2020年海南省新高考数学试卷(新高考)含详细解析
- 格式:pdf
- 大小:721.93 KB
- 文档页数:27
2020年全国新高考Ⅰ卷数学试卷一、选择题1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}=()2.2−i1+2iA.1B.−1C.iD.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3买名,则不同的安排方法共有() A.120种 B.90种 C.60种 D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT ,有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →⋅AB →的取值范围是()A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6)8.若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3]二、多选题9.已知曲线C :mx 2+ny 2=1.()A.若m >n >0,则C 是椭圆,其焦点在y 轴上B.若m =n >0,则C 是圆,其半径为√nC.若mn <0,则C 是双曲线,其渐近线方程为y =±√−m n xD.若m =0, n >0,则C 是两条直线10.如图是函数y =sin (ωx +φ)的部分图像,则sin (ωx +φ)=()A.sin (x +π3)B.sin (π3−2x)C.cos (2x +π6)D.cos (5π6−2x)11.已知a >0,b >0,且a +b =1,则()A.a 2+b 2≥12B.2a−b >12C.log 2a +log 2b ≥−2D.√a +√b ≤212.信息熵是信息论中的一个重要概念,设随机变量X 所有可能的取值为1,2,⋯,n ,且P(X =i)=p i >0(i =1,2,⋯,n),∑p i n i=1=1,定义X 的信息熵H (X )=−∑p i n i=1log 2p i ,则()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p i 的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y )三、填空题13.斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=________.14.将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=3,BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,5圆孔半径为1,则图中阴影部分的面积为________cm2.16.已知直四棱柱ABCD−A1B1C1D1的棱长均为2,∠BAD=60∘,以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为________.四、解答题17.在①ac=√3,②csinA=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,C=π,________?618.已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100.19.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?,附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20.如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD 与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.21.已知函数f(x)=ae x−1−lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.2020年全国新高考Ⅰ卷数学试卷一、选择题1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}【解答】解:集合A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.故选C.2.2−i1+2i=()A.1B.−1C.iD.−i【解答】解:2−i1+2i =(2−i)(1−2i) (1+2i)(1−2i)=2−4i−i−21+4=−5i5=−i.故选D.3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3买名,则不同的安排方法共有() A.120种 B.90种 C.60种 D.30种【解答】解:由题意可得,不同的安排方法共有C61⋅C52=60(种).故选C.4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘【解答】解:如图所示,AB为日晷晷针,∠AOC=40∘,由题意知,∠AOC+∠OAB=90∘,∠DAB+∠OAB=90∘,∴∠DAB=∠AOC=40∘,即晷针与点A处的水平面所成角为40∘.故选B.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%【解答】解:设喜欢足球为A,喜欢游泳为B,由题意知,P(A)=60%,P(B)=82%,P(A∪B)=96%,所以P(A∩B)=P(A)+P(B)−P(A∪B)=60%+82%−96%=46%.故选C.6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT,有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天【解答】解:3.28=1+r ⋅6得r =0.38,I(t)=e 0.38t ,e 0.38(t+x)=2⋅e 0.38t 得x =ln20.38≈1.8.故选B .7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →⋅AB →的取值范围是()A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6) 【解答】解:如图:设A(−1,√3),P (x,y ),B (−2,0),AP →=(x +1,y −√3),AB →=(−1,−√3),则:AP →⋅AB →=−x −√3y +2,令z =−x −√3y +2,由线性规则得,最优解为:C(−1,−√3)和F(1,√3),代入得z =6或z =−2.故AP →⋅AB →的取值范围是(−2,6).故选A .8.若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3] 【解答】解:根据题意,函数图象大致如图:①当x=0时,xf(x−1)=0成立;②当x>0时,要使xf(x−1)≥0,即f(x−1)≥0,可得0≤x−1≤2或x−1≤−2,解得1≤x≤3;③当x<0时,要使xf(x−1)≥0,即f(x−1)≤0,可得x−1≥2或−2≤x−1≤0,解得−1≤x<0.综上,x的取值范围为[−1,0]∪[1,3].故选D.二、多选题已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnx D.若m=0, n>0,则C是两条直线【解答】解:A,mx2+ny2=1,即x 21 m +y21n=1,∵m>n>0,∴1m <1n,∴此时C是椭圆,且其焦点在y轴上,A选项正确;B,m=n>0时,x2+y2=1n,∴r=√nn,B选项错误;C,mn<0时,可推断出C是双曲线,且其渐近线方程为y=±√−1n1mx=±√−mnx,C选项正确;D,m=0时,C:ny2=1,∴y=±√1n,代表两条直线,D选项正确.故选ACD.如图是函数y=sin(ωx+φ)的部分图像,则sin(ωx+φ)=()A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)【解答】解:由函数y=sin(ωx+φ)的部分图像,可知,T2=2π3−π6=π2,∴T=π,∴ω=2ππ=2,∴y=sin(2x+φ).将点(π6,0)代入得,0=sin(π3+φ),∴π3+φ=(2k+1)π(k∈Z).A,当x=π6时,sin(x+π3)=sinπ2=1,不符合题意,故A选项错误;B,当k=0时,φ=2π3,y=sin(2x+2π3)=sin(2x−π3+π3+2π3)=sin(2x−π3+π)=−sin(2x−π3 )=sin(π3−2x),故B选项正确;C,sin(2x+2π3)=sin(2x+π6+π2)=cos(2x+π6),故C正确;D,cos(5π6−2x)=cos(2x−5π6)=cos(2x−π2−π3)=sin(2x−π3 )=−sin(2x+2π3),故D选项错误.故选BC.已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤2【解答】解:A,∵a+b=1,则a2+b2+2ab=1,2ab≤a2+b2,当且仅当a=b时取等号,∴1=a 2+b 2+2ab ≤2(a 2+b 2),可得a 2+b 2≥12,故A 正确; B ,∵a −b =a −(1−a)=2a −1>−1,∴2a−b >2−1=12,故B 正确;C ,∵ab ≤(a+b 2)2=14,当且仅当a =b 时取等号, ∴log 2a +log 2b =log 2(ab)≤log 214=−2,故C 错误;D ,∵a +b ≥2√ab ,当且仅当a =b 时取等号,∴(√a +√b)2=a +b +2√ab =1+2√ab ≤2,即√a +√b ≤√2,则√a +√b ≤2,故D 正确.故选ABD .信息熵是信息论中的一个重要概念,设随机变量X 所有可能的取值为1,2,⋯,n ,且P(X =i)=p i >0(i =1,2,⋯,n),∑p i n i=1=1,定义X 的信息熵H (X )=−∑p i n i=1log 2p i ,则()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p i 的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y )【解答】解:A ,若n =1,则p 1=1,H (X )=−1×log 21=0,故A 正确;B ,若n =2,则H (X )=−[p 1log 2p 1+(1−p 1)log 2(1−p 1)].设f (p )=−[plog 2p +(1−p )log 2(1−p )],则:f ′(p )=−[log 2p +p ⋅1p⋅ln2−log 2(1−p )+(1−p )−1(1−p )ln2]=−log 2p 1−p =log 21−p p , 当0<p <12时,f ′(p )>0;当12<p <1时,f ′(p )<0,∴f (p )在(0,12)上单调递增,在(12,1)上单调递减,p 1=12时,H(X)取最大值,故B 错误;C ,若p i =1n (i =1,2,⋯,n ),则H (X )=−∑p i n i=1log 2p i =−n ⋅1n log 21n =log 2n ,所以H(x)随着n 的增大而增大,故C 正确;D ,若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,由P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m )知:P (Y =1)=p 1+p 2m ;P (Y =2)=p 2+p 2m−1;P (Y =3)=p 3+p 2m−2;⋯⋯P (Y =m )=p m +p m+1;H (Y )=−[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m−1)log 2(p 2+p 2m−1)+⋯+(p m +p m+1)log 2(p m +p m+1)],H (X )=−[p 1log 2p 1+p 2log 2p 2+⋯+p 2m log 2p 2m ]=−[(p 1log 2p 1+p 2m log 2p 2m )+(p 2log 2p 2+p 2m−1log 2p 2m−1)+⋯+(p m log 2p m +p m+1log 2p m+1)],∵(p 1+p 2m )log 2(p 1+p 2m )−p 1log 2p 1−p 2m log 2p 2m >0,⋯⋯(p m +p m+1)log 2(p m +p m+1)−p m log 2p m −p m+1log 2p m+1>0,所以H (X )>H (Y ),故D 错误.故选AC .三、填空题斜率为√3的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=________.【解答】解:设A(x1,y1),B(x2,y2),抛物线的焦点为(1,0),则直线方程为y=√3(x−1),代入抛物线方程得3x2−10x+3=0,∴x1+x2=10,3.根据抛物线方程得定义可知|AB|=x1+1+x2+1=163.故答案为:163将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为________.【解答】解:数列2n−1各项为:1,3,5,7,9,⋯数列3n−2各项为:1,4,7,10,13,⋯观察可知,{a n}是首项为1,公差为6的等差数列,数列{a n}的前n项和为3n2−2n.故答案为:3n2−2n.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与,直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=35 BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1,则图中阴影部分的面积为________cm2.【解答】解:由已知得A到DG的距离与A到FG的距离相等,均为5. 作AM⊥GF于M,设AN⊥DG于N.则∠NGA=45∘.∵BH//DG,∴∠BHA=45∘.∵∠OAH=90∘,∴∠AOH=45∘.由tan∠ODC=35,设O到DG的距离为3t,则O到DE的距离为5t,∴{OAcos45∘+5t=7,OAsin45∘+3t=5,解得{t=1, OA=2√2.半圆之外阴影部分面积为:S1=2√2×2√2×12−45∘×π×(2√2)2360∘=4−π,阴影部分面积为:S=12(π⋅(2√2)2−π⋅12)+S1=5π2+4.故答案为:5π2+4.已知直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,∠BAD =60∘,以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________.【解答】解:以C 1为原点,C 1B 1→,C 1C →所在直线分别为x 轴、z 轴建立如图1所示的空间直角坐标系O −xyz ,y 轴是平面A 1B 1C 1D 1内与C 1B 1互相垂直的直线,即D 1(1,−√3,0), 设交线上的点的坐标是(x,0,z ),根据题意可得(x −1)2+3+z 2=5,化简得(x −1)2+z 2=2,所以球面与侧面BCC 1B 1的交线平面如图2所示,即交线长l =14⋅2√2π=√2π2. 故答案为:√2π2. 四、解答题在①ac =√3,②csinA =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,C=π6,________?【解答】解:选①:∵sinA=√3sinB,C=π6,ac=√3,∴sin(56π−B)=√3sinB,∴12cosB+√32sinB=√3sinB,∴sin(π6−B)=0,∴B=π6.又∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3解得a=√3, b=1,∴c=1,故满足条件存在△ABC;选②:sinA=√3sinB,C=π6,csinA=3. ∵csinA=3,∴asinC=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2abcosC=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故满足条件存在△ABC;选③:c=√3b,sinA=√3sinB,C=π6,由①可知,B=π6,故△ABC为等腰三角形c=b,又c=√3b,矛盾.故不存在△ABC满足条件.已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100.【解答】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,+a3q=20,可得a3q得2q2−5q+2=0,(2q−1)(q−2)=0.∵q>1,∴q=2,∵a1×q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?,附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)【解答】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,=0.64.且SO2浓度不超过150的概率的估计值为64100(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得K2=100×(64×10−16×10)2≈7.484,80×20×74×26由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关.如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【解答】(1)证明:因为四边形ABCD为正方形,故BC⊥CD.又因为PD⊥底面ABCD,故PD⊥BC,又由于PD∩DC=D,因此BC⊥平面PDC.因为在正方形ABCD中BC//AD,且AD⊂平面PAD,BC⊄平面PAD,故BC//平面PAD.又因为BC⊂平面PBC,且平面PAD与平面PBC的交线为l,故BC//l.因此l⊥平面PDC.(2)解:由已知条件,P−ABCD底面为正方形,PD⊥底面ABCD,以D为原点,DA为x轴,DC为y轴,DP为z轴,建立D−xyz空间直角坐标系,如图所示:因为PD =AD =1,Q 在直线l 上,设Q (a,0,1),其中a ∈R ,由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1),则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1),设平面QCD 法向量为n →=(x,y,z),则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0, 令z =−a ,则平面QCD 的一个法向量为:n →=(1,0,−a ),设PB 与平面QCD 成角为θ,则sinθ=|cos <n →,PB →>|=|1+a|√3×√1+a 2 =1√3×√(1+a)21+a 2 =√33×√1+2a 1+a 2,①若a =0,则sinθ=√33, ②若a ≠0,则sinθ=√33×√1+21a+a , a >0时, ∵1a +a ≥2×√1a ⋅a =2,当且仅当1a =a ,即a =1时,$``="$成立,∴sinθ≤√33×√1+22=√63. 当a <0时,sinθ<√33, ∴当a =1时,sinθ=√63取到最大值.综上所述,PB与平面QCD成角的正弦值的最大值为√63.已知函数f(x)=ae x−1−lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.【解答】解:(1)当a=e时,f(x)=e x−lnx+1,f′(x)=e x−1x,∴k=f′(1)=e−1,f(1)=e+1,∴y−(e+1)=(e−1)(x−1),即y=(e−1)x+2,∴在y轴上的截距为2,在x轴的截距为21−e,∴S=12×2×|21−e|=2e−1.(2)①当0<a<1时,f(1)=a+lna<1;②当a=1时,f(x)=e x−1−lnx,f′(x)=e x−1−1x,当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1;③当a>1时,f(x)=ae x−1−lnx+lna≥e x−1−lnx≥1. 综上,a的取值范围是[1,+∞).已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.【解答】(1)解:由题设得4a 2+1b 2=1, a 2−b 2a 2=12,解得a 2=6,b 2=3. ∴C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为 y =kx +m ,代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0. 于是x 1+x 2=−4km 1+2k 2,x 1x 2=2m 2−61+2k 2.①由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得 (k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0, 将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km 1+2k 2+(m −1)2+4=0,整理得(2k +3m +1)(2k +m −1)=0, 因为A(2,1)不在直线MN 上,所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1), 所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1). 由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0.又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23, 此时直线MN 过点P(23,−13). 令Q 为AP 的中点,即Q(43,13). 若D 与P 不重合,则由题设知 AP 是Rt △ADP 的斜边,故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值.。
2023年全国统一高考数学试卷(新高考Ⅱ)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共计40分。
每小题给出的四个选项中,只有一个选项是正确的。
请把正确的选项填涂在答题卡相应的位置上。
1.(5分)在复平面内,(1+3i)(3﹣i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:(1+3i)(3﹣i)=3﹣i+9i+3=6+8i,则在复平面内,(1+3i)(3﹣i)对应的点的坐标为(6,8),位于第一象限.故选:A.2.(5分)设集合A={0,﹣a},B={1,a﹣2,2a﹣2},若A⊆B,则a=( )A.2B.1C.D.﹣1【答案】B【解答】解:依题意,a﹣2=0或2a﹣2=0,当a﹣2=0时,解得a=2,此时A={0,﹣2},B={1,0,2},不符合题意;当2a﹣2=0时,解得a=1,此时A={0,﹣1},B={1,﹣1,0},符合题意.故选:B.3.(5分)某学校为了了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )A.种B.种C.种D.种【答案】D【解答】解:∵初中部和高中部分别有400和200名学生,∴人数比例为400:200=2:1,则需要从初中部抽取40人,高中部取20人即可,则有种.故选:D.4.(5分)若f(x)=(x+a)为偶函数,则a=( )A.﹣1B.0C.D.1【答案】B【解答】解:由>0,得x>或x<﹣,由f(x)是偶函数,∴f(﹣x)=f(x),得(﹣x+a)ln=(x+a),即(﹣x+a)ln=(﹣x+a)ln()﹣1=(x﹣a)ln=(x+a),∴x﹣a=x+a,得﹣a=a,得a=0.故选:B.5.(5分)已知椭圆C:的左焦点和右焦点分别为F1和F2,直线y=x+m与C交于点A,B两点,若△F1AB面积是△F2AB面积的两倍,则m=( )A.B.C.D.【答案】C【解答】解:记直线y=x+m与x轴交于M(﹣m,0),椭圆C:的左,右焦点分别为F1(﹣,0),F2(,0),由△F1AB面积是△F2AB的2倍,可得|F1M|=2|F2M|,∴|﹣﹣x M|=2|﹣x M|,解得x M=或x M=3,∴﹣m=或﹣m=3,∴m=﹣或m=﹣3,联立可得,4x2+6mx+3m2﹣3=0,∵直线y=x+m与C相交,所以Δ>0,解得m2<4,∴m=﹣3不符合题意,故m=.故选:C.6.(5分)已知函数f(x)=ae x﹣lnx在区间(1,2)上单调递增,则a的最小值为( )A.e2B.e C.e﹣1D.e﹣2【答案】C【解答】解:对函数f(x)求导可得,,依题意,在(1,2)上恒成立,即在(1,2)上恒成立,设,则,易知当x∈(1,2)时,g′(x)<0,则函数g(x)在(1,2)上单调递减,则.故选:C.7.(5分)已知α为锐角,cosα=,则sin=( )A.B.C.D.【答案】D【解答】解:cosα=,则cosα=,故=1﹣cosα=,即==,∵α为锐角,∴,∴sin=.故选:D.8.(5分)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120【答案】C【解答】解:等比数列{a n}中,S4=﹣5,S6=21S2,显然公比q≠1,设首项为a1,则=﹣5①,=②,化简②得q4+q2﹣20=0,解得q2=4或q2=﹣5(不合题意,舍去),代入①得=,所以S8==(1﹣q4)(1+q4)=×(﹣15)×(1+16)=﹣85.故选:C.二、选择题:本大题共小4题,每小题5分,共计20分。
2024年普通高等学校招生全国统一考试(新课标I卷)数学参考答案与解析1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准注意事项:考证号条形码粘贴在答题卡上的指定位置。
考试结束后,请将本试卷和答题卡一并上交。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|−5<x3<5},B={−3,−1,0,2,3},则A B=A.{−1,0}B.{2,3}C.{−3,−1,0}D.{−1,0,2}【答案】A.【解析】−5<x3<5⇒−513<x<513,而1<513<2,因此A B={−1,0}.故答案为A.2.若zz−1=1+i,则z=A.−1−iB.−1+iC.1−iD.1+i【答案】C.【解析】两边同时减1得:1z−1=i,进而z=1+1i=1−i.故答案为C.3.已知向量a=(0,1),b=(2,x).若b⊥(b−4a),则x=A.−2B.−1C.1D.2【答案】D.【解析】即b⋅(b−4a)=0.代入得4+x(x−4)=0,即x=2.故答案为D.4.已知cos(α+β)=m,tanαtanβ=2,则cos(α−β)=A.−3mB.−m 3C.m 3D.3m【答案】A.【解析】通分sin αsin β=2cos αcos β.积化和差12(cos (α−β)−cos (α+β))=2⋅12(cos (α−β)+cos (α+β)).即cos (α−β)=−3cos (α+β)=−3m .故选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且他们的高均为√3,则圆锥的体积为A.2√3π B.3√3πC.6√3πD.9√3π【答案】B.【解析】设二者底面半径为r ,由侧面积相等有πr √r 2+3=2πr ⋅√3,解得r =3.故V =13⋅πr 2⋅√3=√33π×9=3√3π.故答案为B.6.已知函数为f(x)=⎧{⎨{⎩−x 2−2ax −a,x <0e x +ln (x +1),x ⩾0在R 上单调递增,则a 的取值范围是A.(−∞,0]B.[−1,0]C.[−1,1]D.[0,+∞)【答案】B.【解析】x ⩾0时,f ′(x)=e x +11+x>0,故f(x)在[0,+∞)上单调递增.而y =−x 2−2zx−a 的对称轴为直线x =−a ,故由f(x)在(−∞,0)上单调递增可知−a ⩾0⇒a ⩽0.在x =0时应有−x 2−2ax −a ⩽e x +ln (x +1),解得a ⩾−1,故−1⩽a ⩽0.故答案为B.7.当x ∈[0,2π]时,曲线y =sin x 与y =2sin (3x −π6)的交点个数为A.3B.4C.6D.8【答案】C.【解析】五点作图法画图易得应有6个交点.故答案为C.8.已知函数f(x)的定义域为R ,f(x)>f(x −1)+f(x −2),且当x <3时f(x)=x ,则下列结论中一定正确的是A.f(10)>100 B.f(20)>1000 C.f(10)<1000 D.f(20)<10000【答案】B.【解析】f(1)=1,f(2)=2⇒f(3)>3⇒f(4)>5⇒f(5)>8⇒f(6)>13⇒⋯⇒f(11)>143⇒f(12)>232⇒f(13)>300⇒f(14)>500⇒f(15)>800⇒f(16)>1000⇒⋯⇒f(20)>1000故答案为B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从种植区抽取样本,得到推动出口后亩收入的样本均值为x =2.1,样本方差s 2=0.01.已知该种植区以往的亩收入x 服从正态分布M(1.8,0.12),假设推动出口后的亩收入Y 服从正态分布N(x,s 2),则(若随机变量Z 服从正态分布N(μ,σ2),则P (Z <μ+σ)≈0.8413)A.P (X >2)>0.2 B.P (X >2)<0.5 C.P (Y >2)>0.5 D.P (Y >2)<0.8【答案】BC.【解析】由所给材料知两正态分布均有σ=0.1及正态分布的对称性得:P (X >2)<P (X >1.9)=1−P (X <1.9)=1−0.8413<0.2,A 错误;P (X >2)<P (X >1.8)=0.5,B 正确;P (Y >2)>P (Y >2.1)=0.5,C 正确;P (Y >2)=P (Y <2.2)=0.8413>0.8,D 错误.故答案为BC.10.设函数f(x)=(x −1)2(x −4),则A.x =3是f(x)的极小值点B.当0<x <1时,f(x)<f(x 2)C.当1<x <2时,−4<f(2x −1)<0D.当−1<x <0时,f(2−x)>f(x)【答案】ACD.【解析】计算知f ′(x)=3(x −1)(x −3).故x ∈(1,3)时f(x)单调减,其余部分单调增.由此知x =3为f(x)极小值点,A 正确;由上知x ∈(0,1)时f(x)单调增,又此时x >x 2,故f(x)>f(x 2),B 错误;此时2x −1∈(1,3),故f(2x −1)∈(f(3),f(1))=(−4,0),C 正确;由f(2−x)=(x −1)2(−x −2),故f(2−x)−f(x)=2(1−x)3>0,D 正确.故答案为ACD.11.造型∝可以看作图中的曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于−2;到点F (2,0)的距离与到定直线x =a(a <0)的距离之积为4,则A.a =−2B.点(2√2,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点(x 0,y 0)在C 上时,y 0⩽4x 0+2【答案】ABD.【解析】由原点O 在曲线C 上且|OF |=2知O 到直线x =a 距离为2,由a <0知a =−2,A 正确;由x >−2知C 上点满足(x +2)√(x −2)2+y 2=4,代(2√2,0)知B 正确;解出y 2=16(x +2)2−(x −2)2,将左边设为f(x),则f ′(2)=−0.5<0.又有f(2)=1,故存x0∈(0,1)使f(x0)>1.此时y>1且在第一象限,C错误;又y2=16(x+2)2−(x−2)2<16(x+2)2,故y0<4(x0+2),D正确.故答案为ABD.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线C∶x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,过F2做平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为▴..【答案】3 2 .【解析】根据对称性|F2A|=|AB|2=5,则2a=|F1A|−|F2A|=8,得到a=4.另外根据勾股定理2c=|F1F2|=12,得到c=6,所以离心率e=ca=32.13.若曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a=▴..【答案】ln2.【解析】设曲线分别为y1,y2,那么y′1=e x+1,得到切线方程y−1=2x,根据y′2=1x+1得到切点横坐标为−12,代入y2得到a=ln2.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为▴..【答案】1 2 .【解析】.由对称性,不妨固定乙出卡片顺序依次为(2,4,6,8),为了简便,设甲依次出(a,b,c,d),{a,b,c,d}∈{1,3,5,7}.首先注意到8是最大的,故甲不可能得四分.若甲得三分,则从c到a均要求得分,比较得必有c=7,b=5,a=3,d=1共一种情况;若甲得两分,则讨论在何处得分:若在b,c处,则同样c=7,b=5,进而a=1,d=3,共一种;若在a,c处,则必有c=7,a≠1,b≠5,在b=1时有全部两种,在d=1时仅一种,共三种;若在a,b处,则b∈{5,7},a≠1,c≠7.当a=5时,由上述限制,c=1时有两种,d=1时仅一种;当a=7时,a,c,d全排列六种中仅a=1的两种不行,故有四种,此情形共八种.故共有1+3+8=12种,又总数为4!=24,故所求为1−1224=12.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C=√2cos B,a2+b2−c2=√2ab.(1)求B;(2)若△ABC的面积为3+√3,求c.【解析】(1)根据余弦定理a 2+b 2−c 2=2ab cos C =√2ab ,那么cos C =√22,又因为C ∈(0,π),得到C =π4,此时cos B =12,得到B =π3.(2)根据正弦定理b =c sin B sin C =√62c ,并且sin A =sin (B+C)=sin B cos C +cos B sin C =√6+√24,那么S =12bc sin A =3+√3,解得c =2√2.16.(15分)已知A(0,3)和P (3,32)为椭圆C ∶x 2a 2+y 2b2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【解析】(1)直接代入后解方程,得到a 2=12,b 2=9,c 2=3,所以e 2=14,离心率e =12.(2)设B(x 0,y 0),则⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AB =(x 0−3,y 0−32),⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AP =(3,−32).得到9=S=12∣−32(x 0−3)−3(y 0−32)∣,或者x 0+2y 0=−6,与椭圆方程联立,得到B 1(−3,−15),B 2(0,−3),对应的直线方程y =12x 或者y =32x −3.17.(15分)如图,四棱锥P −ANCD 中,P A⊥底面ABCD ,P A =AC =2,BC =1,AB =√3.(1)若AD⊥AB ,证明:AD平面P BC ;(2)若AD⊥DC ,且二面角A −CP −D 的正弦值为√427,求AD .【解析】(1)由P A⊥面ABCD 知P A⊥AD ,又AD⊥P B ,故AD⊥面P AB .故AD⊥AB ,又由勾股定理知AB⊥BC ,故AD//BC ,进而AD//面P BC .(2)由P A⊥面ABCD .P A⊥AC ,P C =2√2,设AD =t ,则P D =√4+t 2,CD =√4−t 2,由勾股定理知P D⊥CD .则S △P CD =12√16−t 4,S △ACD =12t √4−t 2,设A到P CD距离为ℎ.由等体积,S△P CD ⋅ℎ=S△ACD⋅P A.代入解出ℎ=2t√4+t2.考虑A向CP作垂线AM,二面角设为θ则ℎ=AM sinθ=2√217.由此解出t=√3.18.(17分)已知函数f(x)=lnx2−x+ax+b(x−1)3.(1)若b=0,且f′(x)⩾0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f(x)>−2当且仅当1<x<2,求b的取值范围.【解析】函数定义域(0,2).(1)当b=0时,f′(x)=1x+12−x+a=2x(2−x)+a⩾0恒成立.令x=1得a⩾−2.当a=−2时,f′(x)=2(x−1)2x(2−x)⩾0,从而a的最小值为−2.(2)f(x)+f(2−x)=lnx2−x+ax+b(x−1)3+ln2−xx+a(2−x)+b(1−x)3=2a=2f(1),且定义域也关于1对称,因此y=f(x)是关于(1,a)的中心对称图形.(3)先证明a=−2.由题意,a=f(1)⩽−2.假设a<−2,由f(2e|b|+11+e|b|+1)> |b|+1−|b|=1,应用零点存在定理知存在x1∈(1,2e|b|+11+e|b|+1),f(x1)=0,矛盾.故a=−2.此时,f′(x)=(x−1)2x(2−x)[3bx(2−x)+2].当b⩾−23,f′(x)⩾(x−1)2x(2−x)(2−4x+2x2)⩾0,且不恒为0,故f(x)在(0,2)递增.f(x)>−2=f(1)当且仅当1<x<2,此时结论成立.当b<−23,令x0=3b−√9b2−6b3b∈(0,1),f′(x0)=0,且f′(x)<0,当x∈(x0,1),因此f(x)在(x,1)递减,从而f(x0)>f(1)=−2,而x0∉(1,2)此时结论不成立.综上,b的取值范围是[−23,+∞).19.(17分)设m为正整数,数列a1,a2,⋯a4m+2是公差不为0的等差数列,若从中删去两项a i和a j(i<j)后剩余的4m项可被平均分为m组,且每组的4个数都能构成等差数列,则称数列a1,a2,⋯a4m+2是(i,j)−可分数列.(1)写出所有的(i,j),1⩽i⩽j⩽6,使数列a1,a2,⋯a6是(i,j)−可分数列;(2)当m⩾3时,证明:数列a1,a2,⋯a4m+2是(2,13)−可分数列;(3)从1,2,⋯4m+2中一次任取两个数i和j(i<j),记数列a1,a2,⋯a4m+2是(i,j)−可分数列的概率为Pm ,证明Pm>18.【解析】记{a n }的公差为d .(1)从a 1,a 2,⋯,a 6中去掉两项后剩下4项,恰构成等差数列,公差必为d ,否则原数列至少有7项.因此剩下的数列只可能为a 1,a 2,a 3,a 4,a 2,a 3,a 4,a 5,a 3,a 4,a 5,a 6三种可能,对应的(i,j)分别为(5,6),(1,6),(1,2).(2)考虑分组(a 1,a 4,a 7,a 10),(a 3,a 6,a 9,a 12),(a 5,a 8,a 11,a 14),(a 4k−1,a 4k ,a 4k+1,a 4k+2)(4⩽k ⩽m),(当m =3时只需考虑前三组即可)即知结论成立.(3)一方面,任取两个i,j(i <j)共有C 24m+2种可能.另一方面,再考虑一种较为平凡的情况:i−1,j−i−1均可被4整除,此时,只要依次将剩下的4m 项按原顺序从头到尾排一列,每四个截取一段,得到m 组公差为d 的数列,则满足题意,故此时确实是(i,j)−可分的.接着计算此时的方法数.设i =4k+1(0⩽k ⩽m),对于每个k ,j 有(4m +2)−(4k +1)−14+1=m−k+1(种),因此方法数为m∑k=1(m −k +1)=(m +1)(m +2)2.当m =1,2,已经有(m +1)(m +2)2/C 24m+2>18.下面考虑m ⩾3.我们证明:当i −2,j −i +1被4整除,且j −i +1>4时,数列是(i,j)−可分的.首先我们将a 1,a 2,⋯,a i−2,及a j+2,a j+3,⋯,a 4m+2顺序排成一列,每4个排成一段,得到一些公差为d 的四元数组,因此我们只需考虑a i−1,a i+1,a i+2,⋯,a j−1,a j+1这j −i +1个数即可.为书写方便,我们记j −i =4t −1(t >1),并记b n =a n+i−2,即证b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组.引理:设j−1能被4整除.若b 1,b 2,⋯,b j+1是(2,j)−可分的,则b 1,b 2,⋯,b j+9是(2,j+8)−可分的.引理证明:将b 1,b 2,⋯,b j+1去掉b 2,b j 后的j −14组四元组再并上(b j ,b j+2,b j+4,b j+6),(b j+3,b j+5,b j+7,b j+9)即证.回原题.由(2),b 1,⋯,b 14是(2,13)−可分数列,且(b 1,b 3,b 5,b 7)和(b 4,b 6,b 8,b 10)知b 1,⋯,b 10是(2,9)−可分数列,因而结合引理知b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组,由此结论成立.计算此时的方法数.设i =4k+2(0⩽k ⩽m−1),则此时j 有(4m +2)−(4k +2)4−1=m −k −1种,因此方法数为m−1∑k=0(m −k −1)=m(m −1)2.因此我们有p m ⩾m(m −1)+(m +1)(m +2)2C 2m+1>18.。
2020年高考全国1卷数学试题解析解读分析今年1卷相比19年,在试题结构变化上有所回稳,尤其是19题概率题,导数应用,为增加文理合卷的导向性,导数应用不在函数的复杂度上做文章,常见两个基本初等函数的复合,分析,解题方法多样,常规,个人认为:融入的素材,时政热点,彰显文化等不应作为数学学科关注的焦点,因为这些已是常态,更不是决定学生答题的关注点,作为数学学科领域,我们应该更多的关注试题所体现的改革导向,教学导向,学生发展导向;决定做好这份答卷的着力点依然是在学科核心素养上。
2020年高考数学试题落实立德树人根本任务,贯彻德智体美劳全面发展教育方针,坚持素养导向、能力为重的命题原则,体现了高考数学的科学选拔和育人导向作用。
试题重视数学本质,突出理性思维、数学应用、数学探究、数学文化的引领作用,突出对关键能力的考查。
试题展现了我国社会主义建设成就与科学防疫的成果,紧密联系社会实际,设计真实的问题情境,具有鲜明的时代特色。
试卷体现了基础性、综合性、应用性和创新性的考查要求,难度设计科学合理,很好把握了稳定与创新、稳定与改革的关系,对协同推进高考综合改革、引导中学数学教学都将起到积极的作用。
1. 融入的时代素材,时政热点,彰显文化依然作为常态,但这不是作为我们关注的焦点,也不是决定学生能否正确解题的关键。
2. 文理合卷的导向性明显,文理差异大的知识点得到中和1卷概率题,整卷的难度,考点分布得到体现3. 高中数学教育迈向大众化需求,普及的方向,同时兼顾当前的选拔功能整卷考点稳定,仅仅在试题情景上稍作创新、变动,小题与大题的压轴,考查单一,不再具有综合性很强的区分度。
4.坚持探索创新,推进高考内容改革一是考试内容的改革。
2020年是山东、海南实行高考综合改革后的首次高考,数学不分文理科,2021年又将有8个省份使用新高考卷。
过渡时期的数学科考试依据《新高考过渡期数学科考试范围说明》,科学设计考试内容,重点关注实验版高中数学课程标准和2017年版数学课程标准中的公共内容,并将这些内容确定为过渡时期的数学科考试的重点内容。
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}2.2i 12i -= +A.1 B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2020年全国新高考Ⅰ卷数学试卷一、选择题1. 设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2. 2−i1+2i=( )A.1B.−1C.iD.−i3. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A 且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6. 基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT,有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天7. 已知P是边长为2的正六边形ABCDEF内的一点,则AP→⋅AB→的取值范围是( )A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6)8. 若定义在R上的奇函数f(x)在(−∞,0)上单调递减,且f(2)=0,则满足xf(x−1)≥0的x的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3]二、多选题9. 已知曲线C:mx2+ny2=1.( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD.若m=0,n>0,则C是两条直线10. 如图是函数y=sin(ωx+φ),则sin(ωx+φ)=( )A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)11. 已知a>0,b>0,且a+b=1,则( )A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤212. 信息熵是信息论中的一个重要概念,设随机变量X所有可能的取值为1,2,⋯,n,且P(X=i)=p i> 0(i=1,2,⋯,n),∑p ini=1=1,定义X的信息熵H(X)=−∑p ini=1log2p i,则( )A.若n=1,则H(X)=0B.若n=2,则H(X)随着p i的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y ) 三、填空题13. 斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=________.14. 将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形, BC ⊥DG ,垂足为C ,tan ∠ODC=35, BH//DG ,EF =12cm ,DE =2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1,则图中阴影部分的面积为________cm 2.16. 已知直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,∠BAD =60∘,以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________. 四、解答题17. 在①ac =√3,②c sin A =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =√3sin B ,C =π6, ________?18. 已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m](m ∈N ∗)中的项的个数,求数列{b m }的前100项和S 100 .19. 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),20. 如图,四棱锥P −ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.21. 已知函数f (x )=ae x−1−ln x +ln a .(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足. 证明:存在定点Q,使得|DQ|为定值.参考答案与试题解析2020年全国新高考Ⅰ卷数学试卷一、选择题1.【答案】C【考点】并集及其运算【解析】根据集合并集的运算法则求解.【解答】解:集合A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.故选C.2.【答案】D【考点】复数代数形式的混合运算【解析】根据复数的除法运算法则求解.【解答】解:2−i1+2i =(2−i)(1−2i) (1+2i)(1−2i)=2−4i−i−21+4=−5i5=−i.故选D.3.【答案】C【考点】排列、组合及简单计数问题【解析】先让甲场馆选1人,再让乙场馆选2,剩下的去丙场馆即可得解. 【解答】解:由题意可得,不同的安排方法共有C61⋅C52=60(种).故选C.4.【答案】B【考点】直线与平面所成的角空间点、线、面的位置【解析】根据纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角. 【解答】解:如图所示,AB为日晷晷针,∠AOC=40∘,由题意知,∠AOC+∠OAB=90∘,∠DAB+∠OAB=90∘,∴ ∠DAB=∠AOC=40∘,即晷针与点A处的水平面所成角为40∘.故选B.5.【答案】C【考点】概率的应用【解析】利用互斥事件的概率公式代入求解.【解答】解:设''该中学学生喜欢足球''为事件A,''该中学学生喜欢游泳''为事件B,则''该中学学生喜欢足球或游泳''为事件A∪B,''该中学学生既喜欢足球又喜欢游泳''为事件A∩B. 由题意知,P(A)=60%,P(B)=82%,P(A∪B)=96%,所以P(A∩B)=P(A)+P(B)−P(A∪B)=60%+82%−96%=46%.故选C.6.【答案】B【考点】函数模型的选择与应用指数式与对数式的互化【解析】先根据所给模型求得r,然后求得初始病例数I,最后求得感染病例数增加1倍所需的时间.【解答】解:3.28=1+r ⋅6得r =0.38,I(t)=e 0.38t , e 0.38(t+x)=2⋅e 0.38t 得x =ln 20.38≈1.8. 故选B . 7.【答案】 A【考点】平面向量数量积求线性目标函数的最值 【解析】先画出图形,并用坐标表示AP →⋅AB →,然后向量问题转化为求线性目标函数的最值,最终得AP →⋅AB →的取值范围.【解答】 解:如图:设A(−1,√3),P (x,y ),B (−2,0), AP →=(x +1,y −√3),AB →=(−1,−√3), 则AP →⋅AB →=−x −√3y +2.令z =−x −√3y +2,该问题可转化为求该目标函数在可行域中的最值问题,由图可知,z =−x −√3y +2经过点C 时,z 取得最大值;经过点F 时,z 取得最小值, 故最优解为C(−1,−√3)和F(1,√3), 代入得z max =6或z min =−2, 故AP →⋅AB →的取值范围是(−2,6). 故选A . 8.【答案】 D【考点】函数单调性的性质 函数奇偶性的性质【解析】先根据函数的奇偶性确定函数的大致图像,然后判断函数的单调性,最后利用分类讨论思想讨论不等式成立时x 的取值范围. 【解答】解:根据题意,函数图象大致如图:①当x =0时,xf(x −1)=0成立; ②当x >0时,要使xf(x −1)≥0, 即f(x −1)≥0,可得0≤x −1≤2或x −1≤−2, 解得1≤x ≤3;③当x <0时,要使xf(x −1)≥0, 即f(x −1)≤0,可得x −1≥2或−2≤x −1≤0, 解得−1≤x <0.综上,x 的取值范围为[−1,0]∪[1,3]. 故选D .二、多选题 9.【答案】 A,C,D 【考点】双曲线的渐近线 椭圆的标准方程 圆的标准方程 直线的一般式方程【解析】根据所给条件,逐一分析对应的方程形式,结合椭圆、圆、双曲线方程的定义进行判断即可. 【解答】解:A ,mx 2+ny 2=1,即x 21m+y 21n=1.∵ m >n >0, ∴ 1m <1n ,∴ 此时C 是椭圆,且其焦点在y 轴上, A 选项正确;B ,m =n >0时,x 2+y 2=1n , ∴ r =√n n, B 选项错误;C,mn<0时,可推断出C是双曲线,且其渐近线方程为y=±√−1n1mx=±√−mnx,C选项正确;D,m=0时,C:ny2=1,∴ y=±√1n代表两条直线,D选项正确.故选ACD.10.【答案】B,C【考点】诱导公式由y=Asin(ωx+φ)的部分图象确定其解析式正弦函数的图象【解析】先用图像上两零点间的距离求出函数的周期,从而求得ω,而后利用五点对应法求得φ,进而求得图像的解析式.【解答】解:由函数y=sin(ωx+φ)的部分图像,可知,T2=2π3−π6=π2,∴ T=π,∴ ω=2ππ=2,∴ y=sin(2x+φ).将点(π6,0)代入得,0=sin(π3+φ),∴π3+φ=(k+1)π(k∈Z).A,当x=π6时,sin(x+π3)=sinπ2=1,不符合题意,故A选项错误;B,当k=0时,φ=2π3,y=sin(2x+2π3 )=sin(2x−π3+π3+2π3)=sin(2x−π3+π)=−sin(2x−π3)=sin(π3−2x),故B选项正确;C,sin(2x+2π3)=sin(2x+π6+π2)=cos(2x+π6),故C选项正确;D,cos(5π6−2x)=cos(2x−5π6)=cos(2x−π2−π3)=sin(2x−π3)=−sin(2x+2π3),故D选项错误.故选BC.11.【答案】A,B,D【考点】不等式性质的应用基本不等式在最值问题中的应用【解析】选项A左边是代数式形式,右边是数字形式,且已知a+b=1,故可考虑通过基本不等式和重要不等式建立a2+b2与a+b的关系;选项B先利用指数函数的增减性将原不等式简化为二元一次不等式,然后利用不等式的性质及已知条件判断;选项C需要利用对数的运算和对数函数的增减性将不等式转化为关于a, b的关系式,然后利用基本不等式建立与已知条件a+b的关系;选项D基本不等式的变形应用.【解答】解:A,∵ a+b=1,则a2+b2+2ab=1,2ab≤a2+b2,当且仅当a=b时取等号,∴ 1=a2+b2+2ab≤2(a2+b2),可得a2+b2≥12,故A正确;B,∵ a−b=a−(1−a)=2a−1>−1,∴2a−b>2−1=12,故B正确;C,∵ ab≤(a+b2)2=14,当且仅当a=b时取等号,∴log2a+log2b=log2ab≤log214=−2,故C错误;D ,∵ a +b ≥2√ab ,当且仅当a =b 时取等号, ∴ (√a +√b)2=a +b +2√ab =1+2√ab ≤2, 即√a +√b ≤√2,则√a +√b ≤2,故D 正确. 故选ABD . 12. 【答案】 A,C【考点】 概率的应用概率与函数的综合 利用导数研究函数的单调性【解析】选项A 根据题目给出信息熵的定义可直接判断;选项B 根据题意先得到p 1,p 2的关系,然后构造关于p 1的函数,最后利用导数判断新函数的增减性; 选项C 根据题目给定信息化简H(x)后可判断;选项D 分别求出H(x),H(y),利用作差法结合对数的运算即可判断. 【解答】解:A ,若n =1,则p 1=1,H (X )=−1×log 21=0,故A 正确; B ,若n =2,则p 1+p 2=1,则H (X )=−[p 1log 2p 1+(1−p 1)log 2(1−p 1)]. 设f (p )=−[p log 2p +(1−p )log 2(1−p )],则f ′(p )=−[log 2p +p ⋅1p ln 2−log 2(1−p )+(1−p )−1(1−p )ln 2] =−log 2p1−p =log 21−p p,当0<p <12时,f ′(p )>0; 当12<p <1时,f ′(p )<0,∴ f (p )在(0,12)上单调递增,在(12,1)上单调递减, 当p 1=12时,H(X)取最大值,故B 错误;C ,若p i =1n (i =1,2,⋯,n ),则H (X )=−∑p i n i=1log 2p i =−n ⋅1n log 21n =log 2n ,所以H(x)随着n 的增大而增大,故C 正确;D ,若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m , 由P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m )知: P (Y =1)=p 1+p 2m ; P (Y =2)=p 2+p 2m−1 ;P (Y =3)=p 3+p 2m−2 ; ⋯⋯P (Y =m )=p m +p m+1 ;H (Y )=−[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m−1)log 2(p 2+p 2m−1)+⋯+(p m +p m+1)log 2(p m +p m+1)], H (X )=−[p 1log 2p 1+p 2log 2p 2+⋯+p 2m log 2p 2m ]=−[(p 1log 2p 1+p 2m log 2p 2m )+(p 2log 2p 2+p 2m−1log 2p 2m−1)+⋯ +(p m log 2p m +p m+1log 2p m+1)],∵ (p 1+p 2m )log 2(p 1+p 2m )−p 1log 2p 1−p 2m log 2p 2m >0, ⋯⋯(p m +p m+1)log 2(p m +p m+1)−p m log 2p m −p m+1log 2p m+1>0, 所以H (X )>H (Y ),故D 错误. 故选AC . 三、填空题 13.【答案】163【考点】 抛物线的性质 【解析】先根据题目给定信息求出直线方程,联立直线和抛物线方程,再利用韦达定理和抛物线的性质转化求出弦长|AB|. 【解答】解:设A(x 1,y 1),B(x 2,y 2), 抛物线的焦点为(1,0),则直线方程为y =√3(x −1),代入抛物线方程得3x 2−10x +3=0, ∴ x 1+x 2=103,根据抛物线方程的定义可知|AB|=x 1+1+x 2+1=163.故答案为:163.14.【答案】 3n 2−2n 【考点】等差数列的前n 项和 等差关系的确定【解析】先判断出{2n −1}与{3n −2}公共项所组成的新数列{a n }的公差、首项,再利用等差数列的前n 项和的公式得出结论. 【解答】解:数列{2n −1}各项为:1,3,5,7,9,⋯数列{3n −2}各项为:1,4,7,10,13,⋯观察可知,{a n }是首项为1,公差为6的等差数列, 所以数列{a n }的前n 项和为3n 2−2n . 故答案为:3n 2−2n . 15. 【答案】5π2+4 【考点】同角三角函数基本关系的运用 扇形面积公式【解析】先利用解三角形和直线的位置关系求出圆的半径,然后求出阴影部分的面积,运用了数形结合的方法. 【解答】解:由已知得A 到DG 的距离与A 到FG 的距离相等,均为5. 作AM ⊥GF 延长线于M ,AN ⊥DG 于N ,则∠NGA =45∘. ∵ BH//DG , ∴ ∠BHA =45∘. ∵ ∠OAH =90∘, ∴ ∠AOH =45∘.设O 到DG 的距离为3t ,由tan ∠ODC =35,可知O 到DE 的距离为5t , ∴ {OA ⋅cos 45∘+5t =7,OA ⋅sin 45∘+3t =5,解得{t =1,OA =2√2.半圆之外阴影部分面积为:S 1=2√2×2√2×12−45×π×(2√2)2360=4−π,阴影部分面积为:S =12[π⋅(2√2)2−π⋅12]+S 1=5π2+4.故答案为:5π2+4.16. 【答案】√2π2【考点】 弧长公式空间直角坐标系 圆的标准方程 两点间的距离公式【解析】根据题意画出直观图,建立合适的坐标系,求出交线上的点的轨迹方程,进而确定点的轨迹在平面BCC 1B 1上是以√2为半径的90∘的弧,最后根据弧长公式求解. 【解答】解:以C 1为原点,C 1B 1→,C 1C →所在直线分别为x 轴、z 轴建立如图1所示的空间直角坐标系O −xyz ,y 轴是平面A 1B 1C 1D 1内与C 1B 1互相垂直的直线, 即D 1(1,−√3,0),设交线上的点的坐标是(x,0,z ),根据题意可得(x −1)2+3+z 2=5, 化简得(x −1)2+z 2=2,所以球面与侧面BCC 1B 1的交线平面如图2所示,即交线长l =14⋅2√2π=√2π2. 故答案为:√2π2. 四、解答题 17.【答案】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3. ∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.【考点】两角和与差的正弦公式余弦定理正弦定理【解析】条件①先根据题意,结合正弦定理用一边去表示另外两条边,然后用余弦定理求出三角形的三边的长;条件②先用正弦定理结合已知求出a,b的长,然后用余弦定理求出c的长;条件③先利用正弦定理结合已知用b表示a,c,然后利用余弦定理求得∠C与给定值不同,从而判定三角形不存在.【解答】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3.∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.18.【答案】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.【考点】数列的求和等比数列的通项公式【解析】(1)先根据已知列式求出公比,求出首项,最后求得等比数列的通项公式;(2)由题意求得0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,⋯,可知b63=5,b64= b65=⋯=b100=6.则数列{b m}的前100项和S100可求.【解答】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.19.【答案】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得K2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关. 【考点】独立性检验概率的意义【解析】(1)根据题目已知信息利用频率估计概率;(2)根据题目给定信息画出2×2列联表;(3)根据列联表计算K的观测值K2,得出统计结论.【解答】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得 K 2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关. 20.【答案】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD . 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ,则sin θ=|cos <n →,PB →>| =√3×√1+a 2=1√3×√(1+a)21+a 2=√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a+a ≥2×√1a⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 【考点】用空间向量求直线与平面的夹角 基本不等式在最值问题中的应用直线与平面垂直的判定【解析】(1)先求l 的平行线BC 与面PCD 垂直,再利用线面垂直的判定即可得证;(2)选取合适的点建立空间直角坐标系,然后运用向量法结合基本不等式即可求得线面夹角的最大值. 【解答】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD .以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ, 则sin θ=|cos <n →,PB →>| =|1+a|√3×√1+a 2=1√3×√(1+a)21+a 2 =√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a +a ≥2×√1a ⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 21.【答案】解:(1)当a =e 时, f (x )=e x −ln x +1,f ′(x )=e x −1x,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1.(2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 【考点】利用导数研究不等式恒成立问题 利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程,可得三角形的面积;(2)不等式等价于e x−1+ln a +ln a +x −1≥ln x +x =e ln x +ln x ,令g(t)=e t +t ,根据函数单调性可得ln a >ln x −x +1,再构造函数ℎ(x)=ln x −x +1,利用导数求出函数的最值,即可求出a 的范围. 【解答】解:(1)当a =e 时, f (x )=e x −ln x +1, f ′(x )=e x −1x ,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1. (2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 22. 【答案】 (1)解:由题设得4a2+1b2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ① 由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13).令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值. 【考点】圆锥曲线中的定点与定值问题 椭圆的标准方程 【解析】(1)根据椭圆方程的离心率、a ,b ,c 的关系及椭圆上一点列出关系式,解得a 2,b 2即可得椭圆方程; (2)①当直线斜率存在时,设直线方程并与椭圆方程联立,写出韦达定理,结合AM →⋅AN →=0可得 m =1−2k 或m =−2k +13,由点A 不在直线MN 上可判断m ≠1−2k ,进而根据m =−2k+13可求解直线MN 的方程,从而判断直线MN 过定点P ;②若直线MN 与x 轴垂直,结合和椭圆方程,求得点M 的横坐标x 1 ,由此可知直线MN 过点P ;由上述分类讨论可知|AP|为定值,根据直角三角形中线的性质确定定点Q ,最后分两小类讨论D 与P 重合或者不重合最终确定|DQ|为定值. 【解答】(1)解:由题设得4a 2+1b 2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ①由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13). 令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值.。
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i-的虚部是( ) A. 310-B. 110-C. 110D. 310【答案】D【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A. 14230.1,0.4p p p p ====B. 14230.4,0.1p p p p ====C. 14230.2,0.3p p p p ====D. 14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=, 方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t)=0.95K时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t KI t K e**--==+,则()0.235319t e *-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A. (14,0) B. (12,0) C. (1,0) D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4COx COx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,C D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx COx π∠=∠=,所以(2,2)C ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A. 3135-B. 1935-C.1735D.1935【答案】D 【解析】【分析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值.【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B. 13C. 12D.23【答案】A【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 8.下图为某几何体的三视图,则该几何体的表面积是( )【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 9.已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A. –2B. –1C. 1D. 2【答案】D 【解析】 【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题. 10.若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12C. y =12x +1 D. y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =上的切点为(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x -=-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2C. 4D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系. 【详解】由题意可知a、b、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________. 【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯= 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x+的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项. 【详解】622x x ⎛⎫+ ⎪⎝⎭ 其二项式展开通项:()62612rrr r C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r r r r x C x --⋅=⋅ 1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T ab -+=,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,的其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM ==,故122S =⨯⨯=△ABC, 设内切圆半径为r ,则:ABC AOB BOC AOCS S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()13322r =⨯++⨯= 解得:22r,其体积:343V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立; 假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; (2)由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+. 【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D -中,点,EF 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值. 【详解】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =, 同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由0m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,3cos ,3m n m n m n⋅<>===⨯⋅, 设二面角1A EFA --的平面角为θ,则cos θ=,sin θ∴==因此,二面角1A EF A --. 【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C mm +=<<∴5a =,bm =,根据离心率c e a ====, 解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△, ∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ的距离为:d =, 根据两点间距离公式可得:AQ ==,∴APQ面积为:1522⨯=;②当P 点(3,1)-时,故5+38MB ==,PMB BNQ ≅△△, ∴||||8MB NQ ==,为可得:Q点为(6,8),画出图象,如图(5,0)A-,(6,8)Q,可求得直线AQ的直线方程为:811400x y-+=,根据点到直线距离公式可得P到直线AQ的距离为:d=,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c=++,曲线()y f x=在点(12,f(12))处的切线与y轴垂直.(1)求b.(2)若()f x有一个绝对值不大于1的零点,证明:()f x所有零点的绝对值都不大于1.【答案】(1)34b=-;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1()02f=,解方程即可;(2)由(1)可得'2311()32()()422f x x x x=-=+-,易知()f x在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c-=--=+=-=+,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b=+,由题意,'1()02f=,即21302b⎛⎫⨯+=⎪⎝⎭则34b=-;(2)由(1)可得33()4f x x x c=-+,'2311()33()()422f x x x x=-=+-,令'()0f x>,得12x>或21x<-;令'()0f x<,得1122x-<<,所以()f x在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c-=--=+=-=+,若()f x所有零点中存在一个绝对值大于1的零点x,则(1)0f->或(1)0f<,即14c>或14c<-.当14c>时,111111(1)0,()0,()0,(1)0424244f c f c f c f c-=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c-=-++=-<,由零点存在性定理知()f x在(4,1)c--上存在唯一一个零点x,即()f x在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点,此时()f x不存在绝对值不大于1的零点,与题设矛盾;当14c<-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c-=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c-=++=->,由零点存在性定理知()f x在(1,4)c-上存在唯一一个零点x',即()f x (1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. [选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -AB ∴==(2)由(1)可知12030(4)ABk -==--, 则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=, ()22212ab bc ca a b c ∴++=-++. ,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.在祝福语祝你考试成功!。
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.62.(5分)复数的虚部是()A .﹣B .﹣C .D .3.(5分)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.24.(5分)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t )=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.(5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(5分)已知向量,满足||=5,||=6,•=﹣6,则cos <,+>=()A .﹣B .﹣C .D .7.(5分)在△ABC中,cos C =,AC=4,BC=3,则cos B=()A .B .C .D .8.(5分)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+29.(5分)已知2tanθ﹣tan(θ+)=7,则tanθ=()A.﹣2B.﹣1C.1D.210.(5分)若直线l与曲线y =和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x +C.y =x+1D.y =x +11.(5分)设双曲线C :﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.812.(5分)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512 C.514+ D.512+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】A二、填空题:本题共4小题,每小题5分,共20分。
2020年海南省新⾼考数学试卷
⼀、选择题(本题共8⼩题,每⼩题5分,共40分.在每⼩题给出的四个选项中,只有⼀项符合题⽬要求的)
1.(5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=()A.{1,3,5,7}B.{2,3}
C.{2,3,5}D.{1,2,3,5,7,8}
2.(5分)(1+2i)(2+i)=()
A.4+5i B.5i C.﹣5i D.2+3i
3.(5分)在△ABC中,D是AB边上的中点,则=()
A.2+B.﹣2C.2﹣D.+2
4.(5分)⽇晷是中国古代⽤来测定时间的仪器,利⽤与晷⾯垂直的晷针投射到晷⾯的影⼦来测定时间.把地球看成⼀个球(球⼼记为O),地球上⼀点A的纬度是指OA与地球⾚道所在平⾯所成⻆,点A处的⽔平⾯是指过点A且与OA垂直的平⾯.在点A处放置⼀个⽇晷,若晷⾯与⾚道所在平⾯平⾏,点A处的纬度为北纬40°,则晷针与点A处的⽔平⾯所成⻆为()
A.20°B.40°C.50°D.90°
5.(5分)某中学的学⽣积极参加体育锻炼,其中有96%的学⽣喜欢⾜球或游泳,60%的学⽣喜欢⾜球,82%的学⽣喜欢游泳,则该中学既喜欢⾜球⼜喜欢游泳的学⽣数占该校学⽣总数的⽐例是()
A.62%B.56%C.46%D.42%
6.(5分)要安排3名学⽣到2个乡村做志愿者,每名学⽣只能选择去⼀个村,每个村⾥⾄少有⼀名志愿者,则不同的安排⽅法共有()
A.2种B.3种C.6种D.8种
7.(5分)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()
A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)8.(5分)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x ﹣1)≥0的x的取值范围是()
A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]
C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]
⼆、选择题(本题共4⼩题,每⼩题5分,共20分.在每⼩题给出的选项中,有多项符合题⽬要求.全部选对的得5分,有选错的得0分,部分选对的得3分)
9.(5分)我国新冠肺炎疫情进⼊常态化,各地有序推进复⼯复产,下⾯是某地连续11天复⼯复产指数折线图,下列说法正确的是()
A.这11天复⼯指数和复产指数均逐⽇增加
B.这11天期间,复产指数增量⼤于复⼯指数的增量
C.第3天⾄第11天复⼯复产指数均超过80%
D.第9天⾄第11天复产指数增量⼤于复⼯指数的增量
10.(5分)已知曲线C:mx2+ny2=1.()
A.若m>n>0,则C是椭圆,其焦点在y轴上
B.若m=n>0,则C是圆,其半径为
C.若mn<0,则C是双曲线,其渐近线⽅程为y=±x
D.若m=0,n>0,则C是两条直线
11.(5分)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=()
A.sin(x+)B.sin(﹣2x)
C.cos(2x+)D.cos(﹣2x)
12.(5分)已知a>0,b>0,且a+b=1,则()
A.a2+b2≥B.2a﹣b>
C.log2a+log2b≥﹣2D.+≤
三、填空题(本题共4⼩题,每⼩题5分,共20分)
13.(5分)已知正⽅体ABCD﹣A1B1C1D1的棱⻓为2,M、N分别为BB1、AB的中点,则三棱锥A﹣NMD1的体积为.
14.(5分)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.
15.(5分)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.
16.(5分)某中学开展劳动实习,学⽣加⼯制作零件,零件的截⾯如图所示.O为圆孔及轮廓圆弧AB所在圆的圆⼼,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂⾜为C,tan∠ODC=,BH∥DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的⾯积为cm2.
四、解答题(本题共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤.)17.(10分)在①ac=,②c sin A=3,③c=b这三个条件中任选⼀个,补充在下⾯问题中,若问题中的三⻆形存在,求c的值;若问题中的三⻆形不存在,说明理由.
问题:是否存在△ABC,它的内⻆A,B,C的对边分别为a,b,c,且sin A=sin B,C =,_______?
注:如果选择多个条件分别解答,按第⼀个解答计分.
18.(12分)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.
(1)求{a n}的通项公式;
(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.。