污水生物脱氮除磷基本原理及工艺发展现状
- 格式:doc
- 大小:29.00 KB
- 文档页数:4
污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。
污水处理生物脱氮除磷基本原理国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。
因此,城市污水处理厂一般不推荐采用.从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。
我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步实现工业化流程.目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。
➢生物脱氮原理生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。
随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。
整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。
在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。
反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行.由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。
反硝化阶段:硝酸盐的存在,缺氧条件DO值在0。
2mg/L左右,充足碳源(能源),合适的PH条件。
生物脱氮过程如图5—1所示。
反硝化细菌+有机物(氨化作用)(硝化作用) (反硝化作用)➢生物除磷原理磷常以磷酸盐(H2PO4-、HPO42-和H2PO43—)、聚磷酸盐和有机磷的形式存在于废水中,生物除磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。
生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。
生物脱氮除磷机理及新工艺
生物脱氮除磷是指利用生物学原理对水体中的氮和磷进行去除的一种技术。
其基本原理是将含有氮、磷的有机物通过生物降解转化为氮气和磷酸盐,从而达到净化水体的目的。
生物脱氮除磷技术的应用非常广泛,包括城市污水处理、工业废水处理、农业面源污染治理等领域。
生物脱氮除磷的主要机理是利用微生物的代谢活动来进行脱氮除磷。
在生物脱氮过程中,利用硝化菌将氨氮转化为亚硝酸盐和硝酸盐,进而转化为氮气排放。
在生物除磷过程中,利用聚磷菌将水体中的磷转化为无机磷酸盐,进而去除。
生物脱氮除磷技术是一种相对成熟的技术,其优点包括高效、经济、环保等。
近年来,随着科技的不断发展,新型的生物脱氮除磷工艺也得到了广泛应用。
这些新型工艺包括厌氧氨氧化工艺、硝化除磷工艺、硝酸盐还原工艺等。
其中,厌氧氨氧化工艺是一种新兴的脱氮技术,具有高效、节能等优点。
硝化除磷工艺则是将氮素和磷素同时通过硝化反应进行去除,能够达到较高的脱氮除磷效率。
硝酸盐还原工艺则是通过还原反应将水体中的硝酸盐转化为氨氮,从而达到脱氮的效果。
总的来说,生物脱氮除磷技术是一种非常重要的污水处理技术,对于保护水环境具有重要的意义。
未来随着科技的不断发展,生物脱氮除磷技术也将不断完善和发展,为净化水体、改善环境质量做出更大的贡献。
生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。
下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。
一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。
其主要包括硝化和反硝化两个过程。
2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。
这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。
2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。
这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。
二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。
其主要包括磷的吸附和磷的沉淀两个过程。
2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。
这一过程主要发生在水中的底泥、生物膜等介质上。
2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。
这一过程主要发生在水中的缺氧或厌氧条件下。
生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。
其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。
希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。
生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。
在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。
污水生物脱氮除磷的基本原理
污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。
其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。
1、氨氧化过程
氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。
氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。
这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。
2、反硝化过程
反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。
反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。
3、硫酸还原过程
硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。
硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。
为了有效减少污水对环境的危害,人们研发了多种污水处理技术。
其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。
本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。
二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。
该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。
2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。
这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。
此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。
三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。
在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。
具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。
四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。
新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。
同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。
2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。
如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。
此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。
脱氮除磷原理
脱氮除磷是一种常用的废水处理方法,它通过一系列化学过程将废水中的氮和磷去除掉。
脱氮除磷的原理主要包括生物处理和化学处理两个方面。
生物处理是脱氮除磷的主要手段之一。
在生物处理中,利用好氧和厌氧两种微生物的作用来降低废水中的氮和磷含量。
在好氧条件下,氨氮可以被氨氧化细菌氧化为亚硝酸盐,然后亚硝酸盐可被亚硝酸盐氧化细菌进一步氧化为硝酸盐。
通过这个过程,废水中的氮被转化为氨氮、亚硝酸盐和硝酸盐。
在厌氧条件下,通过一系列反应,废水中的磷可被还原成无机磷。
化学处理也是脱氮除磷的重要手段之一。
在化学处理中,常用的方法包括加入化学药剂和利用吸附剂去除废水中的氮和磷。
常用的化学药剂有聚合氯化铝、硫酸铁等。
这些药剂可与废水中的氮和磷反应,形成沉淀物或沉淀物颗粒,从而使废水中的氮和磷得以去除。
吸附剂则通过其表面特性和吸附能力去除废水中的氮和磷。
综上所述,脱氮除磷是通过利用生物处理和化学处理的方式,将废水中的氮和磷去除,从而达到净化废水的目的。
这些原理的应用可以在废水处理中起到重要作用,降低废水对环境的污染。
生物脱氮除磷工艺简介1、生物脱氮除磷工艺的进展从20世纪60年代开始,美国曾系统地进行了脱氮除磷物化方法研究,结果认为该法的主要缺点是药耗量大,产生的污泥多,特别对处理大量城市污水时,处理成本高。
因此,转入研究生物脱氮除磷工艺。
从20世纪70年代开始,在活性污泥法脱氮工艺(A/0工艺)逐步实现工业化,并在此基础上研究开发出了生物脱氮除磷工艺(如A2/0工艺等)。
以后,随着微生物学和细胞学在污水生化处理上的新应用,又不断出现了多种变形的生物脱氮除磷工艺,如MSBR等。
我国从20世纪80年代初开始生物脱氮除磷研究,80年代后期实现了工业化流程。
污水脱氮除磷可供选择的工艺通常有生物处理和物理化学处理两大类。
后者由于需要投加相当数量的化学药剂,存在运行费用高,残渣量大和运行管理难度大等缺陷,因此,城市污水处理中一般不推荐采用。
而一般生物处理又分为活性污泥和生物膜法两种。
目前对城市污水的生物脱氮除磷工艺,指的是活性污泥生物脱氮除磷工艺。
目前已实用的几种生物脱氮除磷工艺有:A2/O、氧化沟、SBR工艺以及以上三种工艺的系列改良工艺。
2、生物脱氮除磷的工艺原理简述(1)生物脱氮首先,污水中的蛋白质和尿素等在水解酶和尿素酶的作用下转化为氨氮,而后在有氧条件下和在硝化菌的作用下,氨氮被氧化为硝酸盐,这阶段称为硝化(即氨氮转化为硝酸盐)。
再以后,在缺氮条件和反硝化菌的参与作用,并有外加碳源提供能量,硝酸盐还原成气态氮(N2)逸出,这阶段称为反硝化(即硝酸盐的氮转化为氮气)。
整个脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。
在脱氮过程中,硝化菌增长速度较缓慢,所以要有足够的污泥泥龄。
反硝化菌的生长主要在缺氧条件下进行,还要有充裕的碳源提供能量,才可能使反硝化作用顺利进行。
除上述条件以外,影响脱氮效率的因素还有溶解氧,温度和PH 值等。
硝化阶段,应有足够的溶解氧,其值一般应大于2g/L。
反硝化阶段为缺氧条件,溶解氧值宜为0.4mg/L左右。
生物脱氮除磷原理及工艺生物脱氮的原理主要是利用微生物中的硝化和反硝化过程。
首先,硝化细菌通过氧化氨将氨氮转化为亚硝酸盐,然后亚硝酸盐进一步被亚硝酸盐脱氢酶转化为硝酸盐。
这个过程被称为硝化作用。
反硝化过程是指在缺氧或低氧条件下,反硝化细菌通过还原硝酸盐来释放出氮气。
生物脱磷的原理主要是利用微生物中的磷酸盐积累和释放过程。
一些细菌和藻类能够以有机物的形式从水中吸收和积累磷酸盐,并在一定条件下释放出来。
这个过程被称为磷酸盐吸收和释放作用。
通过调节水体中的氧气、有机负荷和pH值等条件,可以促进微生物的磷酸盐吸收和释放过程,从而实现生物脱磷。
非曝气法主要是在低氧或缺氧条件下进行处理。
这种方法的优点是能够节省能源和减少氧气需求,适用于中小型处理单位。
常见的非曝气法包括:厌氧氨氧化-硝化还原法(Anammox-Detritus-Anoxia法)、系统内侧流间歇式处理法(SCT法)和单球状厌氧硝化反硝化法等。
曝气法主要是通过加氧来提供充足的氧气供给,促进硝化和反硝化过程。
这种方法的优点是处理效果稳定可靠,适用于大型处理装置。
常见的曝气法包括:AO法(活性污泥法)、A2/O法(改良后的活性污泥法)和SBR法(顺序批处理法)等。
在实际的生物脱氮除磷工程中,通常会采用多级处理工艺。
例如,可以将生物脱氮和生物除磷结合起来,构建生物反硝化除磷工艺(SND)。
这种工艺可以同时去除水体中的氮和磷,效果较好。
总的来说,生物脱氮除磷通过利用微生物的生长和代谢活动,可以有效地降低水体中的氮和磷浓度,改善水质,保护生态系统。
不同的工艺可以根据具体情况选择和组合,以达到最佳的去除效果。
《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着城市化进程的加快和工业的迅速发展,污水排放量日益增加,水体富营养化问题日趋严重。
其中,氮、磷等营养物质的过量排放是导致水体污染的主要原因之一。
因此,污水处理中的脱氮除磷技术显得尤为重要。
本文旨在综述污水生物脱氮除磷工艺的优化技术,分析现有技术的优缺点,探讨未来技术的发展方向。
二、污水生物脱氮除磷技术概述污水生物脱氮除磷技术主要通过微生物的作用,将污水中的氮、磷等营养物质转化为无害的物质,以达到净化水质的目的。
该技术主要分为生物脱氮技术和生物除磷技术两部分。
生物脱氮技术主要通过硝化、反硝化等过程去除氮;生物除磷技术则通过聚磷菌的富集和排放来去除磷。
三、现有生物脱氮除磷工艺及优缺点分析1. 传统A2/O工艺:A2/O工艺是一种常用的生物脱氮除磷工艺,具有同步脱氮除磷的效果。
但其运行过程中存在碳源竞争、泥龄矛盾等问题,导致处理效果不稳定。
2. 短程硝化反硝化工艺:该工艺通过控制硝化过程,使硝化反应停留在亚硝酸盐阶段,从而减少反硝化过程的能耗和污泥产量。
但该工艺对运行条件要求较高,控制难度较大。
3. 强化生物除磷工艺:通过投加碳源或优化运行条件,提高聚磷菌的除磷效率。
该工艺除磷效果好,但增加了运行成本。
四、生物脱氮除磷工艺优化技术1. 新型反应器技术:如组合式反应器、流态化床反应器等,通过优化反应器结构,提高微生物与污水的接触效率,从而提高脱氮除磷效果。
2. 强化生物脱氮技术:通过投加特定菌种、优化运行参数等方式,提高硝化、反硝化反应速率,降低能耗。
3. 生物膜法技术:利用生物膜的高效吸附和生物降解作用,提高脱氮除磷效果。
同时,生物膜法能够降低污泥产量,减少二次污染。
4. 智能控制技术:通过引入智能控制系统,实时监测和调整污水处理过程中的各项参数,如pH值、溶解氧浓度等,以实现最优的脱氮除磷效果。
五、未来发展趋势与展望1. 高效、低耗的脱氮除磷技术将成为未来研究的重要方向。
废水脱氮除磷原理
废水脱氮除磷是一种常用的废水处理方法,该方法通过物理、化学或生物等方式,将废水中的氮和磷去除,以达到净化废水、保护水环境的目的。
废水脱氮的原理主要通过氧化还原反应来实现。
在废水处理过程中,氧化剂(如氧气、臭氧等)被引入到废水中,与废水中的氮物质发生反应。
氧化剂可以将氮物质氧化成为更容易去除的形态,如将氨氮氧化为亚硝酸盐或硝酸盐。
然后,通过一系列的反应和处理,将氧化后的产物从废水中去除。
废水除磷的原理主要是通过化学沉淀、生物吸附或沉淀和生物两种方式来实现。
化学沉淀是指向废水中加入化学药剂,使废水中的磷与药剂发生反应,形成不溶于水的沉淀物,从而达到去除磷的目的。
生物吸附是指利用微生物或植物等生物体的吸附能力,将废水中的磷物质吸附到生物体的表面或细胞内部。
沉淀和生物两种方式常常结合使用,以增加废水除磷的效果。
综上所述,废水脱氮除磷主要是通过氧化和沉淀、吸附等方式来实现的。
通过选择适当的处理方法、调整工艺参数和控制操作条件,可以高效地脱除废水中的氮和磷,保护水资源,减少污染。
污水生物除磷原理污水生物除磷原理城市污水所含的磷主要来源于人类活动的排泄物及废弃物、工矿企业、合成洗涤剂和家用清洗剂等,所存在的含磷物质基本上都是不同形式的磷酸盐。
那么污水生物除磷原理和工艺是怎么样的呢?我们一起来了解一下!1.生物除磷的基本原理在废水生物除磷过程中,活性污泥在好氧、厌氧交替条件下时,在活性污泥中可产生所谓的“聚磷菌”,聚磷菌在好氧条件下可超出其生理需要而从废水中过量摄取磷,形成多聚磷酸盐作为贮藏物质。
在生物除磷污水处理厂中,都能观察到聚磷菌对磷的转化过程,即厌氧释放磷酸盐——好氧吸收磷,也就是说,厌氧释放磷是好氧吸收磷和最终除磷的前提条件。
2.生物除磷的影响因素⑴有机物负荷及其性质⑵温度温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,生物除磷都能成功运行。
试验表明,生物除磷的.温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。
⑶溶解氧由于磷是在厌氧条件下被释放、好氧条件下被吸收而被去除,因此,溶解氧对磷的去除速率和去除量影响很大。
溶解氧的影响体现在厌氧区和好氧区两个方面。
⑷厌氧区的硝态氮在生物除磷工艺中,硝酸盐的去除是除磷的先决条件。
进入生物除磷系统厌氧区的硝态氮会降低除磷能力。
⑸泥龄由于生物脱磷系统主要是通过排除剩余污泥去除磷的,因此,处理系统中泥龄的长短对污泥摄磷作用及剩余污泥的排放量有直接的影响,从而决定系统的脱磷效果,以除磷为目的的污水处理系统的污泥龄一般控制在3.5~7d。
⑹pH值生物除磷系统合适的pH值范围与常规生物处理相同,为中性和弱碱性。
较高的pH值会导致磷酸钙的沉积,堵塞管道,影响污水厂的正常运行。
2.除磷的典型工艺典型工艺为A/O除磷工艺,由活性污泥反应池和二沉池构成。
活性污泥反应池分为厌氧区和好氧区,污水和污泥顺次经厌氧和好氧交替循环流动。
回流污泥进入厌氧池,微生物在厌氧条件下吸收去除一部分有机物,并释放出大量的磷,然后进入好氧池并在好氧条件下摄取比在厌氧条件下所释放的更多的磷,同时废水中有机物得到好氧降解,部分富磷污泥以剩余污泥的形式排出处理系统,实现磷的去除。
a2o工艺脱氮除磷原理A2O工艺是一种常见的污水处理工艺,它通过生物反应器中的微生物对污水中的氮和磷进行去除,是一种高效、节能的污水处理方法。
在A2O工艺中,脱氮除磷是其中的重要环节,本文将就A2O工艺脱氮除磷原理进行详细介绍。
首先,我们来了解一下A2O工艺的基本原理。
A2O工艺是指“Anaerobic-Anoxic-Oxic”工艺,即厌氧-缺氧-好氧工艺。
在A2O工艺中,污水首先进入厌氧区,通过厌氧菌的作用,有机物质被分解成有机酸和氨氮。
然后,污水进入缺氧区,有机酸和氨氮被进一步氧化成无机物质。
最后,污水进入好氧区,通过好氧菌的作用,氨氮和有机物质被氧化成硝态氮和亚硝态氮,最终通过硝化反应和反硝化反应完成氮的去除。
在A2O工艺中,脱氮除磷是通过生物反应器中的微生物完成的。
在好氧区,硝态氮和亚硝态氮会被硝化细菌氧化成硝酸盐,完成氮的去除。
而在缺氧区,硝酸盐会被反硝化细菌还原成氮气,从而实现氮的彻底去除。
这样,A2O工艺通过厌氧、缺氧和好氧三个区域内的微生物协同作用,实现了对污水中氮的高效去除。
除了氮的去除,A2O工艺也可以实现对磷的去除。
在厌氧区,磷会和有机物质结合成为无机磷,然后在缺氧区和好氧区,无机磷会被微生物吸附并沉淀,从而实现了对磷的去除。
这样,A2O工艺不仅可以高效去除污水中的氮,还可以实现对磷的去除,达到了污水处理的双重效果。
总的来说,A2O工艺脱氮除磷原理是通过生物反应器中的厌氧、缺氧和好氧三个区域内的微生物协同作用,实现了对污水中氮和磷的高效去除。
这种工艺不仅能够高效处理污水,还具有节能、环保的特点,是目前污水处理领域中被广泛应用的一种工艺方法。
希望通过本文的介绍,能够让大家对A2O工艺脱氮除磷原理有更深入的了解,为污水处理工作提供一定的参考和帮助。
氧化沟工艺脱氮除磷研究现状氧化沟工艺是一种广泛应用于污水处理的生物处理技术。
该技术的主要作用是通过微生物的代谢活动,将有机物质转化为较为稳定的无机物质,同时去除水中的氮和磷等营养物质,达到净化水质的目的。
本文将介绍氧化沟工艺在脱氮除磷方面的研究现状。
一、氧化沟工艺的基本原理氧化沟工艺是一种基于微生物代谢的生物处理技术。
其基本原理是利用氧化沟中的微生物,将有机物质转化为较为稳定的无机物质,并通过硝化和反硝化作用,去除水中的氮和磷等营养物质。
氧化沟工艺的主要特点是设备简单、运行成本低、处理效果稳定等。
二、氧化沟工艺在脱氮方面的研究现状1. 氧化沟工艺的氮素去除机理氧化沟工艺主要通过硝化和反硝化作用,去除水中的氮素。
硝化是指将氨氮转化为亚硝酸、硝酸等无机氮化合物的过程。
反硝化是指将硝酸还原为氮气等气体的过程。
研究表明,氧化沟工艺的氮素去除效果与温度、pH值、COD/N比等因素密切相关。
2. 氧化沟工艺的氮素去除优化策略为了提高氧化沟工艺的氮素去除效果,研究人员提出了一系列优化策略。
例如,增加气-液-固界面积、提高氧化沟的通气量、增加微生物的代谢能力等,都可以有效提高氮素去除效果。
三、氧化沟工艺在除磷方面的研究现状1. 氧化沟工艺的除磷机理除磷是指将水中的磷化合物去除的过程。
氧化沟工艺的除磷机理主要是通过微生物的吸附作用,将水中的磷化合物吸附在生物体表面,进而达到除磷的效果。
研究表明,氧化沟工艺的除磷效果与温度、pH 值、COD/P比等因素密切相关。
2. 氧化沟工艺的除磷优化策略为了提高氧化沟工艺的除磷效果,研究人员提出了一系列优化策略。
例如,增加氧化沟的曝气时间、提高微生物的代谢能力、增加水中的硫酸盐等,都可以有效提高除磷效果。
四、氧化沟工艺的应用前景氧化沟工艺在脱氮除磷方面具有广阔的应用前景。
随着我国城市化进程的不断加快,污水处理厂的建设和运行成为了一个紧迫的问题。
氧化沟工艺作为一种设备简单、运行成本低、处理效果稳定的生物处理技术,将在未来得到更广泛的应用。
《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。
其中,氮、磷等营养物质的排放对水环境造成了严重污染。
因此,研究并发展新型的生物脱氮除磷技术,对于保护水环境、实现水资源的可持续利用具有重要意义。
本文将就城市污水处理中新型生物脱氮除磷技术的研究进展进行详细阐述。
二、城市污水处理现状及挑战城市污水处理主要包括物理、化学和生物处理等多种方法。
其中,生物处理法因其处理效率高、成本低等优点被广泛应用。
然而,传统的生物脱氮除磷技术面临着诸多挑战,如处理效率不高、能耗大、易产生二次污染等问题。
因此,研究新型的生物脱氮除磷技术成为当前的重要课题。
三、新型生物脱氮技术研究进展(一)A2/O工艺改进A2/O(厌氧-缺氧-好氧)工艺是目前应用最广泛的生物脱氮技术。
针对其处理效率及能耗等问题,研究者们通过优化运行参数、改进工艺流程等方式,提高了A2/O工艺的脱氮效果。
(二)短程硝化反硝化技术短程硝化反硝化技术通过控制硝化过程,使氨氮直接转化为氮气,避免了传统硝化过程中产生的中间产物,提高了脱氮效率。
近年来,该技术在城市污水处理中得到了广泛应用。
(三)新型微生物脱氮技术新型微生物脱氮技术主要利用特定的微生物或酶,通过生物强化、生物膜等技术,提高脱氮效率。
例如,利用反硝化细菌的代谢过程,实现高效脱氮。
四、新型生物除磷技术研究进展(一)厌氧-好氧交替运行技术厌氧-好氧交替运行技术通过控制污水在厌氧和好氧条件下的交替运行,使聚磷菌在好氧条件下大量摄取磷,实现除磷效果。
该技术具有操作简单、成本低等优点。
(二)生物膜法除磷技术生物膜法除磷技术利用生物膜的吸附、截留和生物降解作用,将污水中的磷去除。
该技术具有处理效果好、污泥产量少等优点。
(三)新型微生物除磷技术新型微生物除磷技术主要利用特定的微生物或酶,通过生物强化、基因工程等技术,提高除磷效率。
该技术为未来城市污水处理提供了新的思路和方法。
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,污水处理问题日益突出。
其中,氮、磷等营养物质的排放对水环境造成了严重污染。
污水生物脱氮除磷工艺作为一种高效、经济的污水处理技术,得到了广泛的应用和关注。
本文将介绍污水生物脱氮除磷工艺的现状,并探讨其未来的发展趋势。
二、污水生物脱氮除磷工艺的现状1. 工艺原理污水生物脱氮除磷工艺主要利用微生物的作用,通过一系列的生化反应,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。
该工艺主要包括硝化、反硝化、厌氧释磷和好氧吸磷等过程。
2. 常见工艺目前,常见的污水生物脱氮除磷工艺包括A/O(厌氧/好氧)工艺、A2/O(厌氧-缺氧-好氧)工艺、MBBR(移动床生物反应器)工艺等。
这些工艺在不同领域得到了广泛应用,取得了显著的成效。
3. 现状分析(1)优点:污水生物脱氮除磷工艺具有处理效率高、运行成本低、污泥产量少等优点,能够有效地去除污水中的氮、磷等营养物质。
(2)挑战:然而,该工艺在应用过程中也面临一些挑战,如硝化菌和反硝化菌的生长条件差异大、运行管理复杂等。
此外,某些工业废水中的特殊成分可能对微生物产生抑制作用,影响处理效果。
三、污水生物脱氮除磷工艺的发展趋势1. 技术创新随着科技的不断进步,新的污水处理技术不断涌现。
未来,污水生物脱氮除磷工艺将更加注重技术创新,通过优化工艺参数、改进设备结构、提高微生物活性等方式,提高处理效率,降低运行成本。
2. 组合工艺为了进一步提高处理效果,未来将更加注重将不同的污水处理工艺进行组合。
例如,将物理、化学和生物处理方法相结合,形成组合工艺,以适应不同类型污水的处理需求。
3. 智能化管理随着信息技术的发展,污水处理行业的智能化管理将成为未来发展的重要方向。
通过引入物联网、大数据、人工智能等技术手段,实现对污水处理过程的实时监控、远程控制和智能调度,提高运行管理的效率和准确性。
4. 资源化利用为了实现污水的资源化利用,未来将更加注重对污水处理过程中产生的污泥进行资源化利用。
污水生物脱氮除磷的基本原理1.生物脱氮废水中存在着有机氮、NH3-N、NxO--N等形式的氮,而其中以NH3-N和有机氮为主要形式。
生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程。
进行生物脱氮可分为氨化-硝化-反硝化三个步骤。
由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。
1.1. 氨化作用氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。
参与氨化作用的细菌称为氨化细菌。
在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨。
另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。
RCH(NH2)COOH→RCH2COOH+NH1CH3CH(NH2)COOH→CH3CH(OH)COOH+NH3CH2(OH)CH(NH2)COOH→CH3COCOOH+NH31.2. 硝化作用硝化作用是指将NH3-N氧化为NxO--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。
亚硝酸菌和硝酸菌统称为硝化菌。
发生硝化反应时细菌分别从氧化NH3-N和N2O--N 的过程中获得能量,碳源来自无机碳化合物,如CO2-3、HCO-、CO2等。
硝化过程的三个重要特征:⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2;⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季;⑶硝化过程中产生大量的质子(H+),为了使反应能顺利进行,需要大量的碱中和,理论上大约为每氧化需要碱度5.57g(以NaCO3计)。
1.3. 反硝化作用反硝化作用是指在厌氧或缺氧(DO<0.3-0.5mg/L)条件下,NOx--N及其它氮氧化物被用作电子受体被还原为氮气或氮的其它气态氧化物的生物学反应,这个过程由反硝化菌完成[3--4]。
《A2O污水处理工艺研究进展》篇一摘要:本文全面研究了A2O污水处理工艺的最新进展,包括其基本原理、应用现状、技术优化及未来发展趋势。
通过对A2O 工艺的深入探讨,旨在为污水处理领域提供理论支持和实践指导,以实现更高效、环保的污水处理。
一、引言随着工业化和城市化的快速发展,污水处理成为环境保护领域的重要课题。
A2O(厌氧-缺氧-好氧)污水处理工艺因其独特的处理效果和适应性,在污水处理领域得到广泛应用。
本文将重点研究A2O污水处理工艺的原理、应用及研究进展。
二、A2O污水处理工艺基本原理A2O工艺是一种生物脱氮除磷工艺,通过厌氧、缺氧和好氧三个阶段的组合,实现污水中氮、磷等污染物的去除。
该工艺利用微生物在不同阶段的代谢活动,达到净化水质的目的。
三、A2O污水处理工艺应用现状A2O工艺因其高效、稳定的处理效果,在国内外得到广泛应用。
该工艺适用于各类污水处理厂,尤其在处理含有较高氮、磷浓度的工业废水和生活污水中表现出色。
此外,A2O工艺还可与其他技术相结合,如微曝气、间歇进出水等,以提高处理效果。
四、A2O污水处理工艺技术优化为了进一步提高A2O工艺的处理效果和效率,研究者们进行了大量的技术优化研究。
这些优化措施包括:1. 改进反应器设计:通过优化反应器的结构,提高污泥与污水的接触效率,从而提高处理效果。
2. 生物强化技术:通过投加特定微生物或酶,增强系统对污染物的去除能力。
3. 节能降耗:通过优化运行参数,降低能耗,提高系统的经济性。
4. 脱氮除磷协同优化:通过调整进出水比例、曝气量等参数,实现脱氮除磷的协同优化。
五、A2O污水处理工艺研究进展近年来,A2O污水处理工艺在研究方面取得了显著进展。
研究者们通过实验和模拟手段,深入探讨了A2O工艺的运行机制、影响因素及优化措施。
同时,新型材料和技术的应用也为A2O工艺的发展提供了新的思路和方法。
例如,纳米材料的应用、新型生物膜反应器的开发等,都为提高A2O工艺的处理效果和效率提供了新的可能。
污水生物脱氮除磷基本原理及工艺发展现状
摘要:目前,污水处理技术已经逐渐从单一去除有机物为目的的阶段,进入到既要去除有机物又要脱氮除磷的深度处理阶段,脱氮除磷己成为当今污水处理领域的研究热点之一。
Abstract: at present, sewage treatment technology has gradually from a single removal organic phase for the purpose of, get into both the removing of organic matter and denitrification and the depth of the phosphorus processing stage, denitrification and phosphorus has become the sewage treatment of research in the field of one of the hotspots.
因氮、磷过量排放所引起的水体富营养化是目前最为关注的环境问题之一。
当水体中总磷浓度高于0.02mg/L或总氮浓度高于0.2mg/L时则被视为富营养化水体,它的表征之一即为藻类过度增长。
研究表明,每向水体中排放1g磷会引发950g(干重)藻类的生长[1]。
控制水体富营养化,防止水体被污染的最根本途径就是对污染源进行治理,控制污染物的排放量。
去除氮、磷以控制水体富营养化已成为各国的主要研究方向。
1.污水生物脱氮除磷基本原理
1.1生物脱氮基本原理
废水生物脱氮是在硝化菌和反硝化菌参与的反应过程中,将氨氮最终转化为氮气而将其从废水中去除的。
硝化和反硝化反应过程中所参与的微生物种类不同、转化的基质不同、所需要的反应条件也各不相同。
1.2传统生物除磷基本原理
到目前为止,国际普遍认可和接受的生物除磷理论是“聚合磷酸盐(Poly-p)累积微生物”——聚磷菌PAO的摄/释磷原理。
在聚磷菌新陈代谢过程中,三种贮存的化合物聚磷酸盐、糖元以及聚β羟基丁酸(PHB)起非常重要的作用。
其中PHB属于PHV范畴。
生物除磷过程通常包括厌氧释磷和好氧吸磷两个过程。
2 污水生物脱氮除磷工艺现状
2.1传统脱氮除磷技术
2.1.1 A2/O工艺
图1为厌氧/缺氧/好氧(A2/O)生物脱氮除磷工艺流程图。
该工艺在是能够同步脱氮除磷的污水处理工艺。
其特点是工艺简单,能够同步脱氮除磷,总停留时间短,污泥不易膨胀,不需投药,运行费用低。
该工艺也存在一些问题。
在达到一定效果后,A2/O工艺除磷量难于进一步提高,尤其是当进水P/BOD值高时
更是如此,由于回流混合液的回流比不宜过大,脱氮效率也难以进一步提提高。
图1 A2/O工艺
Figure1 Schematic diagram of anaerobic-anoxic-oxic process
2.1.2 VIP工艺
VIP工艺是美国Virainia州Hampton Roads公共卫生与CHAM HILL公司于80年代末开发并获得专利的污水生物除磷脱氮工艺[2]。
如图2所示VIP 工艺的主要特点是厌氧、缺氧和好氧三个反应器都是由多个完全混合反应器串联组成的,形成了有机物的梯度分布, 从而提高了厌氧池释磷和好氧池摄磷的速度,除磷效率高,降低了反应器总容积。
图2 VIP工艺
Figure2 The schematic diagram of VIP process
2.1.3 氧化沟
典型的脱氮除磷氧化沟有A2/C氧化沟、奥贝尔氧化沟和DE氧化沟。
其特点是常规氧化沟与其它工艺结合以达到较好的脱氮除磷能力。
以DE氧化沟为例,该系统由两个平行的氧化沟和一个独立的沉淀池组成,在两个平行的氧化沟内分别进行硝化、反硝化的反应,而达到生物脱氮的目的;在该系统前增设厌氧池,可以达到生物除磷的目的。
2.2 反硝化脱氮除磷技术
2.2.1 Dephanox工艺
Wanner首次提出Dephanox双污泥反硝化脱氮除磷工艺雏形[47],其工作原理见图3,随后意大利Bologna市的ENEA实验室对此也进行了长期的研究。
而更深入系统的研究是由Delft科技大学的Kuba等学者展开的[3]。
所谓双污泥系统就是硝化菌独立于DPB菌而单独存在于固定膜生物反应器或好氧硝化SBR 反应器中。
该工艺解决了聚磷菌和反硝化菌竞争碳源的问题,同时亦巧妙解决了活性污泥系统培养硝化菌需要的较长SRT这一不利条件。
在Dephanox工艺中,含DPB回流污泥首先在厌氧池完成释磷和储存PHB。
经快沉池分离后,富含DPB的污泥超越好氧池进入到缺氧池,含氨氮上清液直接进入固定膜反应器,进行好氧硝化,产生的硝化液流入缺氧池后与DPB污泥接触,完成过量吸磷和反硝化反应。
Dephanox双污泥系统可实现利用最少的COD消耗量,获得最大的
脱氮除磷效率。
通常污水中的N/P比低于7g N/g-P(105mgN/L,15mg P/L),这就意味着在A2N系统中,由于硝酸盐氮量的不足将导致不能实现彻底除磷,Dephanox工艺通过后置一个好氧曝气池可以实现剩余磷的去除。
图3 Dephanox工艺
Figure3 Schematic diagram of Dephanox process
2.2.3 A2NSBR工艺
继Wanner提出在厌氧/缺氧交替运行条件下联合生物膜反应器好氧硝化来进行生物除磷的新概念后,Kuba,M erzouki及W.J.Ng等相继对A2SBR双污泥系统进行了反硝化除磷的试验室小试研究[4]。
A2NSBR系统具有两个独立的SBR:一个SBR依次经历厌氧/缺氧段,主要是用来强化适合于DPB生长的厌氧/缺氧环境,筛选优势菌种;另一个为好氧SBR,此反应器的主要作用是培养硝化菌,以提供给厌氧/缺氧SBR足量的硝化液。
如图4所示,厌氧/缺氧SBR经厌氧反应后,将含氨氮的上清液流至好氧硝化SBR,在此经好氧硝化后,将硝化液又回流至厌氧/缺氧SBR,完成反硝化和除磷作用。
在A2NSBR系统中,好氧硝化污泥与DPB除磷污泥是分开的,好氧硝化反应单独在硝化SBR中完成,虽然系统添加了反应运行单元,但由于提供给系统的氧量、好氧段的COD损失相应减少,故双污泥脱氮除磷联合工艺相对传统工艺的投资额度仍是减小的。
图4 A2NSBR工艺流程图
Figure4 Schematic diagram of A2NSBR Operation
2.2.3生物膜反硝化除磷脱氮工艺
现代生物除磷工艺多用到的是活性污泥法,对生物膜法除磷的探讨尚少。
生物膜法能否进行除磷,能否实现反硝化除磷,有关专家也进行了深入细致的研究。
Kerm-Jespersen等考察了固定生物膜反应器除磷效果时首次得到:通过厌氧(2h)/缺氧(4h)交替环境可培养出富集DPB的反硝化生物膜]。
在厌氧段,平均每消耗1mgHAc可释放0.52mgPO43--P;在缺氧段,平均还原1m gNO3--N可吸磷2.0mg,而剩余干污泥中磷的含量己达到8~10%。
该试验为利用生物膜法实现反硝化除磷提供了依据。
鉴于生物膜除磷工艺高度的复杂性,在考察该工艺的实际运行能力时,有必要利用AQUASIM计算机程序进行模型模拟研究。
计算机模型模拟试验可以深入探讨生物膜内部的情况,并可作为一种工具对工艺各反应阶段的时间配比、反应池的大小和生物膜厚度等参数进行估算和评价,从而为实际工程运行提供参考依据[4-5]。
3.结论
因此,如何解决和处理传统脱氮除磷工艺中存在的矛盾关系和弊端,优化脱氮除磷工艺系统的运行,提高脱氮除磷效果,是目前城市污水脱氮除磷技术研究的重点,是我国水环境保护事业的当务之急。
想要从根本上提高污水脱氮除磷效率,只有开发污水生物脱氮除磷新理论与新技术,才能有效解决传统脱氮除磷工艺中存在的矛盾。
参考文献
[1].T. George,F. L. Burton,H. D. Stensel. Wastewater Engineering:TreatmentDisposal and Reuse. Fourth edition. Metcalf and Eddy,Inc.McGraw-Hill,2000:287~290
[2].建设部科技司.中国2000 年水工业可持续发展战略-水工业科技产业化.给水排水.1995,(5):31~35
[3].Jorgensen, Kirsten S.; Pauli, Anneli S.-L.Polyphosphate Accumulation among Denitrifying Bacteriain A ctivated Sludge.Anaerobe.1995,1(3):161~168
[4].罗固源,罗宁,吉芳英等,新型双泥生物反硝化除磷脱氮工艺.中国给水排水. 2002,18(9):47
[5].HUANG RongXin, LI Dong, LI XiangKun, BAO LinLin, JIANG AnXi andZHANG Jie.Positive role of nitrite as electron acceptor on anoxic denitrifying phosphorus removal process. Chinese Science Bulletin. 2007,52(16): 2179-2183。