(完整版)第三章一元一次方程知识点归纳及典型例题
- 格式:docx
- 大小:30.79 KB
- 文档页数:7
一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:“方程的解就能代入”!5.移项:变更符号后,把方程的项从一边移到另一边叫移项.移项的根据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数根本性质去分母----------同乘(不漏乘)最简公分母去括号----------留意符号变更移项----------变号合并同类项--------合并后留意符号系数化为1---------未知数细数是几就除以几知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品本钱价(2)商品利润率=×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-本钱价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,全部商品一律按八折实惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?实惠价是多少元?解:设这种皮鞋标价是x元8/10x=60×(1+40%)解得:x=105105×8/10=84(元)答:这种皮鞋标价是105元,实惠价是84元3.一家商店将一种自行车按进价进步45%后标价,又以八折实惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为(B )A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 50解析: 因为自行车按进价进步45%后标价,已经设过自行车进价是X元了所以X(1+45%)=145%X ——也就是标价因为(标价)又以八折实惠卖出所以标价×八折=销售价145%X × 0.8 = 1.16 X 因为结果每辆获利50元(获益= 销售价- 进价)所以获利的50元= 销售价1.16X元- 进价X元上为解题思路,得到方程:145%X • 0.8 - X =504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店打算打折出售,但要保持利润率不低于5%,则至多打几折.解析:按最少利润为800*5%=40,则出售价为800+40=840,则打折为840/1200=70%,最低可以打七折5.一家商店将某种型号的彩电先按原售价进步40%,然后在广告中写上“大酬宾,八折实惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电零售价为x.[(1+40%)×80%]x-x=2700÷10x=2250答:每台彩电零售价为2250元.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上干脆销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收买这种蔬菜140吨,该公司的加工消费实力是:假如对蔬菜进展精加工,每天可加工16吨,假如进展精加工,每天可加工6吨,•但两种加工方式不能同时进展,受季度等条件限制,公司必需在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进展粗加工.方案二:尽可能多地对蔬菜进展粗加工,没来得及进展加工的蔬菜,•在市场上干脆销售.方案三:将局部蔬菜进展精加工,其余蔬菜进展粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?方案三获利多方案一:140*4500=630000方案二:15*6=90 90*7500=675000 (140-90)*1000=50000 675000+50000=725000方案三:设粗加工x天16*x+6*(15-x)=140 x=5天精加工15-5=10天5*16*4500+10*6*7500=360000+450000=8100007.某市挪动通讯公司开设了两种通讯业务:“全球通”运用者先缴50•元月根底费,然后每通话1分钟,再付费0.2元;“神州行”不缴月根底费,每通话1•分钟需付话费0.4元(这里均指市内).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2及x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用一样?(3)若某人预料一个月内运用话费120元,则应选择哪一种通话方式较合算?(1)全球通:50+0.2*X神州行:0.4X(2) 50+0.2X=0.4X 得X=250(3)50+0.2*120=740.4*120=48选择神州行更实惠!8.某地区居民生活用电根本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过局部按根本电价的70%收费。
一元一次方程知识点及题型一、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程. 3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论. 二、等式的性质三、移项法则:把等式一边的某项变号后移到另一边,叫做移项. 四、去括号法则 五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=ba ).六.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,写出答案 【基础与提高】 一.选择题1.下列各式中,是方程的个数为( )(1)﹣4﹣3=﹣7;(2)3x ﹣5=2x+1;(3)2x+6;(4)x ﹣y=v ;(4)a+b >3;(5)a 2+a ﹣6=0. A . 1个B . 2个C . 3个D . 4个2.下列说法正确的是( ) A . 如果ac=bc ,那么a=b B . 如果,那么a=bC .如果a=b ,那么D . 如果,那么x=﹣2y3.若关于x 的方程mx m ﹣2﹣m+3=0是一元一次方程,则这个方程的解是( ) A .x =0 B .x =3 C . x =﹣3D .x =24.方程(m+1)x|m|+1=0是关于x的一元一次方程,则m()A.m=±1 B.m=1 C.m=﹣1 D.m≠﹣15.若关于x的方程nx n﹣1+n﹣4=0是一元一次方程,则这个方程的解是()A.x=﹣1 B.x=1 C.x=﹣4 D.x=46.已知x=3是关于x的方程x+m=2x﹣1的解,则(m+1)2的值是()A.1B.9C.0D.47.已知x=﹣6是方程2x﹣6=ax的解,则代数式的值是()A.4B.3C.2D.18.设P=2x﹣1,Q=4﹣3x,则5P﹣6Q=7时,x的值应为()A.B.C.D.﹣9.服装店同时销售两种商品,销售价都是100元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了10.如图是一个长方形试管架,在a cm长的木条上钻了4个圆孔,每个孔的直径为2cm,则x等于()A.cm B.cm C.cm D.cm11.关于x的方程(k﹣3)x﹣1=0的解是x=﹣1,那么k的值是()A.k≠3 B.k=﹣2 C.k=﹣4 D.k=212.江苏卫视《一站到底》栏目中,有一期的题目如图,两个天平都保持平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.513.已知方程2x+k=5的解为正整数,则k所能取的正整数值为()A.1B.1或3 C.3D.2或314.小芳同学解关于x的一元一次方程﹣时,发现有个数模糊看不清楚,聪明的小芳翻看了书后的答案,知道这个方程的解是3.于是她很快补上了这个数.她补的这个数是()A.B.3C.8D.915.若代数式3x﹣7和6x+13互为相反数,则x的值为()A.B.C.D.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个B.3个C.4个D.5个二.填空题17.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元.若设这件衣服的成本是x元,根据题意,可得到的方程是_________.18.图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是_________cm3.19.已知与的值相等时,x=_________.20.若x=﹣1是关于x方程ax+b=1的根,则代数式(a﹣b)2011的值是_________.21.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,则此人买甲股票的钱比买乙股票的钱多_________元.22如果要由等式m﹙a+1﹚=x﹙a+1﹚得到m=x,需要满足的条件是_________.23.关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,则方程的解为_________.24.关于x的方程(m+2)x=6解为自然数,当m为整数时,则m的值为_________.25.已知m+n=2008(m﹣n),则=_________.三计算题解方程:(1)3(x﹣1)﹣2(2x+1)=12;(2)(3).(4)﹣=.(5).(6)(7).(8)﹣=3.(9)(10)四.解答题1.若x=2是方程ax-1=3的解,求a的值2.方程x+2=5与方程ax-3=9的解相等 求a 的值3.为何值时,关于的方程4231x m x -=-的解是23x x m =-的解的2倍?4.已知,2x =是方程12()23m x x --=的解,求代数式2(62)m m -+的值.5.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?6.一批货物,甲把原价降低10元卖出,用售价的10%做积累,乙把原价降低20元,用售价的20%做积累,若两种积累一样多,则这批货物的原售价是多少?7.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?8.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?9.今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?10.小明和小东两人练习跑步,都从甲地出发跑到乙地,小明每分钟跑250米,小东每分钟跑200米,小明让小东先出发3分钟之后再出发,结果两人同时到达乙地,求甲、乙两地之间的路程是多少米?11.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
第三章 一元一次方程知识点一 :一元一次方程的概念1.方程的定义:含有未知数的等式.①未知数;②等式. 2.一元一次方程的定义:只.含有一个..未知数(元),未知数的最高次数是.....1.,等号两边都是整式的方程叫一元一次方程. 一元一次方程的一般形式....:ax+b=0(a 、b 为常数,且a≠0,即末知数的系数一定不能为0). 3.方程的解:使方程等号左、右两边相等的未知数的值. 4.解方程:求方程的解的过程. 例题:1. (1)下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-= D .12x x-= (2)下列各式中,是一元一次方程的是( )A. 6x y -=B. 1223x x --= C. 34x - D. 21x x += 2.(1)已知2x1-m +4=0是一元一次方程,则m= ________.(2)已知方程04)2(1||=+--a xa 是一元一次方程,则=a __________(3)若2(21)30a x bx c +--=是关于x 的一元一次方程,则一定有( )A. 12a =-,0b ≠,c 为任意数 B. 12a =-,b 、c 为任意数 C. 12a =-,0,0b c ≠= D. 12a =,0,0bc =≠(4)若2(1)(1)30k x k x -+++=是关于x 的一元一次方程,求k 的值3.下列说法:①等式是方程; ②x=4是方程5x+20=0的解; ③x=-4和x=6都是方程│x-1│=5的解.其中说法 正确的是___ _.(填序号)4.(1)下列方程中,解为4的方程是( )A. 104x x =-B. 5(2)2(27)x x +=+C.62355y y -=+ D. 50.594x x =+ (2)已知4x =-是方程231x a x +=-的解,则a 的值是 5.根据条件列出方程(1)某数的2倍,再减去1等于5 (2)某数的3倍与它的12的和等于106.(1)买4本练习本和5支铅笔一共用了4.9元,已知铅笔每支0.5元,练习本每本多少元?若设练习本每本x 元,则可列方程为(2)一辆汽车从A 地到B 地后,用去了邮箱里的汽油的25%,还剩40升,邮箱里原有汽油多少升?若设邮箱里原有汽油x 升,可列方程为知识点二:等式的基本性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a ±c =b ±c等式的性质2:等式两边都乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb 例题:1.(1)若a b =,则下列式子正确的有( )①22a b -=- ②1132a b =③3344a b -=- ④5151a b -=-. A.1个 B.2个 C.3个 D.4个(2)如果ma mb =,那么在下列变形中,不一定成立的是( )A. 11ma mb +=+B. 33ma mb -=-C. 1122ma mb -=- D. a b = (3)下列变形中,正确的是()A.若ac=bc ,那么a=bB.若cbc a =,那么a=b C.a =b ,那么a=b D.若a 2=b 2那么a=b (4)运用等式的性质进行变形,正确的是( )A.如果a b =,那么a c b c +=-;B.如果a bc c=,那么a b = C.如果a b =,那么a bc c= D.如果23a a =,那么3a = 2.(1)给出下面四个方程及其变形:①48020x x +=+=变形为;②x x x +=-=-75342变形为;③253215x x ==变形为;④422x x =-=-变形为;其中变形正确的是( ) A .①③④ B .①②④C .②③④D .①②③(2)下列各式的变形中,错误的是 ( )A. 260x +=变形为26x =-B.312x x +=-变形为322x x +=- C. 2(4)2x --=-变形为41x -= D. 1122x +-=变形为11x -+=3.用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的; (1)如果810x +=,那么10x =- (2)如果437x x =+,那么4x - =7 (3)如果38x -=,那么x = (3)如果123x =-,那么 =-6 4.完成下列解方程: (1)1343x -= 解:两边 ,根据 得13343x --= 于是13x -=两边 ,根据 得x =(2)5234x x -=+解:两边 ,根据 ,得 =3x+6 两边 ,根据 ,得2x=两边 ,根据 ,得x= 5.根据下列变形,填写过程及理由21100.10.2x -= 解:20101012x -=( ) 20510x -= ( )2015x = ( )34x = ( )6.利用等式的性质解下列方程并检验 (1)1262x += (2)1543x --= (3)328x -=-7.当x 为何值时,式子453x -与31x +的和等于9?8.列方程并求解:一个两位数,个位上的数字比十位上的数字大2,个位与十位上的数字之和是10,求这个两位数(提示,设个位上的数字为x )9.如果方程21x a x +=-的解是x=-4,求32a -的值10.等式2(2)10a x ax -++=是关于x 的一元一次方程,求这个方程的解知识点三:一元一次方程的解法(一般步骤、注意事项) 1.解方程的一般步骤:把含未知数的项归在方程的一边,把常数项归到方程的另一边,将方程化为最简的形式ax b =(0)a ≠,然后根据方程两边都除以a ,化为bx a=的形式。
第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
专题复习:《一元一次方程》【知识链接】★知识点一:方程(一元一次方程)的概念1、什么是方程方程和等式的区别是什么方程:方程是含有的等式,方程等式,但等式方程。
2.什么是一元一次方程它的标准形式和最简形式是什么(1)一元一次方程:只含有个未知数(),且未知数的次数都是,等号两边都是,这样的方程叫做一元一次方程。
(2)一元一次方程的标准(一般)形式是:ax+b=0 (其中,a、b都是常数,且a≠0)(3)一元一次方程的最简形式是:ax=b (其中,a、b都是常数,且a≠0)★知识点二:方程的解与解方程1. 什么是方程的解,什么是解方程方程的解:是指能使方程左右两边都相等的未知数的.解方程:是指求方程解的。
★知识点三:等式的基本性质等式的性质1:等式的两边同时加(或减)(),结果仍相等。
即:如果a=b,那么a±c=b;等式的性质2:等式的两边同时乘,或除以数,结果仍相等。
即:如果a=b,那么ac=bc;或如果a=b,那么a bc c(c≠)等式的对称性:如果a=b,那么b=a;等式的传递性:如果a=b, b=c,那么a=;等式的基本性质的作用:是等式恒等变形的理论依据.★知识点五:一元一次方程的应用列一元一次方程解应用题的一般步骤:1. 审题:通过读题,弄清题意(提取已知量和未知量等信息);2. 找等量关系:用文字表示出包含题目相关数量关系的等量关系;(关键)(1) 条件等量关系(认真分析,积累经验,仔细感悟)(2) 固有等量关系(如s=vt 等)(识记);3. 设未知数:选设一个未知量(可以是直接或间接未知量,还可以是辅助元)4. 列方程:用代数式表示出等量关系中的相关量;5. 解方程: 仔细解出方程;6. 检验:看是否是原方程的解,再看是否符合实际意义;7. 回答:完整回答题目中的问题.【考点解析】考点一 考查一元一次方程的概念例1 下列是一元一次方程的是()A .0127=+yB.082=+y x C .03=z D.3232x x -=+例2. 已知关于x 的方程021)1(||=+-k x k 是一元一次方程,则k 的值为()C.±1D. 0变式练习:1. 如果2345m x -=-是关于x 的一元一次方程,那么m= ;2. 021)2(2=+++kx x k 是一元一次方程,则k = ;3. 如果234x kx -=+是关于x 的一元一次方程,那么k = ;考点二 考查一元一次方程解的概念例3 已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是变式练习:4. 若方程234k x -=与24x =的解相同,则k=5. 下列是关于x 的方程ax b =的解的说法,错误的是()A.方程ax b =有唯一解B.当0a ≠时,方程ax b =有唯一解C.当0,0a b =≠时,方程ax b =无解D.当0,0a b ==时,方程ax b =有无数个解6. 小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方-=-y y 21212,怎么办呢小明想了一想便翻看了书后的答案,此方程的解是35-=y .这个常数应是( )A .1B .2C .3D .4考点三 考查等式的基本性质例4 下列运用等式的性质对等式进行的变形中,正确的是 ( )A.若x y =,则33x y -=-B. 若x y =,则kx ky =C. 若x y =,则x y a a = D. 若x y m m=,则23x y =变式练习:7.把方程762+=-y y 变形为672+=-y y ,这种变形叫 ,根据是 。
一元一次方程知识点及经典例题一、知识要点梳理知识点一:方程和方程的解1.方程:含有未知数的等式叫方程。
注意:a.必须是等式b.必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:(1).8-7=1+0(2).1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:1)只含有一个未知数;2)未知数的次数是1次;3)整式方程。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等。
知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a+c=b+c;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b(且c≠0),那么a/c=b/c。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6.方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤:1.变形步骤具体方法变形根据注意事项1.不能漏乘不含分母的项;去分母公倍数2.掉分母后,如果分子是多项式,则要加括号2.合并同类项1.分配律应满足分配到每一项去先去小括号,再乘法分配律、去括号2.注意符号,特别是去掉括号3.移项要变号;一般把含有未知数的项移动到方程左边,其余项移到右边4.合并同类项时,把同类项的同系数相加,字母与字母的指数不变5.未知数的系数a,成“ax=b”的形式6.方程两边同除以未知数的系数a,分子、分母不能颠倒。
第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程。
注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次);③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0。
例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等。
即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等。
即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b ,那么a-c=b-cB 、如果a=b ,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b ,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解 方法:步骤具体做法 依据 注意事项1.去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号; 2.去括号先去小括号,再去中括号,最后去大括号 去括号法则、分配律括号前面是“+”号,括号可以直接去,括号前面是“-”号,括号里的每一项都要变号3.移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(移项一定要变号)等式基本性质1 移项要变号,不移不变号;4.合并同类项将方程化简成()0≠=a b ax合并同类项法则计算要仔细5.化系数为1 方程两边同时除以未知数的系数a ,得到方程的解 等式基本性质2 计算要仔细,分子分母勿颠倒例7、解方程2583243=--+x x练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
人教版初中七年级数学上册第三章《一元一次方程》知识点总结(含答案解析)一、选择题1.(0分)已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①②B 解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程. 2.(0分)小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( )A .0.20元B .0.40元C .0.60元D .0.80元B解析:B【分析】设未知数,根据题意中的等量关系列出方程,然后求解.解:设每支铅笔的标价是x 元,根据题意得:20×(1-80%)x=1.6解得x=0.4故选:B .【点睛】本题考查一元一次方程的实际应用,此题要注意联系生活,知道八折就是标价的80%. 3.(0分)下列方程中,是一元一次方程的是( )A .243x x -=B .0x =C .21x y +=D .11x x -= B 解析:B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0).【详解】解:A 、最高项的次数是2,故不是一元一次方程,选项不符合题意;B 、正确,符合题意;C 、含有2个未知数,故不是一元一次方程,选项不符合题意;D 、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B .【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.(0分)若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- B 解析:B【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.5.(0分)关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43- C 解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.解第一个方程得:133k y -=, 解第二个方程得:53y =-, ∴133k -=53-, 解得:k=2.故选C .【点睛】 本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义.6.(0分)已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( ) A .±1B .1C .-1D .0或1C 解析:C【分析】直接利用一元一次方程的定义进而分析得出答案.【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠,解得:1m =-.故选:C .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 7.(0分)将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ D 解析:D【分析】方程两边每一项都乘以6即可得.【详解】方程两边都乘以6,得:2(2x-1)=6-3(5x+2),故选D .【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.8.(0分)某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x天,则所列方程为()A.1146x x++=B.1146x x++=C.1146x x-+=D.111446x x+++= C解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程. 9.(0分)下列判断错误的是()A.若a=b,则a−3=b−3B.若a=b,则7a−1=7b−1C.若a=b,则ac2+1=bc2+1D.若ac2=bc2,则a=b D解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b,则a−3=b−3,正确;B. 若a=b,则7a−1=7b−1,正确;C. 若a=b,则ac2+1=bc2+1,正确;D. 当c=0时,若ac2=bc2,a就不一定等于b,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.10.(0分)下列方程中,以x=-1为解的方程是()A.3x+12=x2−2B.7(x-1)=0 C.4x-7=5x+7 D.13x=-3A解析:A【解析】【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-1分别代入四个选项进行检验即可.【详解】解:A、把x=-1代入方程的左边= -52=右边,左边=右边,所以是方程的解;B、把x=-1代入方程的左边=-14≠右边,所以不是方程的解;C、把x=-1代入方程的左边=-11≠右边,不是方程的解;D、把x=-1代入方程的左边=-13≠右边,不是方程的解;故选:A.【点睛】本题关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.二、填空题11.(0分)方程2243x-=的解是__________x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224 3x-=2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.12.(0分)在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.-33【分析】先设第一个空填m则第二个空就填-m最后形成一个方程接着解出方程进一步求出答案即可【详解】设第一个空填m则第二个空就填-m∴解得:∴故答案为:3【点睛】本题主要考查了一元一次方程的运用熟解析:-3, 3【分析】先设第一个空填m,则第二个空就填-m,最后形成一个方程,接着解出方程进一步求出答案即可.【详解】设第一个空填m ,则第二个空就填-m ,∴2315m m +=-,解得:3m =-,∴3m -=.故答案为:3-,3.【点睛】本题主要考查了一元一次方程的运用,熟练掌握根据题意设出未知数求解是解题关键. 13.(0分)一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x 的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x =﹣4解得:x =﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相解析:﹣49. 【分析】 利用新定义“相伴数对”列出方程,解方程即可求出x 的值.【详解】 解:根据题意得:11235x x , 去分母得:15x+10=6x+6,移项合并得:9x =﹣4, 解得:x =﹣49. 故答案为:﹣49. 【点睛】本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.14.(0分)一批玩具,如果3个小朋友玩1个,还剩2个玩具;如果2个小朋友玩1个,还有9人没有分到玩具.若设有x 个玩具,根据题意可列方程______.【解析】【分析】依据题意分析可得等量关系:两总分法实际上球的个数不变【详解】解:若设有个玩具由题意得【点睛】本题考查了一元一次方程的应用解答本题的关键是读懂题意找出等量关系列方程求解解析:3(2)29x x -=+【解析】【分析】依据题意分析,可得等量关系: 两总分法实际上球的个数不变.【详解】解:若设有x 个玩具,由题意得,3(2)29x x -=+【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.15.(0分)某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元.5【解析】【分析】首先设乙班平均每人捐款x 元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x 元由题意得:50解析:5【解析】【分析】首先设乙班平均每人捐款x 元,则甲班平均每人捐款(x-1)元,根据题意可得等量关系:甲班的捐款+乙班的捐款=425元,由等量关系列出方程即可.【详解】解:设乙班平均每人捐款x 元,由题意得:50(x-1)+(50-5)x=425,解得:x=5,答:乙班平均每人捐款5元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出甲乙两班的捐款人数和人均捐款数,再根据捐款总数列出方程即可.16.(0分)(1)如果33x y -=,那么x =_________;(2)如果2m n =,那么3m =___________.-y 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到【详解】(1)∵−3x =3y ∴x =−y ;故答案为:−y ;(2)∵∴;故答案解析:-y23n 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到3m =23n .【详解】(1)∵−3x =3y ,∴x =−y ;故答案为:−y ;(2)∵2m n =, ∴3m =23n ; 故答案为:23n 【点睛】 本题考查了等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.17.(0分)若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组求出a 的值即可【详解】∵是关于x 的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元解析:1-【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组,求出a 的值即可.【详解】∵()||110a a x --=是关于x 的一元一次方程, ∴1=a 且10a -≠,解得a=-1.故答案为:-1【点睛】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.18.(0分)完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x =______________.因此每件服装的成本价是___________元.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.19.(0分)已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.20.(0分)一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.7【解析】【分析】设其中的男生有x 人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x人则女生有(x−1)人根解析:7【解析】【分析】设其中的男生有x人,根据每位男生看到白色与红色的安全帽一样多,可以表示出女生有(x-1)人.再根据每位女生看到白色的安全帽是红色的2倍列方程求解.【详解】设男生有x人,则女生有(x−1)人,根据题意得x=2(x−1−1)解得x=4x−1=3.4+3=7人.故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.三、解答题21.(0分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x个成人,y个学生,依题意得,1240400.5400x yx y+=⎧⎨+⨯=⎩,解得84xy=⎧⎨=⎩,答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.22.(0分)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?解析:(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.【分析】(1)设未知数后可以根据等量关系“实际购买文具袋(比原计划多1个)的花费×0.85=原计划购买文具袋的花费-17”列方程求解;(2)设未知数后可以根据等量关系“钢笔和签字笔的总价×0.8(或80%)=272”列方程求解.【详解】解:()1设小明原计划购买文具袋x 个,则实际购买了()x 1+个,由题意得:()10x 108510x 17+⨯=-.. 解得:x 17=;答:小明原计划购买文具袋17个;()2设小明购买了钢笔y 支,则购买签字笔()50y -支,由题意得:()8y 650y 80%272⎡⎤+-⨯=⎣⎦,解得:y 20=,则:50y 30-=.答:小明购买了钢笔20支,签字笔30支.【点睛】本题考查一元一次方程的应用,根据题目中的等量关系设未知数列方程求解是解题关键. 23.(0分)公园门票价格规定如下表:50人.若两个班都以班为单位购票,则一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,可省多少元?(2)两班各有多少学生?(3)如果七(1)班单独组织去公园游玩,作为组织者的你将如何购票才最省钱?解析:(1)304元;(2)七(1)班有48人,七(2)班有56人;(3)买51张门票可以更省钱.【分析】(1)利用算术方法即可解答;(2)若设初一(1)班有x 人,根据总价钱即可列方程;(3)应尽量设计的能够享受优惠.【详解】(1)12401049304-⨯=(元),所以可省304元.(2)设七(1)班有x 人,则七(2)班有(104)x -人.由题意得1311(104)1240x x +-=或139(104)1240x x +-=,解得48x =或76x =(不合题意,舍去).即七(1)班有48人,七(2)班有56人.(3)由(2)可知七(1)班共48人,若买48张门票,共需4813624⨯=(元),若买51张门票,共需5111561⨯=(元),所以买51张门票可以更省钱.【点睛】本题考查了一元一次方程的应用.在优惠类一类问题中,注意认真理解优惠政策,审题要细心.24.(0分)市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.25.(0分)a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.解析:(1)-8;(2)1;(3)65.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-5x=-6,x=65.【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.26.(0分)某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x=﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a)-2的解是解题的关键.27.(0分)全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x+1)人,根据题意,得9(x-1)=6(x+1).去括号,得9x-9=6x+6.移项,得9x-6x=6+9.合并同类项,得3x=15.系数化为1,得x=5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题28.(0分)解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.。
2019年七年级数学上册期末复习一元一次方程知识点+易错题一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题知识点、概念总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
第三章一元一次方程
3.1从算式到方程
3.1.1一元一次方程
①方程:含有未知数的等式如:2X=6
②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。
如3X-4=2X
③方程的解:使方程中等号左右两边相等的未知数的值
④求方程解的过程叫做解方程。
⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
3.1.2等式的性质
①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a-c=b-c、a+c=b+c
②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc
如果a=b(c≠0),那么a÷c=b÷c
3.2解一元一次方程(—)合并同类项与移项
①把等式一边的某项变号后移到另一边,叫做移项。
3.3解一元一次方程(二)去括号与去分母
①一般步骤:
1.去分母
2.去括号
3.移项
4. 合并同类项
5.系数化为一
3.4实际问题与一元一次方程
①利用方程不仅能求具体数值,而且可以进行推理判断。
(名师选题)七年级数学上册第三章一元一次方程知识点总结(超全)单选题1、如果关于x的方程(m−2)x=8无解,那么m的取值范围()A.任意实数B.m>2C.m≠2D.m=2答案:D分析:根据ax=b中当a=0,b≠0方程无解可知当m-2=0时关于x的方程(m−2)x=8无解.解:由题意得:当m-2=0时关于x的方程(m−2)x=8无解,解得m=2,故选D.小提示:本题考查了解一元一次方程无解的情况,根据题意得出关于m-2=0是解题关键.2、一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为()A.6场B.7场C.8场D.9场答案:A分析:设该队前9场比赛共平了x场,则胜了(9-x)场.根据共得21分列方程求解.解:设该队前9场比赛共平了x场,则胜了(9-x)场.根据题意得:3(9-x)+x=21,解得:x=3.9-x=6.答:该队前9场比赛共胜了6场.故选:A.小提示:本题考查了一元一次方程的应用,解题的关键是根据题意找到等量关系并正确的列出方程.3、若关于x的方程5x−m=2(x−2)+1的解是x=−2,则m的值为()A.-3B.-5C.-13D.5答案:A分析:把x=−2代入方程即可得到一个关于m的方程,解方程即可求解.解∶把x=−2代入方程5x−m=2(x−2)+1得∶5×(−2)−m=2×(−2−2)+1,解得m=-3.故选∶ A.小提示:本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是解题的关键.4、某校手工社团30名学生制作纸飞机模型,每人每小时可做20个机身或60个机翼,一个飞机模型要一个机身配两个机翼,为了使每小时制作的成品刚好配套,应该分配多少名学生做机身,多少名学生做机翼?设分配x名学生做机身,则可列方程为()A.20x=60(30−x)B.20x=2×60(30−x)C.2×20x=60(30−x)D.60x=20(30−x)答案:C分析:设分配x名学生做机身,根据一个飞机模型要一个机身配两个机翼,则飞机模型的个数乘以2等于机翼的个数,据此列出一元一次方程即可求解.设分配x名学生做机身,则可列方程为, 2×20x=60(30−x)故选C.小提示:本题考查了一元一次方程的应用,找到等量关系是解题的关键.5、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x元,则可列方程为()A.x+65x+1916=52x B.25x+13x+1916=xC.x+25x+1916=3x D.x+25x+1916=52x答案:A分析:根据七年级的捐款为x元,可以求得三个年级的总的捐款数,然后即可得到八年级的捐款数,从而可以列出相应的方程,本题得以解决.解:由题意可得,七年级捐款数为x 元,则三个年级的总的捐款数为:x ÷25=52x ,故八年级的捐款为:52x 3=56x , 则x +56x +1916=52x ,故选:A .小提示:本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.6、新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品.某口罩厂有26名工人,每人每天可以生产400个口罩面或500个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x 名工人生产口罩面,则下列所列方程正确的是( )A .2×500(26−x )=400xB .500(26−x )=400xC .500(26−x )=2×400xD .500(26−x )=400x答案:C分析:安排x 名工人生产口罩面,则(26−x )人生产耳绳,由一个口罩面需要配两个耳绳可知耳绳的个数是口罩面个数的2倍从而得出等量关系,就可以列出方程.解:设安排x 名工人生产口罩面,则(26−x )人生产耳绳,由题意得500(26−x )=2×400x .故选:C .小提示:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7、解一元一次方程12(x +1)=1−13x 时,去分母正确的是( )A .3(x +1)=1−2xB .2(x +1)=1−3xC .2(x +1)=6−3xD .3(x +1)=6−2x答案:D分析:根据等式的基本性质将方程两边都乘以6可得答案.解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.小提示:本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.8、已知一项工程,甲单独完成需要5天,乙单独完成需要10天,现先由甲单独做2天,然后再安排乙与甲合作完成剩下的部分,则完成这项工程共耗时( )A.1天B.2天C.3天D.4天答案:D分析:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据总工作量=甲完成的工作量+乙完成的工作量,即可得出关于x的一元一次方程,解之即可得出结论.解:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据题意得:x5+x−210=1,解得:x=4.即完成这项工程共耗时4天.故选:D小提示:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9、对于两个不相等的有理数a,b,我们规定符号min{a,b}表示a、b两数中较小的数,例如min{2,-4}=-4,则方程min{x,-x}=3x+4的解为()A.x=-1B.x=-2C.x=-1或x=-2D.x=1或x=2答案:B分析:根据题意可得:min{x,-x}=x或−x,所以x=3x+4或−x=3x+4,据此求出x的值即可.∵规定符号min{a,b}表示a、b两数中较小的数,∴当min{x,-x}表示为x时,则x=3x+4,解得x=−2,当min{x,-x}表示为−x时,则−x=3x+4,解得x=−1,∵x=−1时,最小值应为x,与min{x,-x}=−x相矛盾,故舍去,∴方程min{x,-x}=3x+4的解为x=−2,故选:B.小提示:本题主要考查一元一次方程的解法,能根据题意正确列出一元一次方程是解题的关键.−3=0;④x−y=6中,为一元一次方程的有()10、在方程①x+1=0;②1−x2=0;③1xA.4个B.3个C.2个D.1个答案:D分析:只含有一个未知数(元)并且未知数的指数是1 (次)的方程叫做一元一次方程,它的一般形式是ax+b=0 (a,b是常数且a≠0),根据此定义判断即可.①x+1=0;是一元一次方程,故①正确;②1−x2=0;不是一元一次方程,故②错误;−3=0;不是一元一次方程,故③错误;③1x④x−y=6不是一元一次方程,故④错误;为一元一次方程的有1个;故选:D.小提示:本题主要考查了一元一次方程的识别,注意三个要点:只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.填空题11、某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.答案:2000分析:设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为2000.小提示:本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.12、若x|m|﹣10=2是关于x的一元一次方程,则m的值是 _____.答案:±1分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解:根据题意,有|m|=1,∴m=±1,所以答案是:±1.小提示:本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.13、已知5x2−5x−3=7,利用等式的基本性质,x2−x的值为___________.答案:2分析:首先根据等式的性质1,两边同时+3得5x2−5x=10,再根据等式的性质2,两边同时除以5即可得到答案.解:5x2−5x−3=7,根据等式的性质1,两边同时+3得:5x2−5x−3+3=7+3,即:5x2−5x=10,根据等式的性质2,两边同时除以5得:5x2−5x5=105,∴x2−x=2,故填:2.小提示:此题主要考查了等式的性质,关键是掌握等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.14、已知数轴上的点A,B表示的数分别为−2,4,P为数轴上任意一点,表示的数为x,若点P到点A,B的距离之和为7,则x的值为 _____.答案:−2.5或4.5分析:根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x的值.解:根据题意得:|x+2|+|x-4|=7,当x<-2时,化简得:-x-2-x+4=7,解得:x=-2.5;当-2≤x<4时,化简得:x+2-x+4=7,无解;当x≥4时,化简得:x+2+x-4=7,解得:x=4.5,综上,x的值为-2.5或4.5.所以答案是:-2.5或4.5.小提示:此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.15、若关于x的方程2kx+m3=x−nk6+2,无论k为任何数时,它的解总是x=1,那么m+n=_______.答案:52分析:先将x=1代入原方程得,根据无论k为任何数时(4+n)k=13−2m恒成立,可得k的系数为0,由此即可求出答案.解:将x=1代入2kx+m3=x−nk6+2,∴2k+m3=1−nk6+2,∴(4+n)k=13−2m,由题意可知:无论k为任何数时(4+n)k=13−2m恒成立,∴n+4=0,∴n=−4,m=132,∴m+n=52,所以答案是:52小提示:本题主要考查了一元一次方程,解题的关键是正确理解一元一次方程的解.解答题16、解方程:(1)3x−2(2x−1)=7(2)2x+13−5x−16=1答案:(1)x=−5(2)x=−3分析:(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.(1)解:去括号得:3x−4x+2=7移项得:3x−4x=7−2合并同类项得:−x=5系数化为1得:x=−5(2):去分母得:2(2x+1)−(5x−1)=6去括号得:4x+2−5x+1=6移项合并同类项得:−x=3系数化为1得:x=−3小提示:此题考查了解一元一次方程,熟练掌握解方程的步骤是解本题的关键.17、解方程:(1)4−x3=x−35−1(2)5(x−3)−2(x−3)=0答案:(1)x=112(2)x=3分析:(1)根据解一元一次方程的步骤“去分母,去括号,移项、合并同类项,系数化为1”解答即可;(2)根据解一元一次方程的步骤“去括号,移项、合并同类项,系数化为1”解答即可.(1)4−x3=x−35−1解:去分母,得:5(4−x)=3(x−3)−15去括号,得:20−5x=3x−9−15移项、合并同类项,得:−8x=−44系数化为1,得:x=112(2)5(x−3)−2(x−3)=0解:去括号,得5x−15−2x+6=0移项、合并同类项得:3x=9系数化为1,得:x=3小提示:本题考查解一元一次方程.熟练掌握解一元一次方程的步骤是解题关键.18、解方程:(1)3x−1=8;(2)x+12−1=x−23.答案:(1)x=3(2)x=-1分析:(1)按解一元一次方程的一般步骤求解即可;(2)按解一元一次方程的一般步骤求解即可.(1)解:由原方程移项、合并同类项,得3x=9,解得x=3,所以,原方程的解为x=3;(2)解:去分母,得3(x+1)-6=2(x-2),去括号,得3x+3-6=2x-4,移项、合并同类项,得x=-1,所以,原方程的解为x=-1.小提示:本题考查了一元一次方程解法.解一元一次方程的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.。
一元一次方程知识点总结【知识点总结】1、定义:满足① ② ③ 的式子叫一元一次方程。
例题1:判断下列方程中属于一元一次方程的是( )(1)x-3 (2)x 2-1=0 (3)2x -3=0 (4)x -y=0 (5)x+=2 (6)2x 2-1=1-2(2x-x 2) 例题2:若方程3x 2m-1+1=6是关于x 的一元一次方程方程,则m 的值是 。
2、方程的解:知解则代入例题:已知5是关于x 的方程3x -2a=7的解,则a 的值为 。
3、等式的性质:(1)性质一: 。
(2)性质二: 。
【注意】性质二中等式两边同除时,除数不能 。
例题1:(2011山东滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
解:原方程可变形为去分母,得3(3x+5)=2(2x-1). (__________________________)去括号,得9x+15=4x-2. (__________________________)(____________________),得9x-4x=-15-2. (___________________________) 合并,得5x=-17. (合并同类项)(____________________),得x=. (_________________________) 例题2下列说法正确的是 ( )(A )在等式两边除以a ,可得b c = (B )在等式b c a a=两边都乘以a ,可得b c = (C )在等式a b =两边都除以(21c +),可得2211a b c c =++ (D )在等式22x a b =-两边除以2,可得x a b =- 4、解方程:步骤与常见错误步骤一: 。
常见错误:① 。
② 。
二: 。
常见错误:① 。
② 。
三: 。
常见错误: 。
四: 。
五: 。
常见错误: 。
5、应用题类型类型一:销售利润问题(1) 与销售有关的量:进价(成本价)、标价(原价)、售价(现价)、利润、利润率、让利(2) 有销售有关的公式:① 利润=售价-进价=标价×打折数-进价=标价×打折数-让利-进价=进价×利润率② 售价=标价×打折数=标价×打折数-让利类型二:工程问题(1)若一件工程甲6天独自做完,则甲的工作效率为: 。
一元一次方程单元复习与巩固 一、知识网络知识点一:一元一次方程及解的概念 1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a ≠0)。
一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m ≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤: 常用步骤 具体做法 依据注意事项去分母 在方程两边都乘以各分母的最小公倍数 等式基本性质2防止漏乘(尤其整数项),注意添括号;去括号一般先去小括号,再去中括号,最后去大括号去括号法则、分配律 注意变号,防止漏乘;移项把含有未知数的项都移到方程的一边,其等式基本性质1 移项要变号,不移不变号;他项都移到方程的另一边(记住移项要变号)合并同类项把方程化成ax =b(a ≠0)的形式 合并同类项法则 计算要仔细,不要出差错;系数化成1 在方程两边都除以未知数的系数a ,得到方程 的解x =等式基本性质2计算要仔细,分子分母勿颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a ≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解; ③a=0,b ≠0时,方程无解。
每个学生都可以用的“超级数学学习笔记”一元一次方程知识框架与典型例题一、知识点知识点一:1、含有______________的等式是方程,使方程的等式两边的相等的值教方程的解,方程中含有____个未知数,未知数的_________________的方程称为一元一次方程(注意:方程一定是等式,等式不一定是方程)知识点二:等式的性质1 等式两边都______(或者减去)_________(或同一个式子)所得结果仍是____.等式的性质2 等式两边都______(或者除以)_________(或同一个式子)(除数或者除式不能为0),所得结果仍是____.知识点三:解方程的步骤:1、 如果有分母,先去____, (注意去分母时等式两边每一项都乘以最小公倍数)2、 后去_____,(去括号时,注意括号前面的符合)3、 再_____、(移项要变号)4、 ______得到标准形式ax=b(a ≠0),最后两边同除以______的系数。
(合并同类型)5、 易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程. (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二、常考题型题型总结题型一:判定是不是方程1下列各式中:① 3+3=6 ② 123>+x ③ 39-x =7 ④ 122=-z z⑤ 0=m (6) 239=-π(7)236=-πx有______条是方程,其中__________(填写编号)是一元一次方程。
每个学生都可以用的“超级数学学习笔记”2、下列式子谁有资格进入住方程乐园?2973=+x ,62-=x x ,y x 21-,071<-x ,422=-y x ,224-=+- 3、判断是不是一元一次方程?2(x +100)=600 , (x +200)+ x +(x -448)=300644x +(x +4)=8, x +5=8 , x -2y =6 , 32x -2y =120题型二:判定是不是一元一次方程1、如果单项式121-2n a b +与213n m a b -是同类项,则n=___,m=____ 2 如果代数式3x-5与1-2x 的值互为相反数,那么x=____ 3 若方程3x-5=4x+1与3m-5=4(m+x)-2m 的解相同,求()200820m +的值4.关于x 的方程230m mx m ++-=是一个一元一次方程,则m =_______.5.关于x 的方程()112436x x m +=-+的解是116-,则()20021m -=_______. 6.关于x 的方程39x =与4x k +=解相同,则代数式212kk-的值为_______. 7.若关于x 的方程()23202k x kx -+-=k 是一元一次方程,则k =_______,方程的解为_______. 8.当x =_______时,代数式12x -与113x +-的值相等.9 若关于x 的一元一次方程231,32x k x k---=的解是x= -1,则k 的值是( )A 27B 1C 1311- D 011.已知方程112332x x x ---=+-与方程2224334kx xk +--=-的解相同,则k 的值为( ) A.0B.2C.1D.1-11.已知方程233mx x -=+的解满足10x -=,则m 的值是( ) A.6-B.12-C.6-或12-D.任何数12.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( ) A.12B.6C.6-D.12-13.(8分)解关于x 的方程()0b x x aa b a b+-=≠≠. 14.(10分)已知2ym my m +=-.每个学生都可以用的“超级数学学习笔记”(1)当4m =时,求y 的值;(2)当4y =时,求m 的值.15 已知x=- 2是方程22328x mx m -+=的解,求m 的值。
第三章 一元一次方程章节知识点1.等式:用“=”号连接而成的式子叫等式. 2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程). 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。
5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号). 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0). 8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质去 分 母----------同乘(不漏乘)最简公分母 去 括 号----------注意符号变化 移 项----------变号(留下靠前) 合并同类项--------合并后符号 系数化为1---------除前面 10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式:(1)行程问题: 路程=速度·时间 时间路程速度=速度路程时间=; (2)工程问题:工作量=工作效率·工作时间 工时工作量工效=工效工作量工时=; 工程问题常用等量关系: 先做的+后做的=完成量 (3)顺水逆水问题:船行速度=(顺水速度+逆流速度)/2 流水速度=(顺流速度—逆流速度)/2 顺流速度=静水速度+水流速度, 逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程 (4)商品利润问题: %100⨯-=成本成本售价利润率;利润问题常用等量关系: 售价-进价=利润 (5)产品配套问题:基本等量关系是:加工总量成比例 (6)分配问题(7)列车过桥问题:过桥时间(桥长+列车长)/速度第三章一元一次方程章节练习题1一.选择题(共16小题)1.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣32.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.93.已知x2+3x+5的值为11,则代数式3x2+9x﹣12的值为()A.3 B.6 C.9 D.﹣94.县化肥厂第一季度生产a吨化肥,以后每季度比上一季度增产x%,则第三季度化肥生产的吨数为()A.a(1+x)2 B.a(1+x%)2C.(1+x%)2D.a+a(x%)2 5.给出下面四个方程及其变形,其中变形正确的是()①4(x+2)=0变形为x+2=0;②x+7=5﹣3x变形为4x=﹣2;③x=3变形为2x=15;④8x=7变形为x=.A.①③④ B.①②④C.③④②D.①②③6.下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5 B.﹣3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6 D.变形得4x﹣6=3x+18 7.下列方程变形正确的是()A.由3+x=5得x=5+3 B.由7x=﹣4得x=﹣C.由y=0得y=2 D.由3=x﹣2得x=2+38.把方程中分母化整数,其结果应为()A.B.0C.D.09.对于方程,去分母后得到的方程是()A.5x﹣1﹣2=1+2x B.5x﹣1﹣6=3(1+2x)C.2(5x﹣1)﹣6=3(1+2x)D.2(5x﹣1)﹣12=3(1+2x)10.如果代数式3x﹣2与互为倒数,那么x的值为()A.0 B.C.﹣D.11.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.212.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106C.518﹣x=2(106+x)D.518+x=2(106﹣x)13.一家商店把某商品按标价的九折出售仍可获利15%,若该商品的进价是35元,若设标价为x元,则可列得方程()A.B.C.D.14.一艘轮船从甲码头到乙码头顺水航行,用了2小时,从乙码头到甲码头逆水航行,用了2.5小时.已知水流速度为3千米/时.设轮船在静水中的速度为x千米/时,可列出的方程为()A.2x+3=2.5x﹣3 B.2(x+3)=2.5(x﹣3)C.2x﹣3=2.5x=3 D.2(x﹣3)=2.5(x+3)15.有一篮苹果平均分给几个人,若每人分2个,则还余下2个苹果,若每人分3个,则还少7个苹果,设有x个人分苹果,则可列方程为()A.3x+2=2x+7 B.2x+2=3x+7C.3x﹣2=2x﹣7 D.2x+2=3x﹣716.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元二.填空题(共4小题)17.已知a﹣b=1,则代数式2a﹣2b﹣3的值是.18.购买单价为a元的牛奶3盒,单价为b元的面包4个共需元(用含有a、b的代数式表示).19.已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=.20.设a,b,c是从1到9的互不相同的整数,则的最大值为.三、简答题21.解方程:(1)5+4x=﹣x (2)2(x﹣1)﹣3(2x+5)=5x﹣3 (3)2﹣=.(4)10(x﹣1)=5.(5)5x+2=7x﹣8 (6)﹣=1.23.当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.24.x为何值时,代数式﹣的值比代数式﹣3的值大3.25.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?26.某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?27.目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?28.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?29.昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.30.某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?第三章一元一次方程章节练习题1参考答案与试题解析一.选择题(共16小题)1.(2016•菏泽)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3【解答】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.2.(2016•济宁)已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.3.(2016•沛县校级一模)已知x2+3x+5的值为11,则代数式3x2+9x﹣12的值为()A.3 B.6 C.9 D.﹣9【解答】解:∵x2+3x+5=11,即x2+3x=6,∴原式=3(x2+3x)﹣12=18﹣12=6,故选B4.(2016•呼兰区模拟)县化肥厂第一季度生产a吨化肥,以后每季度比上一季度增产x%,则第三季度化肥生产的吨数为()A.a(1+x)2B.a(1+x%)2C.(1+x%)2D.a+a(x%)2【解答】解:依题意可知:第二季度的吨数为:a(1+x),第三季度是在第二季度的基础上增加的,为a(1+x)(1+x)=a(1+x%)2.故选B.5.(2016春•海南校级月考)给出下面四个方程及其变形,其中变形正确的是()①4(x+2)=0变形为x+2=0;②x+7=5﹣3x变形为4x=﹣2;③x=3变形为2x=15;④8x=7变形为x=.A.①③④ B.①②④ C.③④② D.①②③【解答】解:①4(x+2)=0变形为x+2=0,正确;②x+7=5﹣3x变形为4x=﹣2,正确;③x=3变形为2x=15,正确;④8x=7变形为x=,错误.故选D6.(2015秋•庆云县期末)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.﹣3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+18【解答】解:A、4x﹣5=3x+2变形得4x﹣3x=2+5,故选项错误;B、﹣3x=2变形得x=﹣,故选项错误;C、3(x﹣1)=2(x+3)去括号得3x﹣3=2x+6,故选项错误;D、x﹣1=x+3变形得4x﹣6=3x+18,故选项正确.故选:D.7.(2015秋•历城区期末)下列方程变形正确的是()A.由3+x=5得x=5+3 B.由7x=﹣4得x=﹣C.由y=0得y=2 D.由3=x﹣2得x=2+3【解答】解:A、由3+x=5得x=5﹣3;B、由7x=﹣4得x=﹣;C、由y=0得y=0;D、由3=x﹣2得x=2+3.故选D.8.(2015秋•黄岛区期末)把方程中分母化整数,其结果应为()A.B.0C. D.0【解答】解:根据分式的性质,每个分式分子分母同乘以10得:.故选C.9.(2016春•巴中期中)对于方程,去分母后得到的方程是()A.5x﹣1﹣2=1+2x B.5x﹣1﹣6=3(1+2x)C.2(5x﹣1)﹣6=3(1+2x)D.2(5x﹣1)﹣12=3(1+2x)【解答】解:方程的两边同时乘以6,得2(5x﹣1)﹣12=3(1+2x).故选D.10.(2015春•简阳市期末)如果代数式3x﹣2与互为倒数,那么x的值为()A.0 B.C.﹣D.【解答】解:∵代数式3x﹣2与互为倒数,∴(3x﹣2)×=1,解得:x=.故选D.11.(2015•济南)若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.2【解答】解:根据题意得:4x﹣5=,去分母得:8x﹣10=2x﹣1,解得:x=,故选B.12.(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选C.13.(2016•南开区校级模拟)一家商店把某商品按标价的九折出售仍可获利15%,若该商品的进价是35元,若设标价为x元,则可列得方程()A.B.C.D.【解答】解:实际售价为90%x,∴利润为90%x﹣35,所以可列方程为,故选A.14.(2016•香坊区模拟)一艘轮船从甲码头到乙码头顺水航行,用了2小时,从乙码头到甲码头逆水航行,用了2.5小时.已知水流速度为3千米/时.设轮船在静水中的速度为x千米/时,可列出的方程为()A.2x+3=2.5x﹣3 B.2(x+3)=2.5(x﹣3)C.2x﹣3=2.5x=3 D.2(x﹣3)=2.5(x+3)【解答】解:设轮船在静水中的速度为x千米/时,可列出的方程为:2(x+3)=2.5(x﹣3),故选:B.15.(2016•哈尔滨模拟)有一篮苹果平均分给几个人,若每人分2个,则还余下2个苹果,若每人分3个,则还少7个苹果,设有x个人分苹果,则可列方程为()A.3x+2=2x+7 B.2x+2=3x+7 C.3x﹣2=2x﹣7 D.2x+2=3x﹣7【解答】解:由题意可得,2x+2=3x﹣7,故选D.16.(2016•张家口一模)某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元【解答】解:设这种商品的原价是x元,根据题意得:75%x+25=90%x﹣20,解得x=300.故选C.二.选择题(共2小题)17.(2016•于田县校级模拟)已知a﹣b=1,则代数式2a﹣2b﹣3的值是﹣1.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故答案为:﹣1.18.(2016•长春模拟)购买单价为a元的牛奶3盒,单价为b元的面包4个共需(3a+4b)元(用含有a、b的代数式表示).【解答】解:购买单价为a元的牛奶3盒,单价为b元的面包4个共需(3a+4b)元.故答案为:(3a+4b).三.选择题(共2小题)19.(2016•当涂县三模)已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=14.【解答】解:由于==,3a﹣2b+c=9,∴,解得:b=7,a=5,c=8,把a,b,c代入代数式得:2a+4b﹣3c=2×5+4×7﹣3×8=14,故本题答案为:14,另解:设:===x,则:a=5x,b=7x,c=8x3a﹣2b+c=9可以转化为:15x﹣14x+8x=9,解得x=1那么2a+4b﹣3c=10x+28x﹣24x=14x=14.故答案为:14.20.(2016•柘城县校级一模)设a,b,c是从1到9的互不相同的整数,则的最大值为1.【解答】解:因为分母是相乘的关系,放大倍数大,所以应该尽量使a、b、c的取值小才能确保分式的值最大.故选a=1,b=2,c=3.∴的最大值为1.故填1.四.选择题(共3小题)21.(2016春•卢龙县期中)解方程:(1)5+4x=﹣x(2)2(x﹣1)﹣3(2x+5)=5x﹣3(3)2﹣=.【解答】解:(1)移项合并得:﹣5x=5,解得:x=﹣1;(2)去括号得:2x﹣2﹣6x﹣15=5x﹣3,移项合并得:﹣9x=14,解得:x=﹣;(3)去分母得:12﹣3x+3=2x+4,移项合并得:5x=11,解得:x=.22.(2016春•长春期中)解下列方程:(1)10(x﹣1)=5.(2)5x+2=7x﹣8(3)﹣=1.【解答】解:(1)去括号得:10x﹣10=5,移项合并得:10x=15,解得:x=1.5;(2)移项合并得:﹣2x=﹣10,解得:x=5;(3)去分母得:5(7x﹣3)﹣2(4x+1)=10,去括号得:35x﹣15﹣8x﹣2=10,移项合并得:27x=27,解得:x=1.23.(2016•湖州)当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.【解答】解:(1)当a=3,b=﹣1时,原式=2×4=8;(2)当a=3,b=﹣1时,原式=(a+b)2=22=4.五.选择题(共6小题)24.(2016春•新蔡县期末)x为何值时,代数式﹣的值比代数式﹣3的值大3.【解答】解:由题意得:﹣9(x+1)=2(x+1)﹣9x﹣9=2x+2﹣11x=11x=﹣1.25.(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【解答】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.26.(2016•商河县二模)某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?【解答】解:(1)设七年级人数是x人,根据题意得,解得:x=240.(2)原计划租用45座客车:(240﹣15)÷45=5(辆).故七年级学生人数是240人,原计划租用45座客车5辆.27.(2016•博白县一模)目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得:25x+45(1200﹣x)=46000,解得:x=400.购进乙型节能灯1200﹣400=800(只),答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,由题意,得:(30﹣25)a+(60﹣45)(1200﹣a)=[25a+45(1200﹣a)]×30%.解得:a=450.购进乙型节能灯1200﹣450=750只.5 a+15(1200﹣a)=13500元.答:商场购进甲型节能灯450只,购进乙型节能灯750只时利润为13500元.28.(2016•惠安县模拟)某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?【解答】解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(8﹣4)×500=10000(元);方案二:设生产x天奶片,则生产(4﹣x)天酸奶,根据题意得:x+3(4﹣x)=8,解得:x=2,2天生产酸奶加工的鲜奶是2×3=6吨,则利润为:2×2000+2×3×1200=4000+7200=11200(元),得到第二种方案可以多得1200元的利润.29.(2016•云南模拟)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.【解答】解:设乙车速度为x千米/时,甲车速度为(x+20)千米/时,根据题意得40分钟=小时,(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.六.解答题(共1小题)30.(2016春•蓬溪县期中)某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?【解答】解:设原来每天生产x个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.。
一元一次方程知识点归纳及典型例题
实验中学
马贵荣编
第三章
【相关概念】
1、方程:含
2、方程的解:使方程的等号左右两边相等的_ ,
就是方程的解[2]。
3、解方程:求 ___________ 的过程叫做解方程。
4、一元一次方程[3]
的等式叫做方程⑴
只含有一个未知数(元),未知数的最高次数是.1 的整式方程叫做一元一次方程。
[基础练习]
1☆选项中是方程的是()
2
A.3+2=5
B. a-1>2
C. a + b2一5
D. a2+2a-3=5
2☆下列各数是方程a2+a+3=5的解的是()
A.2
B. -2
C.1
D. 1 和-2
3☆下列方程是一元一次方程的是()
2
A. — +仁5
B. 3(m-1 )-1 =2
C. x-y=6
D.都不是
x
[1]由方程的定义可知,方程必须满足两个条件:一要是等式,二要含有未知数〖见基础练习T1〗。
[2]方程的解的个数随方程的不同而有多有少〖见基础练习T2〗,但一个一元一次方程有且. 只有一个解。
[3]一元一次方程的一般形式.:ax b 0 (a、b为常数,且a工0,即末知数的系数一
定不能为0)〖见基础练习T5〗。
一元一次方程,一定是整式方程(也就是说: 等号两边的式子都是整式)。
如:3x —5=6x,其左边是一次二项式(多项式)3x—5,而右边是
单项式6x。
所以只要分母中含有未知数的方程一定不是整式方程(也就不可能是一元一次方程了),如〖基础练习T3〗。
一元一次方程知识点归纳及典型例题
实验中学
4★若x=4是方程-a =4的解,贝U a等于(
2
5★★已知关于x的一元一次方程a x —b x=m (m^ 0)
1
A. 0
B.
C.-3
D.-2
2
有解,则有()
、【方程变形一一解方程的重要依据】〔、▲等式的基本性质
•等式的性质1:等式的两边同时加(或减)__________
即:如果a b ,那么a c b ________ 。
•等式的性质2:等式的两边同时乘_________ ,或除以
a b a b,那么ac be 或如果a=b (____________ ),那么一一
c e
等式的两边,结果),结果仍相等。
数,结果仍相等。
即:如果
【注:等式的性质(补充):___
仍相等。
即:如果a=b,那么b=a】2、△分数的基本的性质⑷分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:一 = am=^^ (其中m^0)b
bm b m
[基础练习]
利用等式的性质解方程:2x+13=12
第一步:在等式的两边同时 _________
第二步:在等式的两边同时 _________
解得:x=
2^下列变形中,正确的是([4]▲分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如下面的方程:
x 3 x 4 .
---------------- =1.6
0.5 0.2
将上方程化为下面的形式后,更可用习惯的方法解了。
10x 30 10x 40 .
------------------------- =1.6
5 2
注意:方程的右边没有变化,这
第三章一元一次方程知识点归纳及典型例题
实验中学马贵荣编
3
A、由3x 5 2x,得5x 5
B、由3x 2,得x -
2
C、由2(x 1) 4,得x 1 2
D、由空 0,得y 3
3 2
x 0.31x 0.13 “
3★★解万程:1
0.2 0.03
三、【解一元一次方程的一般步骤】图示
♦♦
骤;
2、解方程时,一定要先认真观察方程的形式,再选择步骤和方法;
3、对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解。
要点诠释:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:
①a^0时,方程有唯一解x [基础练习]b
—;②a=0, b=0时,方程有无数个解;③
a
a=0, b工时,方程无解。
(1)y y21 3y 2
5
(2) 4x3(20 x) 6x 7(9x)
解答题:利用已学知识,构造一元次方程
实验中学马贵荣编
2
(1)已知5x 2 x 3 |3y 6 0,求x和y的值•
2 2 2
(2)若2x 3 x 3y 4 0,求y 1 x 的值.
2、方程中有未知字母,根据方程的解,求未知字母
1 1 1
(1)已知x 28是方程x a a a的解,求a的值.
2 2 2
(2)已知x 2时,代数式2x2 5x c的值是14,求x 2时代数式的值.
3、根据代数式值相等、同类项或相反数的知识
x 1 x 2
(1)若代数式x 与代数式2 的值相等,求x的值•
2 5
(2)当m、n取什么值时,单项式2a2b m c3n 1与6a2bc2m 3是同类项?
四、【一元一次方程的应用】
▲依据题目中的信息将问题转化为解方程的问题
【想想算算填填】
(1)若y 2 (x 5)20,则x y __________ 。
(2)____________________________________ 若2a3b n 1与9a m n b3是同类项,贝U m= , n= ________________________________________ 。
(3)若mx3y p与nx m 1 y2的和为0,则m-n+3p = _________ 。
(4)代数式x+6与3(x+2)的值互为相反数,则x的值为______________ 。
x 4 6
(5)若----- 与-互为倒数,则x= _______ 。
3 5
建立一元一次方程模型解实际问题的步骤:
常见建立方程模型解实际问题的几种类型
实验中学马贵荣编
实验中学马贵荣编。