数码块显示,之后接收正常向主机发00H,否则发送01H#include<reg51.h>#include<intrins.h>#define uint unsigned int#define uchar unsigned charuchar data LS0[]={~0x3F,~0x06,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F};void SEND(uchar s_data)//发送一个字节数据{SBUF=s_data; while(TI==0); TI=0;}uchar RCV(void)//接收一个字节数据{while(RI==0); RI=0; return(SBUF);}void D_1S(void){uint i,N=500;while(N--) for(i=0;i<100;i++) _nop_();}void DIS(uchar LEN,uchar r_data[11])//显示0-9{uchar data i;for(i=0;i<LEN;i++) {P0=LS0[r_data[i]]; D_1S(); P0=~0x00;}}void MAIN(void){ uchar data SUM,LEN; //SUM,校验和;LEN,数据块长度;ID,从站地址uchar data i,r_data[10],RSUM;//r_data接收的数据,RSUM接收的校验和SP=0x5f; P0=~0x00; TMOD=0x20;TL1=0xe8;TH1=0xe8;PCON=0x80;TR1=1; SCON=0x40;R_D:REN=1;SUM=0x00;LEN=RCV();for(i=0;i<LEN;i++){r_data[i]=RCV(); SUM+=r_data[i];}RSUM=RCV();if(RSUM==SUM){DIS(10,r_data);SEND(0x00);goto R_D;}else {SEND(0x01);goto R_D;}}五、实验步骤1、按图7-1接线;2、用keil软件编辑、编译源程序,生成两个hex文件。
双机通信设置实验报告实验报告:双机通信设置实验1. 实验目的本实验的目的是掌握双机通信设置的基本步骤与方法,包括网络连接、IP地址设置、端口设置和通信代码编写等内容。
2. 实验器材- 两台计算机- 网线- 交换机(可选,用于扩展网络数量)3. 实验步骤步骤一:网络连接1. 将两台计算机连接到同一个局域网中,可以通过交换机将多台计算机连接到同一个局域网中。
步骤二:确定IP地址1. 在Windows操作系统下,点击“开始”按钮,选择“控制面板”。
2. 在控制面板中,选择“网络和Internet”。
3. 在“网络和Internet”页面中,选择“网络和共享中心”。
4. 在“网络和共享中心”页面中,选择“更改适配器设置”。
5. 在“更改适配器设置”页面中,找到当前使用的网络连接,右键点击,选择“属性”。
6. 在网络连接属性页面中,选择“Internet协议版本4(TCP/IPv4)”,然后点击“属性”按钮。
7. 在Internet协议版本4(TCP/IPv4)属性页面中,选择“使用下面的IP地址”选项,然后输入IP地址和子网掩码。
8. 重复以上步骤,将第二台计算机的IP地址设置为与第一台计算机相同的子网下的其他IP地址。
步骤三:端口设置1. 在每台计算机上选择一个空闲端口作为通信端口。
2. 确保两台计算机上选择的端口相同。
步骤四:通信代码编写1. 在每台计算机上编写程序,通过选择合适的编程语言和库来实现双机通信。
2. 编写程序时,需要指定对方计算机的IP地址和端口号。
3. 编写程序时,需要指定通信协议,如TCP或UDP等。
4. 实验结果通过以上步骤,成功实现了两台计算机之间的双机通信。
可以在程序中发送和接收数据,实现数据交换和通信功能。
5. 实验总结通过本实验,我们掌握了双机通信设置的基本步骤与方法,包括网络连接、IP 地址设置、端口设置和通信代码的编写等内容。
双机通信是实现计算机之间数据交换和通信的重要手段,掌握这些基本知识对于进行网络通信和应用开发非常有帮助。
双机通信实验报告。
单片机实验报告(自动化15级)实验名称:串行通信实验1.实验1的目的。
掌握单片机串口的工作模式;2.掌握双机通信的接口电路设计和程序设计。
2.实验设备1。
个人电脑;2.单片机最小系统教学实验模块:3.数码管显示模块三、实验内容1。
两套单片机测试装置(两个实验组)共同完成了实验。
我们U1是机器A,U2是机器B。
机器A将学生的学号后的8位数字发送到机器B。
机器B接收到这8位数字,并将其显示在8位数字的电子管上。
该电路如图1所示。
串行通信模式要求为模式1,波特率为2400位/秒,不是双倍,单片机外部晶振频率为11.0592米。
图1双机通信原理附加要求示意图:机器b收到后,该机器(机器b)的学生编号的最后8位数字被送回机器a,并显示在数码管上。
2.单片机与PC机之间的通信单片机向PC机发送数据。
单片机将本机的学生号(学生本人)反复发送到PC机,发送波特率为1200,采用模式1,单片机外部晶振频率为11.0592米四、实验原理4.1串行通信模式在串行通信中,有两种基本通信模式:异步通信。
异步串行通信规定了字符数据的传输格式,即每个数据以相同的帧格式传输。
每个帧信息由起始位、数据位、奇偶校验位和停止位组成。
本实验主要研究异步通信的实现方法。
在异步通信中,每个字符使用一个起始位和一个停止位作为字符开始和结束的符号,因此占用时间。
因此,为了提高传输数据块时的通信速度,这些标记通常被去除,并采用同步通信。
同步通信不像异步通信那样依赖起始位在每个字符数据的开头发送和接收同步。
相反,同步字符用于在每个数据块传输开始时同步发送方和接收方。
根据通信方式,数据传输线可分为三种类型:单工模式、半双工模式、全双工模式。
(1)单工模式在单工模式中,通信线路的一端连接到发射机,另一端连接到接收机,这形成单向连接,并且仅允许数据在固定方向上传输。
(2)半双工模式在半双工模式下,系统中的每个通信设备由一个发射机和一个接收机组成,它们通过收发器开关连接到通信线路,如图33所示-1.实验1的目的。
实验七双机通信实验一、实验目的:1.掌握单片机串口通信程序的设计。
2.了接RS232接口通信的特点。
3.双机通信:分别把接收到的对方通过逻辑开关输入的信息在本地数码管上显示,如下图甲机的逻辑开关数据为81H,乙机通过串口接收该数据并数码关管显示,而甲机显示乙机发送的数据88H。
二、PROTEUS电路设计:三、实验仪器和设备PC机、PROTEUS软件或W-A-51综合开发学习板四、源程序设计:1.程序(甲、乙机用相同的程序)ORG 0000HAJMP MAINORG 0030HMAIN:MOV TMOD,#20H ;定时器工作方式2MOV TH1,#0FDH ;设置波特率MOV TL1,#0FDHMOV PCON,#00H ;波特率不乘2SETB TR1MOV SCON,#50H ;串行口工作方式1并启动接收JX:MOV A,P1MOV SBUF,AW1:JNB TI,W1CLR TIW2:JNB RI,W2CLR RIMOV A,SBUFMOV P0,ALJMP JXEND六、总结、心得这是的实验中我遇到了很多的难题,也发现了自己很多的不足。
刚开始的时候在循环比较的时候老是出错,对变量的寻址方式不熟悉,不会使用指针变量使程序简化。
后来经过老师的提醒跟自己的摸索,终于把程序写正确了。
所以是这么简单的一个程序,但是我还是要花很长的一断时间才可以把它完成,这说明了我对知识的掌握运用还是很不熟练,虽然读程序的时候可以读懂,但是到自己写的时候就感觉无从下手。
单片机双机通信实验报告
实验目的:
1. 了解单片机之间的串口通信原理;
2. 掌握单片机之间的双机通信方法;
3. 实现单片机之间的数据互相传输。
实验器材:
1. 单片机开发板(两块);
2. USB转串口模块(两个);
3. 杜邦线若干;
4. 电脑。
实验步骤:
首先,将单片机开发板和USB转串口模块进行连接,具体的连接方法如下:
1. 将USB转串口模块的TXD引脚连接到单片机开发板的RXD引脚上;
2. 将USB转串口模块的RXD引脚连接到单片机开发板的TXD引脚上;
3. 将USB转串口模块的GND引脚连接到单片机开发板的GND引脚上;
4. 将USB转串口模块的VCC引脚连接到单片机开发板的VCC引脚上。
接下来的步骤如下:
1. 打开两台电脑上的串口调试助手软件,并分别将波特率设置为相同的数值(例如9600);
2. 在一台电脑上,发送数据给另一台电脑。
具体的操作是在串口调试助手软件上输入要发送的数据,然后点击发送按钮;
3. 在另一台电脑上,接收来自第一台电脑发送的数据。
具体的操作是在串口调试助手软件上点击接收按钮,然后可以看到接收到的数据。
实验结果:
通过实验可以看到,单片机之间成功地实现了数据的双向传输。
一台单片机发送的数据可以被另一台单片机接收到。
实验总结:
本实验通过串口通信的方式实现了单片机之间的双机通信。
通过这种方式,可以方便地实现单片机之间的数据互相传输,可以用于各种应用场景,如传感器与控制器之间的数据传输等。
同时要注意,串口通信的波特率要设置一致,否则数据将无法正确接收。
一.设计方案根据题目分析可知硬件电分为主机模块和从机模块。
主机模块中包含单片机子模块、lcd1602显示子模块和矩阵键盘模块,从机模块则包括单片机子模块、LED显示模块。
在主模块中由AT89C51单片机担任主机,LCD1602担任显示设备和由4位独立按键做矩阵键盘。
在整个系统中有一个从机模块,有一片AT89C51单片机担任从机模块的控制模块,串口采用单工及异步通信方式。
整个硬件结构原下图所示。
主机从机二.硬件分析(1)控制模块控制模块采用AT89C51作为主控芯片,11.0592MHZ的晶振频率作为时钟震荡电路。
基本电路图如下所示。
仿真图由于在protues里面,单片机内部默认自带晶振,所以不需要再连接振荡电路。
控制模块原理图(2)显示模块采用LCD1602作为显示模块,LCD1602用来显示当前从机LED的状态。
仿真图如下所示:仿真图在画原理图时,由于没有LCD1602的封装。
所以,本人直接用16跟引脚的排针代替。
然后在给相应的引脚表上网络位口。
但是再画PCB,必须控制好原件之间的距离,以免导致制版时,元件位置冲突。
原理图如下所示:原理图(3)矩阵键盘模块矩阵键盘用来给单片机输入一个电平值,然后再通过主机CPU发送给从机,最后从机CPU接收,并通过LED显示出结果。
当按键按下,相当于给主机CPU 送入一个低电平,主机再把这个电平值发送给从机。
因为LED是采用共阳连接的方式,所以可以点亮LED。
矩阵键盘仿真图,以及原理图如下所示:仿真图原理图(4)LED显示模块LED显示模块,主要用来显示主机送给从机的电平值是高电平还是低电平,同时也可以用来检测,整个通信系统是否能够正常工作。
为了整个电路简化,以及效果更明显,所以决定采用共阳连接的方式。
LED显示模块的仿真图,以及原理图如下所示:仿真图原理图三.软件分析根据题目分析可知硬件电分为主机模块和从机模块。
AT89C51单片机担任主机模块和从机模块的控制模块,串口采用单工及异步通信方式。
双机通信按键实验报告1. 引言双机通信按键实验是一项基于计算机网络原理的实验,旨在通过编程实现两台计算机之间的通信。
在这个实验中,我们使用了网络套接字(Socket)编程以及键盘输入监听功能实现了双机通信。
本报告将详细介绍实验的设计思路、实施过程和结果分析。
2. 设计思路实验的目标是实现两台计算机之间通过按键进行通信。
为了实现这个目标,我们采用了以下设计思路:- 使用Python编程语言,利用其socket模块进行网络通信。
- 通过在一个计算机上监听键盘输入,并将输入字符发送给另一个计算机。
- 在另一个计算机上接收字符,并进行相应处理,如打印在屏幕上。
3. 实施过程3.1 网络通信首先,在两台计算机上建立起网络连接。
我们选择了TCP/IP协议作为网络通信协议,并使用socket模块提供的函数进行网络套接字的创建、绑定和监听等操作。
具体的网络连接代码如下:pythonimport socket创建套接字sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)绑定套接字sock.bind(('127.0.0.1', 8888))监听连接sock.listen(1)接受连接请求conn, addr = sock.accept()上述代码中,我们使用了IPv4的地址`127.0.0.1`和端口号`8888`作为网络连接的地址。
3.2 键盘输入监听接下来,在一个计算机上监听键盘输入。
我们使用Python的`keyboard`库来实现键盘输入监听,并将输入字符发送给另一个计算机。
具体的键盘监听和发送操作代码如下:pythonimport keyboarddef send_character(character):发送字符到另一台计算机conn.send(character.encode())keyboard.on_press(send_character)上述代码中,我们将`send_character`函数注册为键盘按键按下事件的回调函数。
单片机实验报告(自动化15级)实验名称:串行通讯实验一、实验目的1.掌握单片机串行口工作方式;2.掌握双机通讯的接口电路设计及程序设计。
二、实验设备1. PC机;2.单片机最小系统教学实验模块;3. 数码管显示模块三、实验容1.双机通信由两套单片机试验装置(两个实验小组)共同完成该实验。
我们U1为甲机,U2为乙机。
甲机发送本机(学生本人)学号后8位给乙机,乙机接收该8位数据,并显示在8位数码管上。
电路如图1所示。
要求串行通信方式为方式1,波特率为2400bit/s,不加倍,单片机外部晶振频率为11.0592M。
图1 双机通信原理示意图附加要求:乙机接收完毕后,将本机(乙机)的学号后8位发送回甲机,甲机显示在数码管上。
2.单片机与PC机通信单片机向PC机发送数据。
单片机向PC机重复发送本机(学生本人)学号,发送波特率为1200,采用方式1,单片机外部晶振频率为11.0592M。
四、实验原理4.1 串行通讯的方式在串行通讯中,有两种基本的通讯方式:异步通讯,同步通讯。
异步串行通讯规定了字符数据的传送格式,既每个数据以相同的帧格式发送。
每个帧信息由起始位、数据位、奇偶校验位和停止位组成。
本实验主要学习异步通讯的实现方法。
在异步通讯中,每一个字符要用起始位和停止位作为字符开始和结束的标志,以至占用了时间。
所以在数据块传送时,为了提高通讯速度,常去掉这些标志,而采用同步通讯。
同步通讯不像异步通讯那样,靠起始位在每个字符数据开始时发送和接受同步。
而是通过同步字符在每个数据块传送开始时使收/发双方同步。
按照通讯方式,又可将数据传输线路分成三种:单工方式、半双工方式、全双工方式。
(1)单工方式在单工方式下,通讯线的一端联接发送器,另一端联接接收器,它们形成单向联接,只允许数据按照一个固定的方向传送。
(2)半双工方式在半双工方式下,系统中的每个通讯设备都由一个发送器和一个接收器组成,通过收发开关接到通讯线路上,如图33-1所示。
在这种方式中,数据能从A站送到B站,也能从B站传送到A站,但是不能同时在二个方向上传送,即每次只能一个站发送,另一个站接收。
图2 半双工通讯方式图33-1中的收发开关并不是实际的物理开关,而是由软件控制的电子开关,由通讯线两端的半双工通讯协议进行功能切换。
(3)全双工(Full—duplex)方式虽然半双工方式比单工方式灵活,但它的效率依然较低。
从发送方式切换到接收方式所需的时间一般大约为数毫秒,这么长的时间延迟在对时间较敏感的交互式应用(例如远程检测监视控制系统)中是无法容忍的。
重复线路切换所引起的延迟积累,正是半双工通信协议效率不高的主要原因。
半双工的这种缺点是可以避免的,而且方法很简单,即采用信道划分技术。
在图33-2的全双工连接中,不是交替发送和接收,而是可同时发送和接收。
全双工通讯系统的每一端都包含发送器和接收器,数据可同时在两个方向上传送。
图3 全双工通讯方式4.2单片机串行口工作方式在静态数码管显示实验中,我们熟悉了单片机串口工作方式0;单片机串口还具有有3种工作方式。
如下表所示:这3种工作方式,均用于串行异步通讯。
在异步串行通讯的一个字节的传送中,必须包括了起始位(0)和停止位(1)。
除此之外,方式1具有8位(1个字节)的数据位(低位在先),方式2、3则除这8位之外,还具有一个可编程的第9位,这个第9位编程通常被编程为奇偶校验位。
我们将在下一个实验中用到它。
串口工作方式在特殊寄存器SCON中设置。
其中的SM0和SM1位确定了串口工作方式。
要使通讯双方能够通讯成功,必须具有相同的串口工作模式;REN为允许接收位,本实验中因为双方都要进行接收,因此REN也都应设为1。
TB8和RB8这里暂不涉及。
利用以下语句来设置SCON:MOV SCON, #50H4.3 波特率的设置在异步串口通讯中,一个很重要的工作就是进行串口波特率的设置。
波特率是指串口通讯中每秒传送的位数,单位为BPS,它反映了串行口通讯的速度;同时,通讯双方的速度必须一致,才能够顺利进行通讯。
在串口工作方式1、3中,传送波特率都是可变的。
单片机部通过定时器T1来提供发送与接收缓存器的部移位时钟。
也就是说,要确定串行通讯的波特率,必须对T1进行相关设置。
51单片机系统对此时T1的设置有以下固定的规定:(1)必须工作在定时器状态;(2)必须工作在“8位自动重载”工作模式;这必须在特殊寄存器TMOD中进行设置。
关于TMOD的详细容,我们在实验十七已经讲过。
可以利用以下语句来设置TMOD:MOV TMOD, #20H除了对TMOD的设置外,还必须设置定时器T1的定时值,也就是保存在TH1中的8位重载值。
这直接影响到波特率的大小:它通过以下公式进行计算:其中的SMOD为特殊寄存器PCON的最高位。
当它置1时,可以将波特率增大1倍。
在双机通讯中,只要双方的波特率一致就能够完成通讯了;但是,在标准的异步通讯协议中,只有几种波特是适用的。
例如1200bps,2400bps,4800bps,9600bps……等等。
而通过这个公式可以看出,并不是所有的晶振频率都能够得到准确的上述波特率。
比如采用12MHz晶振,代入公式进行运算,就无法得到4800bps的准确波特率(TH1必须为小数了)。
在这种情况下,过去人们都使用软件补偿的方法,尽量得到准确的波特率;而现在,市场上有很多通讯专用的晶振,例如3.6864MHz、11.0592MHz……的晶振,都能够直接得到准确的波特率。
因此在进行本实验时,必须使用通讯专用晶振(如果使用仿真器,则设置为使用仿真头的外接晶振,并将11.0592M的晶振插入仿真头。
当波特率已经确定,就可以反向推导出TH1的取自大小,例如,在本次实验中,我们要求波特率为4800bps,在晶振采用11.0592MHz的情况下,推出TH1=0F4H。
五、实验步骤1.参考图1并进行电路设计,画出电路图,并用导线正确连接两套装置的单片机最小系统实验模块,并连接最小系统模块与数码管显示模块。
2.照实验要求编写程序流程图,然后编写程序,对编写的程序进行仿真调试,直至通讯成功。
六、实验报告1.在该实验中,单片机串行口工作在什么工作方式下?说明该工作方式的特点。
工作在工作方式1。
8位数据通讯,波特率可变。
2.波特率是什么?怎样设置单片机串口通讯的波特率?如果实验要求通讯波特率为4800bps,怎样修改程序?特率是指串口通讯中每秒传送的位数,单位为BPS,它反映了串行口通讯的速度。
单片机部通过定时器T1来提供发送与接收缓存器的部移位时钟。
必须工作在定时器状态;必须工作在“8位自动重载”工作模式。
3.详细说明本次实验采用的通讯协议。
甲机发送本机(学生本人)学号后8位给乙机,乙机接收该8位数据,并显示在8位数码管上。
乙机接收完毕后,将本机(乙机)的学号后8位发送回甲机,甲机显示在数码管上。
4.给针对实验要求编写本机的程序流程图、程序清单并给予适当注释,并说明合作单片机(合作同学)。
这里有两个程序,一个是先接受,一个是先发送。
# include <STC12C5A60S2.h>#define uchar unsigned charvoid init(void);void send(void);void delay(unsigned int i);uchar xuehao[8]={6,6,6,6,6,6,6};void main(void){init();send();while(1);}void init(void){TMOD=0x20;TH1=0xfd;TL1=0xfd;SCON=0x50;PCON=0x00;TR1=1;}void send(void){uchar i;do{delay(200);SBUF=0xaa;while(TI==0);TI=0;while(RI==0);RI=0;}while(SBUF!=0xbb);//----------------------------------?????delay(80);for(i=0;i<=7;i++){SBUF=xuehao[i];while(TI==0);TI=0;delay(5);}SBUF=9;delay(10);}/////////////////////////////////////////////////////////// void delay(unsigned int i){unsigned char j;for(;i>0;i--)for(j=0;j<125;j++){;}}# include <STC12C5A60S2.h>#define uchar unsigned charvoid init(void);void receive(void);void delay(unsigned int i);void display(uchar A,uchar B);void duanxuan(uchar c);uchar xuehao[8]={0};void main(void){init();receive();while(1){display(1,xuehao[0]);delay(3);P0=0x00;display(2,xuehao[1]);delay(3);P0=0x00;display(3,xuehao[2]);delay(3);P0=0x00;display(4,xuehao[3]);delay(3);P0=0x00;display(5,xuehao[4]);delay(3);P0=0x00;display(6,xuehao[5]);delay(3);P0=0x00;display(7,xuehao[6]);delay(3);P0=0x00;display(8,xuehao[7]);delay(3);P0=0x00;}//}void init(void){P0M1=0X00;P0M0=0Xff;P2M1=0x00;P2M0=0xff;TMOD=0x20;TH1=0xfd;TL1=0xfd;SCON=0x50;PCON=0x00;TR1=1;}void receive(void){uchar enpty;uchar j=0;do{while(RI==0);RI=0;}while(SBUF!=0xaa);SBUF=0xbb;while(TI==0);TI=0;enpty=SBUF;// while(RI==0);RI=0;//-------------------------------??delay(10);for(j=0;j<=7;j++){xuehao[j]=SBUF;while(RI==0);RI=0;}}////////////////////////////////////////????//////////////////////////////////////////////////void display(uchar A,uchar B){uchar code info[12]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90, //0xff,0xbf};//-duanxuan(A);switch (B){case 0:P0=~info[0];break;case 1:P0=~info[1];break;case 2:P0=~info[2];break;case 3:P0=~info[3];break;case 4:P0=~info[4];break;case 5:P0=~info[5];break;case 6:P0=~info[6];break;case 7:P0=~info[7];break;case 8:P0=~info[8];break;case 9:P0=~info[9];break;case 10:P0=~info[10];break;case 11:P0=~info[11];break;}}void duanxuan(uchar c){switch (c){case 1:P2=0x01;break;case 2:P2=0x02;break;case 3:P2=0x04;break;case 4:P2=0x08;break;case 5:P2=0x10;break;case 6:P2=0x20;break;case 7:P2=0x40;break;case 8:P2=0x80;break;default:break;}}///////////////////////////////////////////////////////////////////////////////////////////// void delay(unsigned int i){unsigned char j;for(;i>0;i--)for(j=0;j<125;j++){;}}5.实验心得。